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Abstract 

A general differential equation that governs static and flow behavior of a compressible fluid 
in horizontal, uphill and downhill inclined pipes is developed. The equation is developed 
by the combination of Euler equation for the steady flow of any fluid, the Darcy–Weisbach 
formula for lost head during fluid flow in pipes, the equation of continuity and the 
Colebrook friction factor equation. The classical fourth order Runge-Kutta numerical 
algorithm is used to solve to the new differential equation. The numerical algorithm is first 
programmed and applied to a problem of uphill gas flow in a vertical well. The program 
calculates the flowing bottom hole pressure as 2544.8 psia while the Cullender and Smith 
method obtains 2544 psia for the 5700 ft (above perforations) deep well    
Next, the Runge-Kutta solution is transformed to a formula that is suitable for hand 
calculation of the static or flowing bottom hole pressure of a gas well. The new formula 
gives close result to that from the computer program, in the case of a flowing gas well. In the 
static case, the new formula predicts a bottom hole pressure of 2640 psia for the 5790 ft 
(including perforations) deep well. Ikoku average temperature and deviation factor method 
obtains 2639 psia while the Cullender and Smith method obtaines 2641 psia for the same 
well.. The Runge-Kutta algorithm is also used to provide a formula for the direct calculation 
of the pressure drop during downhill gas flow in a pipe. Comparison of results from the 
formula with values from a fluid mechanics text book confirmed its accuracy. The direct 
computation formulas of this work are faster and less tedious than the current methods. 
They also permit large temperature gradients just as the Cullender and Smith method. 
Finally, the direct pressure transverse formulas developed in this work are combined wit the 
Reynolds number and the Colebrook friction factor equation to provide formulas for the 
direct calculation of the gas volumetric rate 

 
Introduction 

The main tasks that face Engineers and Scientists that deal with fluid behavior in pipes can 
be divided into two broad categories – the computation of flow rate and prediction of 
pressure at some section of the pipe. Whether in computation of flow rate, or in pressure 
transverse,  the method employed is to solve the energy equation (Bernoulli equation for 
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liquid and Euler equation for compressible fluid), simultaneously with the equation of lost 
head during fluid flow, the Colebrook (1938) friction factor equation for fluid flow in pipes 
and the equation of continuity (conservation of mass / weight). For the case of a gas the 
equation of state for gases is also included to account for the variation of gas volume with 
pressure and temperature. 
In the first part of this work, the Euler equation for the steady flow of any fluid in a pipe/ 
conduit is combined with the Darcy – Weisbach equation for the lost head during fluid flow 
in pipes and the Colebrook friction factor equation. The combination yields a general 
differential equation applicable to any compressible fluid; in a static column, or flowing 
through a pipe. The pipe may be horizontal, inclined uphill or down hill. 
The accuracy of the differential equation was ascertained by applying it to a problem of 
uphill gas flow in a vertical well. The problem came from the book of Ikoku (1984), “Natural 
Gas Production Engineering”. The classical fourth order Runge-Kutta method was first of all 
programmed in FORTRAN to solve the differential equation. By use of the average 
temperature and gas deviation factor method, Ikoku obtained the flowing bottom hole 

pressure (P w f) as 2543 psia for the 5700 ft well. The Cullender and Smith (1956) method 

that allows wide variation of temperature gave a P w f of 2544 psia.  The computer program 

obtaines the flowing bottom hole pressure (P w f ) as 2544.8 psia. Ouyang and Aziz (1996) 
developed another average temperature and deviation method for the calculation of flow 
rate and pressure transverse in gas wells. The average temperature and gas deviation 
formulas cannot be used directly to obtain pressure transverse in gas wells. The Cullender 
and Smith method involves numerical integration and is long and tedious to use. 
The next thing in this work was to use the Runge-Kutta method to generate formulas 
suitable for the direct calculation of the pressure transverse in a static gas column, and in 
uphill and downhill dipping pipes. The accuracy of the formula is tested by application to 
two problems from the book of Ikoku. The first problem was prediction of static bottom hole 
pressure (P w s). The new formula gives a P w s of 2640 psia for the 5790ft deep gas well. 
Ikoku average pressure and gas deviation factor method gives the  
P w s as 2639 psia, while the Cullender and Smith method gives the P w s as 2641 psia.  The 

second problem involves the calculation of flowing bottom hole pressure (P w f). The new 

formula gives the P w f as 2545 psia while the average temperature and gas deviation factor 

of Ikoku gives the P w f as 2543 psia. The Cullender and Smith method obtains a P w f of 
2544 psia. The downhill formula was first tested by its application to a slight modification of 
a problem from the book of Giles et al.(2009). There was a close agreement between exit 
pressure calculated by the formula and that from the text book. The formula is also used to 
calculate bottom hole pressure in a gas injection well. 
The direct pressure transverse formulas developed in this work are also combined wit the 
Reynolds number and the Colebrook friction factor equation to provide formulas for the 
direct calculation of the gas volumetric rate in uphill and down hill dipping pipes. 

 
 

A differntial equation for static behaviour of a compressible  
fluid and its  flow in pipes 

The Euler equation is generally accepted for the flow of a compressible fluid in a pipe. The 
equation from Giles et al. (2009) is: 
 

           l
dp vdv   d sin  dh 0

g
       (1) 

 

 In equation (1), the plus sign (+) before d sin  corresponds to the upward direction of the 
positive z coordinate and the minus sign (-) to the downward direction of the positive z 
coordinate.  
The generally accepted equation for the loss of head in a pipe transporting a fluid is that of 
Darcy-Weisbach. The equation is: 

 
2

L
f L v

       H
2gd

   (2)  

 
The equation of continuity for compressible flow in a pipe is:  
 

  W = A  (3) 
 
Taking the first derivation of equation (3) and solving simultaneously with equation (1) and 
(2) we have after some simplifications, 
 

 

2

2

2

2 2

f W sin .
2 A dgdp      

d dW1
dpA g

           




      (4) 

 
All equations used to derive equation (4) are generally accepted equations No limiting 
assumptions were made during the combination of these equations. Thus, equation (4) is a 
general differential equation that governs static behavior compressible fluid flow in a pipe. 
The compressible fluid can be a liquid of constant compressibility, gas or combination of gas 
and liquid (multiphase flow).  
By noting that the compressibility of a fluid (C f) is:  
 

 f
d1             C
dp
   (5) 

 
Equation (4) can be written as: 
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fW sin
2 A dgdp

d W C1
A g

          




 (6) 

 
Equation (6) can be simplified further for a gas.  
Multiply through equation (6) by  , then 
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f W sin
2g dgdp

d W  C1
A g

            




  (7) 

 
The equation of state for a non-ideal gas can be written as 
 

  
p
zR
    (8) 

 
Substitution of equation (8) into equation (7) and using the fact that  
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2
f

2

pdp dp1 , gives
d 2 d

2p sinfW  zR
zRd gdp

d W  zR C1
g p


            

 




  (9) 

The cross-sectional area (A) of a pipe is  
 

          
22 2 4

2 d d
4 16

         (10) 

 
Then equation (9) becomes: 
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2 sinfW  zR1.621139
zRd   gd .  

d 1.621139W  zR C1
 g d

           




 (11) 

 
The denominator of equation (11) accounts for the effect of the change in kinetic energy 
during fluid flow in pipes. The kinetic effect is small and can be neglected as pointed out by 
previous researchers such as Ikoku (1984) and Uoyang and Aziz(1996). Where the kinetic 
effect is to be evaluated, the compressibility of the gas (C f) can be calculated as follows: 
For an ideal gas such as air,  
 

 . 
p
1C       f  For a non ideal gas, C f  = 

p
z

zp 
 11

 . 

 
Matter et al. (1975) and Ohirhian (2008) have proposed equations for the calculation of the 
compressibility of hydrocarbon gases. For a sweet natural gas (natural gas that contains CO2 
as major contaminant), Ohirhian (2008) has expressed the compressibility of the real gas (Cf) 
as:  

p
C f

  

For Nigerian (sweet) natural gas K = 1.0328 when p is in psia 
The denominator of equation (11) can then be written as 

       24

2

Pd g M
zRTKW1  , where K = constant. 

Then equation (11) can be written as  

       
dy (A By)

Gd (1 )
y




 (12) 

 
where 

2 2
2

5 4
1.621139fW zRT 2M sin KW zRTy p ,  A ,  B  , G .

zRTgd M gMd
   

  
The plus (+) sign in numerator of equation (12) is used for compressible uphill flow and the 
negative sign (-) is used for the compressible downhill flow. In both cases the z coordinate is 

taken positive upward. In equation (12) the pressure drop is  y - y 21 , with y1 > y2 and 

incremental length is l2 – l1. Flow occurs from point (1) to point (2). Uphill flow of gas occurs 
in gas transmission lines and flow from the foot of a gas well to the surface.  The pressure at 
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the surface is usually known. Downhill flow of gas occurs in gas injection wells and gas 
transmission lines.  
We shall illustrate the solution to the compressible flow equation by taking a problem 
involving an uphill flow of gas in a vertical gas well. 
 
Computation of the variables in the gas differential equation  
We need to discuss the computation of the variables that occur in the differential equation 
for gas before finding a suitable solution to it.. The gas deviation factor (z) can be obtained 
from the chart of Standing and Katz (1942). The Standing and Katz chart has been curve 
fitted by many researchers. The version that was used in this section of the work that of 
Gopal(1977). The dimensionless friction factor in the compressible flow equation is a 
function of relative roughness (  / d) and the Reynolds number (RN). The Reynolds 
number is defined as: 

  N
WdvdR
Ag

     (13) 

 
The Reynolds number can also be written in terms of the gas volumetric flow rate. Then 
 

W =  b Q b 

 
Since the specific weight at base condition is: 
 

  
p M 28.97G pgb b  b z T R z T Rb b b b

    (14)  

 
The Reynolds number can be written as: 
 

  g b b
N

b bg

36.88575G P Q
R

Rgd z T
   (15) 

 
By use of a base pressure (p b) = 14.7psia, base temperature (T b) = 520oR and R = 1545 
 

  R N = b g

g

20071Q G
d  (16) 

 
Where d is expressed in inches, Q b  = MMSCF / Day and g  is in centipoises. 

Ohirhian and Abu (2008) have presented a formula for the calculation of the viscosity of 
natural gas. The natural gas can contain impurities of CO2 and H2S. The formula is: 
 

 
2

2g
0.0109388 0.0088234xx 0.00757210xx 

1.0 1.3633077xx 0.0461989xx
       (17) 

Where 

xx = 
0.0059723p

Tz 16.393443 p
   

  
In equation (17) g  is expressed in centipoises(c p) , p in (psia) and Tin (oR) 

The generally accepted equation for the calculation of the dimensionless friction factor (f) is 
that of Colebrook (1938). The equation is: 
 

  
N

1 2.512 log
3.7df R f

         (18) 

 
The equation is non-linear and requires iterative solution. Several researchers have 
proposed equations for the direct calculation of f. The equation used in this work is that 
proposed by Ohirhian (2005). The equation is  
 

   1
2

f 2 log a 2b log a bx
        (19) 

 
Where 

2.51a , b .
3.7d R
   

x 1  =  N N1.14 log 0.30558 0.57 log R 0.01772 log R 1.0693
d
        

After evaluating the variables in the gas differential equation, a suitable numerical scheme 
can be used to it. 
 
Solution to the gas differential equation for direct calculation of pressure transverse in 
static and uphill gas flow in pipes. 
 
The classical fourth order Range Kutta method that allows large increment in the 
independent variable when used to solve a differential equation is used in this work. The 
solution by use of the Runge-Kutta method allows direct calculation of pressure transverse.. 
The Runge-Kutta approximate solution to the differential equation 
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static and uphill gas flow in pipes. 
 
The classical fourth order Range Kutta method that allows large increment in the 
independent variable when used to solve a differential equation is used in this work. The 
solution by use of the Runge-Kutta method allows direct calculation of pressure transverse.. 
The Runge-Kutta approximate solution to the differential equation 
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The Runge-Kutta algorithm can obtain an accurate solution with a large value of H. The 
Runge-Kutta Algorithm can solve equation (6) or (12). The test problem used in this work is 
from the book of Ikoku (1984), “Natural Gas Production Engineering”. Ikoku has solved this 
problem with some of the available methods in the literature. 
 
Example 1 

Calculate the sand face pressure (p wf) of a flowing gas well from the following surface 
measurements. 
 Flow rate (Q) = 5.153 MMSCF / Day 
 Tubing internal diameter (d) = 1.9956in 
 Gas gravity (G g)   = 0.6 
 Depth    = 5790ft (bottom of casing) 

 Temperature at foot of tubing (T w f ) = 160 oF 

 Surface temperature (T s f) = 83 o F 

 Tubing head pressure (p t f) = 2122 psia 
 Absolute roughness of tubing ( ) = 0.0006 in 
 Length of tubing (l) = 5700ft (well is vertical) 
Solution 
            When length (  ) is zero, p = 2122 psia  
            That is (xo, yo ) = (0, 2122) 
            By use of 1 step Runge-Kutta. 

            H = .ft5700
1

05700 
 

(20)

(21)

The Runge-Kutta algorithm is programmed in Fortran 77 and used to solve this problem. 
The program is also used to study the size of depth(length ) increment needed to obtain an 
accurate solution by use of the Runge-Kutta method. The first output shows result for one-
step Runge-Kutta (Depth increment = 5700ft). The program obtaines 2544.823 psia as the 

flowing bottom hole pressure (P w f ).  
      
  TUBING HEAD PRESSURE =      2122.0000000 PSIA 
  SURFACE TEMPERATURE =       543.0000000 DEGREE RANKINE 
  TEMPERATURE AT TOTAL DEPTH =    620.0000000 DEGREE RANKINE 
  GAS GRAVITY =   6.000000E-001 
  GAS FLOW RATE =          5.1530000 MMSCFD 
  DEPTH AT SURFACE =          .0000000 FT 
  TOTAL DEPTH =      5700.0000000 FT 
  INTERNAL TUBING DIAMETER =         1.9956000 INCHES 
  ROUGHNESS OF TUBING =  6.000000E-004 INCHES 
  INCREMENTAL DEPTH =      5700.0000000 FT 
  
      PRESSURE PSIA        DEPTH FT 
  
         2122.000              .000 
         2544.823          5700.000 
 
To check the accuracy of the Runge-Kutta algorithm for the depth increment of 5700 ft 
another run is made with a smaller length increment of 1000 ft. The output gives a p wf  of 
2544.823 psia. as it is with  a depth increment of  5700 ft. This confirmes that the Runge-
Kutta solution can be accurate for a length increment of 5700 ft. 
 
  TUBING HEAD PRESSURE =      2122.0000000 PSIA 
  SURFACE TEMPERATURE =       543.0000000 DEGREE RANKINE 
  TEMPERATURE AT TOTAL DEPTH =     620.0000000 DEGREE RANKINE 
  GAS GRAVITY =   6.000000E-001 
  GAS FLOW RATE =          5.1530000 MMSCFD 
  DEPTH AT SURFACE =          .0000000 FT 
  TOTAL DEPTH =      5700.0000000 FT 
  INTERNAL TUBING DIAMETER =         1.9956000 INCHES 
  ROUGHNESS OF TUBING =  6.000000E-004 INCHES 
  INCREMENTAL DEPTH =      1000.0000000 FT 
 
      PRESSURE PSIA        DEPTH FT 
       2122.000                .000 
       2206.614            1140.000 
       2291.203            2280.000 
       2375.767            3420.000 
       2460.306            4560.000 
       2544.823            5700.000 
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The Runge-Kutta algorithm can obtain an accurate solution with a large value of H. The 
Runge-Kutta Algorithm can solve equation (6) or (12). The test problem used in this work is 
from the book of Ikoku (1984), “Natural Gas Production Engineering”. Ikoku has solved this 
problem with some of the available methods in the literature. 
 
Example 1 

Calculate the sand face pressure (p wf) of a flowing gas well from the following surface 
measurements. 
 Flow rate (Q) = 5.153 MMSCF / Day 
 Tubing internal diameter (d) = 1.9956in 
 Gas gravity (G g)   = 0.6 
 Depth    = 5790ft (bottom of casing) 

 Temperature at foot of tubing (T w f ) = 160 oF 

 Surface temperature (T s f) = 83 o F 

 Tubing head pressure (p t f) = 2122 psia 
 Absolute roughness of tubing ( ) = 0.0006 in 
 Length of tubing (l) = 5700ft (well is vertical) 
Solution 
            When length (  ) is zero, p = 2122 psia  
            That is (xo, yo ) = (0, 2122) 
            By use of 1 step Runge-Kutta. 

            H = .ft5700
1

05700 
 

(20)

(21)

The Runge-Kutta algorithm is programmed in Fortran 77 and used to solve this problem. 
The program is also used to study the size of depth(length ) increment needed to obtain an 
accurate solution by use of the Runge-Kutta method. The first output shows result for one-
step Runge-Kutta (Depth increment = 5700ft). The program obtaines 2544.823 psia as the 

flowing bottom hole pressure (P w f ).  
      
  TUBING HEAD PRESSURE =      2122.0000000 PSIA 
  SURFACE TEMPERATURE =       543.0000000 DEGREE RANKINE 
  TEMPERATURE AT TOTAL DEPTH =    620.0000000 DEGREE RANKINE 
  GAS GRAVITY =   6.000000E-001 
  GAS FLOW RATE =          5.1530000 MMSCFD 
  DEPTH AT SURFACE =          .0000000 FT 
  TOTAL DEPTH =      5700.0000000 FT 
  INTERNAL TUBING DIAMETER =         1.9956000 INCHES 
  ROUGHNESS OF TUBING =  6.000000E-004 INCHES 
  INCREMENTAL DEPTH =      5700.0000000 FT 
  
      PRESSURE PSIA        DEPTH FT 
  
         2122.000              .000 
         2544.823          5700.000 
 
To check the accuracy of the Runge-Kutta algorithm for the depth increment of 5700 ft 
another run is made with a smaller length increment of 1000 ft. The output gives a p wf  of 
2544.823 psia. as it is with  a depth increment of  5700 ft. This confirmes that the Runge-
Kutta solution can be accurate for a length increment of 5700 ft. 
 
  TUBING HEAD PRESSURE =      2122.0000000 PSIA 
  SURFACE TEMPERATURE =       543.0000000 DEGREE RANKINE 
  TEMPERATURE AT TOTAL DEPTH =     620.0000000 DEGREE RANKINE 
  GAS GRAVITY =   6.000000E-001 
  GAS FLOW RATE =          5.1530000 MMSCFD 
  DEPTH AT SURFACE =          .0000000 FT 
  TOTAL DEPTH =      5700.0000000 FT 
  INTERNAL TUBING DIAMETER =         1.9956000 INCHES 
  ROUGHNESS OF TUBING =  6.000000E-004 INCHES 
  INCREMENTAL DEPTH =      1000.0000000 FT 
 
      PRESSURE PSIA        DEPTH FT 
       2122.000                .000 
       2206.614            1140.000 
       2291.203            2280.000 
       2375.767            3420.000 
       2460.306            4560.000 
       2544.823            5700.000 
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In order to determine the maximum length of pipe (depth) for which the computed P w f 
can be considered as accurate, the depth of the test well is arbitrarily increased to 10,000ft 
and the program run with one step (length increment = 10,000ft). The program produces the 

P w f as 2861.060 psia.. 
 
  TUBING HEAD PRESSURE =      2122.0000000 PSIA 
  SURFACE TEMPERATURE =       543.0000000 DEGREE RANKINE 
  TEMPERATURE AT TOTAL DEPTH =    687.0000000 DEGREE RANKINE 
  GAS GRAVITY =   6.000000E-001 
  GAS FLOW RATE =          5.1530000 MMSCFD 
  DEPTH AT SURFACE =          .0000000 FT 
  TOTAL DEPTH =     10000.0000000 FT 
  INTERNAL TUBING DIAMETER =         1.9956000 INCHES 
  ROUGHNESS OF TUBING =  6.000000E-004 INCHES 
  INCREMENTAL DEPTH =     10000.0000000 FT 
 
      PRESSURE PSIA        DEPTH FT 
 
       2122.000                .000 
       2861.060           10000.000 
 

Next the total depth of 10000ft is subdivided into ten steps (length increment = 1,000ft). The 

program gives the P w f as 2861.057 psia for the length increment of 1000ft. 
 

  TUBING HEAD PRESSURE =      2122.0000000 PSIA 
  SURFACE TEMPERATURE =       543.0000000 DEGREE RANKINE 
  TEMPERATURE AT TOTAL DEPTH =     687.0000000 DEGREE RANKINE 
  GAS GRAVITY =   6.000000E-001 
  GAS FLOW RATE =          5.1530000 MMSCFD 
  DEPTH AT SURFACE =          .0000000 FT 
  TOTAL DEPTH =     10000.0000000 FT 
  INTERNAL TUBING DIAMETER =         1.9956000 INCHES 
  ROUGHNESS OF TUBING =  6.000000E-004 INCHES 
  INCREMENTAL DEPTH =      1000.0000000 FT 
 
      PRESSURE PSIA        DEPTH FT 
       2122.000                .000 
       2197.863            1000.000 
       2273.246            2000.000 
       2348.165            3000.000 
       2422.638            4000.000 
       2496.680            5000.000 
       2570.311            6000.000 
       2643.547            7000.000 
       2716.406            8000.000 
       2788.903            9000.000 
       2861.057           10000.000 

The computed values of P w f for the depth increment of 10,000ft and 1000ft differ only in 
the third decimal place. This suggests that the depth increment for the Range - Kutta 
solution to the differential equation generated in this work could be a large as 10,000ft. By 
neglecting the denominator of equation (6) that accounts for the kinetic effect, the 
result can be compared with Ikoku’s average temperature and gas deviation method that 
uses an average value of the gas deviation factor (z) and negligible kinetic effects. In the 
program z is allowed to vary with pressure and temperature. The temperature in the 
program also varies with depth (length of tubing) as  

T = GTG   current length + T s f, where, swf f(T T )
GTG

Total Depth
  

The program obtains the P w f as 2544.737 psia when the kinetic effect is ignored. The 
output is as follows:  
 
  TUBING HEAD PRESSURE =      2122.0000000 PSIA 
  SURFACE TEMPERATURE =       543.0000000 DEGREE RANKINE 
  TEMPERATURE AT TOTAL DEPTH =     620.0000000 DEGREE RANKINE 
  GAS GRAVITY =   6.000000E-001 
  GAS FLOW RATE =          5.1530000 MMSCFD 
  DEPTH AT SURFACE =          .0000000 FT 
  TOTAL DEPTH =      5700.0000000 FT 
  INTERNAL TUBING DIAMETER =         1.9956000 INCHES 
  ROUGHNESS OF TUBING =  6.000000E-004 INCHES 
  INCREMENTAL DEPTH =      5700.0000000 FT 
 
      PRESSURE PSIA        DEPTH FT 
 
      2122.000                .000 
      2544.737            5700.000 
 
Comparing the P w f of 2544.737 psia with the P w f of 2544.823 psia when the kinetic effect is 
considered, the kinetic contribution to the pressure drop is 2544.823 psia – 2544.737psia = 
0.086 psia.The kinetic effect during calculation of pressure transverse in uphill dipping pipes 
is small and can be neglected as pointed out by previous researchers such as Ikoku (1984) 
and Uoyang and Aziz(1996) 
Ikoku obtained 2543 psia by use of the the average temperature and gas deviation method. 
The average temperature and gas deviation method goes through trial and error calculations 
in order to obtain an accurate solution. Ikoku also used the Cullendar and Smith method to 
solve the problem under consideration. The Cullendar and Smith method does not consider 
the kinetic effect but allows a wide variation of the temperature. The Cullendar and Smith 
method involves the use of Simpson rule to carry out an integration of a cumbersome 

function. The solution to the given problem by the Cullendar and Smith method is p w f = 
2544 psia. 
If we neglect the denominator of equation (12), then the differential equation for pressure 
transverse in a flowing gas well becomes 
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In order to determine the maximum length of pipe (depth) for which the computed P w f 
can be considered as accurate, the depth of the test well is arbitrarily increased to 10,000ft 
and the program run with one step (length increment = 10,000ft). The program produces the 

P w f as 2861.060 psia.. 
 
  TUBING HEAD PRESSURE =      2122.0000000 PSIA 
  SURFACE TEMPERATURE =       543.0000000 DEGREE RANKINE 
  TEMPERATURE AT TOTAL DEPTH =    687.0000000 DEGREE RANKINE 
  GAS GRAVITY =   6.000000E-001 
  GAS FLOW RATE =          5.1530000 MMSCFD 
  DEPTH AT SURFACE =          .0000000 FT 
  TOTAL DEPTH =     10000.0000000 FT 
  INTERNAL TUBING DIAMETER =         1.9956000 INCHES 
  ROUGHNESS OF TUBING =  6.000000E-004 INCHES 
  INCREMENTAL DEPTH =     10000.0000000 FT 
 
      PRESSURE PSIA        DEPTH FT 
 
       2122.000                .000 
       2861.060           10000.000 
 

Next the total depth of 10000ft is subdivided into ten steps (length increment = 1,000ft). The 

program gives the P w f as 2861.057 psia for the length increment of 1000ft. 
 

  TUBING HEAD PRESSURE =      2122.0000000 PSIA 
  SURFACE TEMPERATURE =       543.0000000 DEGREE RANKINE 
  TEMPERATURE AT TOTAL DEPTH =     687.0000000 DEGREE RANKINE 
  GAS GRAVITY =   6.000000E-001 
  GAS FLOW RATE =          5.1530000 MMSCFD 
  DEPTH AT SURFACE =          .0000000 FT 
  TOTAL DEPTH =     10000.0000000 FT 
  INTERNAL TUBING DIAMETER =         1.9956000 INCHES 
  ROUGHNESS OF TUBING =  6.000000E-004 INCHES 
  INCREMENTAL DEPTH =      1000.0000000 FT 
 
      PRESSURE PSIA        DEPTH FT 
       2122.000                .000 
       2197.863            1000.000 
       2273.246            2000.000 
       2348.165            3000.000 
       2422.638            4000.000 
       2496.680            5000.000 
       2570.311            6000.000 
       2643.547            7000.000 
       2716.406            8000.000 
       2788.903            9000.000 
       2861.057           10000.000 

The computed values of P w f for the depth increment of 10,000ft and 1000ft differ only in 
the third decimal place. This suggests that the depth increment for the Range - Kutta 
solution to the differential equation generated in this work could be a large as 10,000ft. By 
neglecting the denominator of equation (6) that accounts for the kinetic effect, the 
result can be compared with Ikoku’s average temperature and gas deviation method that 
uses an average value of the gas deviation factor (z) and negligible kinetic effects. In the 
program z is allowed to vary with pressure and temperature. The temperature in the 
program also varies with depth (length of tubing) as  

T = GTG   current length + T s f, where, swf f(T T )
GTG

Total Depth
  

The program obtains the P w f as 2544.737 psia when the kinetic effect is ignored. The 
output is as follows:  
 
  TUBING HEAD PRESSURE =      2122.0000000 PSIA 
  SURFACE TEMPERATURE =       543.0000000 DEGREE RANKINE 
  TEMPERATURE AT TOTAL DEPTH =     620.0000000 DEGREE RANKINE 
  GAS GRAVITY =   6.000000E-001 
  GAS FLOW RATE =          5.1530000 MMSCFD 
  DEPTH AT SURFACE =          .0000000 FT 
  TOTAL DEPTH =      5700.0000000 FT 
  INTERNAL TUBING DIAMETER =         1.9956000 INCHES 
  ROUGHNESS OF TUBING =  6.000000E-004 INCHES 
  INCREMENTAL DEPTH =      5700.0000000 FT 
 
      PRESSURE PSIA        DEPTH FT 
 
      2122.000                .000 
      2544.737            5700.000 
 
Comparing the P w f of 2544.737 psia with the P w f of 2544.823 psia when the kinetic effect is 
considered, the kinetic contribution to the pressure drop is 2544.823 psia – 2544.737psia = 
0.086 psia.The kinetic effect during calculation of pressure transverse in uphill dipping pipes 
is small and can be neglected as pointed out by previous researchers such as Ikoku (1984) 
and Uoyang and Aziz(1996) 
Ikoku obtained 2543 psia by use of the the average temperature and gas deviation method. 
The average temperature and gas deviation method goes through trial and error calculations 
in order to obtain an accurate solution. Ikoku also used the Cullendar and Smith method to 
solve the problem under consideration. The Cullendar and Smith method does not consider 
the kinetic effect but allows a wide variation of the temperature. The Cullendar and Smith 
method involves the use of Simpson rule to carry out an integration of a cumbersome 

function. The solution to the given problem by the Cullendar and Smith method is p w f = 
2544 psia. 
If we neglect the denominator of equation (12), then the differential equation for pressure 
transverse in a flowing gas well becomes 
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The equation is valid in any consistent set of units. If we assume that the pressure and 
temperature in the tubing are held constant from the mid section of the pipe to the foot of 
the tubing, the Runge-Kutta method can be used to obtain the pressure transverse in the 
tubing as follows.  
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The weight flow rate (W) in equation (12) is related to Q b (the volumetric rate measurement 

at a base pressure (P b) and a base temperature (T b)) in equation (25) by: 
 

 W =  b Q b  (26) 
 
Equation (25) is a general differential equation that governs pressure transverse in a gas 
pipe that conveys gas uphill. When the angle of inclination ( ) is zero, sin  is zero and the 
differential equation reduces to that of a static gas column. The differential equation  (25) is 
valid in any consistent set of units. The constant K = 1.0328 for Nigerian Natural Gas when 
the unit of pressure is psia. 
 The classical 4th order Runge Kutta alogarithm can be used to provide a formula that serves 
as a general solution to the differential equation (25). To achieve this, the temperature and 
gas deviation factors are held constant at some average value, starting from the mid section 
of the pipe to the inlet end of the pipe. The solution to equation (25) by the Runge Katta 
algorithm can be written as: 
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When Q b = 0, equation (27) reduces to the formula for pressure transverse in a static gas 
column. 
In equation (27), the component k 4 in the Runge Kutta method given by k 4 =  

H f(xo + H, y + k 3) was given some weighting to compensate for the fact that the 
temperature and gas deviation factor vary between the mid section and the inlet end of the 
pipe. 
Equation (27) can be converted to oil field units. In oil field units in which L is in feet, R = 
1545, temperature is in oR, g = 32.2 ft/sec2, diameter (d) is in inches, pressure (p) is in pound 
per square inch (psia), flow rate (Qb) is in MMSCF / Day, Pb = 14.7 psia and Tb = 520o R.,the 
variables aa, u and x that occur in equation (25) can be written as: 
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The following steps are taken in order to use equation (27) to solve a problem. 

1. Evaluate the gas deviation factor at a given pressure and temperature. When 
equation (27) is used to calculate pressure transverse in a gas well, the given 
pressure and temperature are the surface temperature and gas exit pressure (tubing 
head pressure). 

2. Evaluate the viscosity of the gas at surface condition. This step is only necessary 
when calculating pressure transverse in a flowing gas well. It is omitted when 
static pressure transverse is calculated. 

3. Evaluate the Reynolds number and dimensionless friction factor by use of surface 
properties. This step is also omitted when considering a static gas column. 

4. Evaluate the coefficient aa in the formula. This coefficient depends only on surface 
properties. 
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The equation is valid in any consistent set of units. If we assume that the pressure and 
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The weight flow rate (W) in equation (12) is related to Q b (the volumetric rate measurement 

at a base pressure (P b) and a base temperature (T b)) in equation (25) by: 
 

 W =  b Q b  (26) 
 
Equation (25) is a general differential equation that governs pressure transverse in a gas 
pipe that conveys gas uphill. When the angle of inclination ( ) is zero, sin  is zero and the 
differential equation reduces to that of a static gas column. The differential equation  (25) is 
valid in any consistent set of units. The constant K = 1.0328 for Nigerian Natural Gas when 
the unit of pressure is psia. 
 The classical 4th order Runge Kutta alogarithm can be used to provide a formula that serves 
as a general solution to the differential equation (25). To achieve this, the temperature and 
gas deviation factors are held constant at some average value, starting from the mid section 
of the pipe to the inlet end of the pipe. The solution to equation (25) by the Runge Katta 
algorithm can be written as: 
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When Q b = 0, equation (27) reduces to the formula for pressure transverse in a static gas 
column. 
In equation (27), the component k 4 in the Runge Kutta method given by k 4 =  

H f(xo + H, y + k 3) was given some weighting to compensate for the fact that the 
temperature and gas deviation factor vary between the mid section and the inlet end of the 
pipe. 
Equation (27) can be converted to oil field units. In oil field units in which L is in feet, R = 
1545, temperature is in oR, g = 32.2 ft/sec2, diameter (d) is in inches, pressure (p) is in pound 
per square inch (psia), flow rate (Qb) is in MMSCF / Day, Pb = 14.7 psia and Tb = 520o R.,the 
variables aa, u and x that occur in equation (25) can be written as: 
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The following steps are taken in order to use equation (27) to solve a problem. 

1. Evaluate the gas deviation factor at a given pressure and temperature. When 
equation (27) is used to calculate pressure transverse in a gas well, the given 
pressure and temperature are the surface temperature and gas exit pressure (tubing 
head pressure). 

2. Evaluate the viscosity of the gas at surface condition. This step is only necessary 
when calculating pressure transverse in a flowing gas well. It is omitted when 
static pressure transverse is calculated. 

3. Evaluate the Reynolds number and dimensionless friction factor by use of surface 
properties. This step is also omitted when considering a static gas column. 

4. Evaluate the coefficient aa in the formula. This coefficient depends only on surface 
properties. 
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5. Evaluate the average pressure (p a v) and average temperature (T a v). 

6. Evaluate the average gas deviation factor.(z a v ) 

7. Evaluate the coefficients x and u in the formula. Note that u = 0 when Q b = 0. 

8. Evaluate y  in the formula. 

9. Evaluate the pressure 1p . In a flowing gas well, 1p is the flowing bottom hole 
pressure. In a static column, it is the static bottom hole pressure. 

 
Equation (27) is tested by using it to solve two problems from the book of Ikoku(1984), 
“Natural Gas Production Engineering”. The first problem involves calculation of the static 
bottom hole in a gas well. The second involves the calculation of the flowing bottom hole 
pressure of a gas well. 

 
Example 2 
Calculate the static bottom hole pressure of a gas well having a depth of 5790 ft. The gas 
gravity is 0.6 and the pressure at the well head is 2300 psia. The surface temperature is 83oF 
and the average flowing temperature is 117oF. 
Solution  
Following the steps that were listed for the solution to a problem by use of equation (27) we 
have: 
1.         Evaluation of z – factor.  
            The standing equation for Pc and T c are: 

 P c (psia) = 677.0 + 15.0 G g – 37.5 Gg2 

 T c (o R) = 168.0 + 325.0 G g – 12.5 Gg2 

Substitution of G g = 0.6 gives, Pc = 672.5 psia and T c = 358.5oR. Then Pr  = 2300/672.5 = 3.42 

and T r = 543/358.5 = 1.52 
The Standing and Katz chart gives z2 = 0.78.  

Steps 2 and 3 omitted in the static case. 
 

4.         
2 2

g b 2 2 g 2
5

2 2

25.13092 G Q f z T 0.037417G p sin
aa  L

z Td

     
  

Here, Gg = 0.6, Qb = 0.0, 2z = 0.78, d = 1.9956 inches, 2p = 2300 psia,  

                T2 = 543 o R and L = 5700 ft. Well is vertical, =90 o , sin = 1. Substitution of the 
given values gives: 

 aa = 0.0374917   0.6 23002    5790 / (0.78   543) = 1626696 

5. p a v= 22300 0.5 1626696 2470.5 psia    

 Reduced p a v = 2470.5 / 672.5 = 3.68 

    T a v = 117 o F = 577 o R 

 Reduced T a v = 577/358.5 = 1.61 

 From the standing and Katz chart, z a v = 0.816 
7. In the static case u = 0, so we only evaluate x  

 
o0.0374917 0.6 5790Sin90x 0.2766

0.816 577
    

8.    2
2 3 2 32paay 1 x 0.5x 0.36x 4.96x 1.48x 0.72x

6 6
        

 Substitution of a = 1626696, x = 0.2766 and P2 = 2300 gives  
 y 358543 1322856 1681399    

9.  0.52 2
1 2p p y 2300 1681399 2640.34 psia 2640psia       

 
Ikoku used 3 methods to work this problem. His answers of the static bottom hole pressure 
are: 
 Average temperature and deviation factor = 2639 psia 
 Sukkar and Cornell method = 2634 psia 
 Cullender and Smith method = 2641 psia 
The direct calculation formula of this work is faster. 
Example 3 
Use equation (27) to solve the problem of example 1 that was previously solved by 
computer programming. 
Solution  
1. Obtain the gas deviation factor at the surface. From example 2, the pseudocritical 

properties for a 0.6 gravity gas are, Pc = 672.5 psia. and T c = 358.5, then 

 Pr = 2122 / 672.5 = 3.16 

T r = 543 / 358.5 = 1.52 

From the Standing and Katz chart, z 2 =0.78 
2. Obtain, the viscosity of the gas at surface condition. By use of Ohirhian and Abu 

equation,  
0.0059723p 0.0059723 2122xx 0.9985

5430.78 16.393443z 16.393443 2122p

            
 

 Then 
   

   
2

2g
0.0109388 0.008823 0.9985 0.0075720 0.9985

0.0133 cp
1.0 1.3633077 0.9985 0.0461989 0.9985

      

3. Evaluation of the Reynolds number and dimensionless friction factor 

 b g 6
N

20071Q G 20071 5.153 0.6R 2.34 10
gd 0.0133 1.9956

      
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5. Evaluate the average pressure (p a v) and average temperature (T a v). 

6. Evaluate the average gas deviation factor.(z a v ) 

7. Evaluate the coefficients x and u in the formula. Note that u = 0 when Q b = 0. 

8. Evaluate y  in the formula. 

9. Evaluate the pressure 1p . In a flowing gas well, 1p is the flowing bottom hole 
pressure. In a static column, it is the static bottom hole pressure. 

 
Equation (27) is tested by using it to solve two problems from the book of Ikoku(1984), 
“Natural Gas Production Engineering”. The first problem involves calculation of the static 
bottom hole in a gas well. The second involves the calculation of the flowing bottom hole 
pressure of a gas well. 

 
Example 2 
Calculate the static bottom hole pressure of a gas well having a depth of 5790 ft. The gas 
gravity is 0.6 and the pressure at the well head is 2300 psia. The surface temperature is 83oF 
and the average flowing temperature is 117oF. 
Solution  
Following the steps that were listed for the solution to a problem by use of equation (27) we 
have: 
1.         Evaluation of z – factor.  
            The standing equation for Pc and T c are: 

 P c (psia) = 677.0 + 15.0 G g – 37.5 Gg2 

 T c (o R) = 168.0 + 325.0 G g – 12.5 Gg2 

Substitution of G g = 0.6 gives, Pc = 672.5 psia and T c = 358.5oR. Then Pr  = 2300/672.5 = 3.42 

and T r = 543/358.5 = 1.52 
The Standing and Katz chart gives z2 = 0.78.  

Steps 2 and 3 omitted in the static case. 
 

4.         
2 2

g b 2 2 g 2
5

2 2

25.13092 G Q f z T 0.037417G p sin
aa  L

z Td

     
  

Here, Gg = 0.6, Qb = 0.0, 2z = 0.78, d = 1.9956 inches, 2p = 2300 psia,  

                T2 = 543 o R and L = 5700 ft. Well is vertical, =90 o , sin = 1. Substitution of the 
given values gives: 

 aa = 0.0374917   0.6 23002    5790 / (0.78   543) = 1626696 

5. p a v= 22300 0.5 1626696 2470.5 psia    

 Reduced p a v = 2470.5 / 672.5 = 3.68 

    T a v = 117 o F = 577 o R 

 Reduced T a v = 577/358.5 = 1.61 

 From the standing and Katz chart, z a v = 0.816 
7. In the static case u = 0, so we only evaluate x  

 
o0.0374917 0.6 5790Sin90x 0.2766

0.816 577
    

8.    2
2 3 2 32paay 1 x 0.5x 0.36x 4.96x 1.48x 0.72x

6 6
        

 Substitution of a = 1626696, x = 0.2766 and P2 = 2300 gives  
 y 358543 1322856 1681399    

9.  0.52 2
1 2p p y 2300 1681399 2640.34 psia 2640psia       

 
Ikoku used 3 methods to work this problem. His answers of the static bottom hole pressure 
are: 
 Average temperature and deviation factor = 2639 psia 
 Sukkar and Cornell method = 2634 psia 
 Cullender and Smith method = 2641 psia 
The direct calculation formula of this work is faster. 
Example 3 
Use equation (27) to solve the problem of example 1 that was previously solved by 
computer programming. 
Solution  
1. Obtain the gas deviation factor at the surface. From example 2, the pseudocritical 

properties for a 0.6 gravity gas are, Pc = 672.5 psia. and T c = 358.5, then 

 Pr = 2122 / 672.5 = 3.16 

T r = 543 / 358.5 = 1.52 

From the Standing and Katz chart, z 2 =0.78 
2. Obtain, the viscosity of the gas at surface condition. By use of Ohirhian and Abu 

equation,  
0.0059723p 0.0059723 2122xx 0.9985

5430.78 16.393443z 16.393443 2122p

            
 

 Then 
   

   
2

2g
0.0109388 0.008823 0.9985 0.0075720 0.9985

0.0133 cp
1.0 1.3633077 0.9985 0.0461989 0.9985

      

3. Evaluation of the Reynolds number and dimensionless friction factor 

 b g 6
N

20071Q G 20071 5.153 0.6R 2.34 10
gd 0.0133 1.9956

      
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The dimensionless friction factor by Ohirhian formula is  

                1
2

f 2 log a 2blog a bx
       

Where  
 Na /3.7d, b 2.51 /R   

 1 N Nx 1.14 log 0.30558 0.57 log R 0.01772 log R 1.0693
d
        

             Substitute of 6
N0.0006, d 1.9956, R 2.34 10 gives f 0.01527      

4. Evaluate the coefficient aa in the formula. This coefficient depends only on surface 
properties. 

 
2 2

g b 2 2 g 2

5
2 2

25.13092 G Q f z T 0.037417G p sin
aa L

z Td

       

 Here, Gg = 0.6, Qb = 5.153 MMSCF/Day, f = 0.01527, 2z = 0.78, d = 1.9956 inches, 

2p = 2122 psia, T2 = 543 o R, z = 5700 ft 
             Substitution of the given values gives; 
 aa = (81.817446 + 239.14594) 5700 = 1829491 
5. Evaluate P a v 

 avp p aa psia2 2
2 0.5 2122 0.5 1829491 2327.6       

6. Evaluation of average gas deviation factor.  

Reduced average pressure = p a v / p c = 2327.6 / 672.5 = 3.46 
 av L2 /2     
            Where   is the geothermal gradient.      L1 2 620 543 5700 0.01351        

            T a v at the mid section of the pipe is 2850 ft. Then, T a v = 543 + 0.01351   2850  
               = 581.5 o R  

Reduced T a v = 581.5 / 358.5 = 1.62 

Standing and Katz chart gives z a v = 0.822 
7. Evaluation of the coefficients x and u 

5

2

5

g

av av
2

g av avb

0.0374917G L 0.0374919 0.6 5700x 0.26824
z 0.822 581.5

25.13092G Q f z L
u

d
25.13092 0.6 5.153 0.01527 0.822 581.5 5700    526662

1.9956

    


      

 

 

8.          Evaluate y  

     2
2 3 2 3 22paa uy 1 x 0.5x 0.36x 4.96x 1.48x 0.72x 4.96 1.96 0.72x

6 6 6
           

           Where u = 526662, x = 0.26824, 2p  = 2122 psia and aa = 1829491. Then,  

 y psia2399794 1088840 485752 1974386     

9. Evaluate 1p  (the flowing bottom hole pressure) 

 

1 2

2

p p y

2122 1974386 2545.05 psia
     2545 psia

 
  


 

The computer program obtains, the flowing bottom hole pressure as 2544.823 psia. For 
comparison with other methods of solution, the flowing bottom hole pressure by: 
 Average Temperature and Deviation Factor, P1 = 2543 psia 
 Cullender and Smith, P1 = 2544 
The direct calculating formula of this work is faster.  The Cullendar and Smith method is 
even more cumbersome than that of  Ikoku.t involves the use of special tables and charts 
(Ikoku, 1984) page 338  - 344. 
 
The differential equation for static gas behaviour  
and its downhill flow in pipes 

The problem of calculating pressure transverse during downhill gas flow in pipes is 
encountered in the transportation of gas to the market and in gas injection operations. In the 
literature, models for pressure prediction during downhill gas flow are rare and in many 
instances the same equations for uphill flow are used for downhill flow. 
In this section, we present the use of the Runge-Kutta solution to the downhill gas flow 
differential equation. 
During downhill gas flow in pipes, the negative sign in the numerator of differential 
equation (12) is used..The  differential equation also breaks down to a simple differential 
equation for pressure transverse in static columns when the flow rate is zero. The equation 
to be solved is: 

       
dy (A By)

Gd (1 )
y




 (28) 

Where 2py  ,  
 

2 2

5 4

1.621139 f W zRT 2M sin KW zRT
A ,  B  , G

zRTgd M gMd

  
  

Also, the molecular weight (M) of a gas, can be expressed as M = 28.97Gg. 
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The dimensionless friction factor by Ohirhian formula is  

                1
2

f 2 log a 2blog a bx
       

Where  
 Na /3.7d, b 2.51 /R   

 1 N Nx 1.14 log 0.30558 0.57 log R 0.01772 log R 1.0693
d
        

             Substitute of 6
N0.0006, d 1.9956, R 2.34 10 gives f 0.01527      

4. Evaluate the coefficient aa in the formula. This coefficient depends only on surface 
properties. 

 
2 2

g b 2 2 g 2

5
2 2

25.13092 G Q f z T 0.037417G p sin
aa L

z Td

       

 Here, Gg = 0.6, Qb = 5.153 MMSCF/Day, f = 0.01527, 2z = 0.78, d = 1.9956 inches, 

2p = 2122 psia, T2 = 543 o R, z = 5700 ft 
             Substitution of the given values gives; 
 aa = (81.817446 + 239.14594) 5700 = 1829491 
5. Evaluate P a v 

 avp p aa psia2 2
2 0.5 2122 0.5 1829491 2327.6       

6. Evaluation of average gas deviation factor.  

Reduced average pressure = p a v / p c = 2327.6 / 672.5 = 3.46 
 av L2 /2     
            Where   is the geothermal gradient.      L1 2 620 543 5700 0.01351        

            T a v at the mid section of the pipe is 2850 ft. Then, T a v = 543 + 0.01351   2850  
               = 581.5 o R  

Reduced T a v = 581.5 / 358.5 = 1.62 

Standing and Katz chart gives z a v = 0.822 
7. Evaluation of the coefficients x and u 

5

2

5

g

av av
2

g av avb

0.0374917G L 0.0374919 0.6 5700x 0.26824
z 0.822 581.5

25.13092G Q f z L
u

d
25.13092 0.6 5.153 0.01527 0.822 581.5 5700    526662

1.9956

    


      

 

 

8.          Evaluate y  

     2
2 3 2 3 22paa uy 1 x 0.5x 0.36x 4.96x 1.48x 0.72x 4.96 1.96 0.72x

6 6 6
           

           Where u = 526662, x = 0.26824, 2p  = 2122 psia and aa = 1829491. Then,  

 y psia2399794 1088840 485752 1974386     

9. Evaluate 1p  (the flowing bottom hole pressure) 

 

1 2

2

p p y

2122 1974386 2545.05 psia
     2545 psia

 
  


 

The computer program obtains, the flowing bottom hole pressure as 2544.823 psia. For 
comparison with other methods of solution, the flowing bottom hole pressure by: 
 Average Temperature and Deviation Factor, P1 = 2543 psia 
 Cullender and Smith, P1 = 2544 
The direct calculating formula of this work is faster.  The Cullendar and Smith method is 
even more cumbersome than that of  Ikoku.t involves the use of special tables and charts 
(Ikoku, 1984) page 338  - 344. 
 
The differential equation for static gas behaviour  
and its downhill flow in pipes 

The problem of calculating pressure transverse during downhill gas flow in pipes is 
encountered in the transportation of gas to the market and in gas injection operations. In the 
literature, models for pressure prediction during downhill gas flow are rare and in many 
instances the same equations for uphill flow are used for downhill flow. 
In this section, we present the use of the Runge-Kutta solution to the downhill gas flow 
differential equation. 
During downhill gas flow in pipes, the negative sign in the numerator of differential 
equation (12) is used..The  differential equation also breaks down to a simple differential 
equation for pressure transverse in static columns when the flow rate is zero. The equation 
to be solved is: 

       
dy (A By)

Gd (1 )
y




 (28) 

Where 2py  ,  
 

2 2

5 4

1.621139 f W zRT 2M sin KW zRT
A ,  B  , G

zRTgd M gMd

  
  

Also, the molecular weight (M) of a gas, can be expressed as M = 28.97Gg. 
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