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1. Introduction

When faced with making a decision, it is only natural that one would aim to select the course
of action which results in the “best" possible outcome. However, the ability to arrive at a de-
cision necessarily depends upon two things: a well-defined notion of what qualities make an
outcome desirable, and a previous decision1 defining to what extent it is necessary to charac-
terize the quality of individual candidates before making a selection (i.e., a notion of when a
decision is “good enough"). Whereas the first property is required for the problem to be well
defined, the later is necessary for it to be tractable.
The process of searching for the “best" outcome has been mathematically formalized in the
framework of optimization. The typical approach is to define a scalar-valued cost function,
that accepts a decision candidate as its argument, and returns a quantified measure of its
quality. The decision-making process then reduces to selecting a candidate with the lowest
(or highest) such measure.

1.1 The Emergence of Optimal Control

The field of “control" addresses the question of how to manipulate an input u in order to drive
the state x of a dynamical system

ẋ = f (x, u) (1)

to some desired target. Ultimately this task can be viewed as decision-making, so it is not sur-
prising that it lends itself towards an optimization-based characterization. Assuming that one
can provide the necessary metric for assessing quality of the trajectories generated by (1), there
exists a rich body of “optimal control" theory to guide this process of decision-making. Much
of this theory came about in the 1950’s and 60’s, with Pontryagin’s introduction of the Mini-
mum (a.k.a. Maximum) Principle Pontryagin (1961), and Bellman’s development of Dynamic
Programming Bellman (1952; 1957). (This development also coincided with landmark results
for linear systems, pioneered by Kalman Kalman (1960; 1963), that are closely related). How-
ever, the roots of both approaches actually extend back to the mid-1600’s, with the inception
of the calculus of variations.

1 The recursiveness of this definition is of course ill-posed until one accepts that at some level, every
decision is ultimately predicated upon underlying assumptions, accepted entirely in faith.
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The tools of optimal control theory provide useful benchmarks for characterizing the notion
of “best" decision-making, as it applies to control. However applied directly, the tractability of
this decision-making is problematic. For example, Dynamic Programming involves the con-
struction of a n−dimensional surface that satisfies a challenging nonlinear partial differential
equation, which is inherently plagued by the so-called curse of dimensionality. This method-
ology, although elegant, remains generally intractable for problems beyond modest size. In
contrast, the Minimum Principle has been relatively successful for use in off-line trajectory
planning, when the initial condition of (1) is known. Although it was suggested as early as
1967 in Lee & Markus (1967) that a stabilizing feedback u = k(x) could be constructed by
continuously re-solving the calculations online, a tractable means of doing this was not im-
mediately forthcoming.

1.2 Model Predictive Control as Receding-Horizon Optimization

Early development (Richalet et al. (1976),Richalet et al. (1978),Cutler & Ramaker (1980)) of the
control approach known today as Model Predictive Control (MPC) originated in the process
control community, and was driven much more by industrial application than by theoret-
ical understanding. Modern theoretical understanding of MPC, much of which developed
throughout the 1990’s, has clarified its very natural ties to existing optimal control theory. Key
steps towards this development included such results as Chen & Allgöwer (1998a;b); De Nico-
lao et al. (1996); Jadbabaie et al. (2001); Keerthi & Gilbert (1988); Mayne & Michalska (1990);
Michalska & Mayne (1993); Primbs et al. (2000), with an excellent unifying survey in Mayne
et al. (2000).
At its core, MPC is simply a framework for implementing existing tools of optimal control.
Taking the current value x(t) as the initial condition for (1), the Minimum Principle is used
as the primary basis for identifying the “best" candidate trajectory by predicting the future
behaviour of the system using model (1). However, the actual quality measure of interest in
the decision-making is generally the total future accumulation (i.e., over an infinite future) of
a given instantaneous metric, a quantity rarely computable in a satisfactorily short time. As
such, MPC only generates predictions for (1) over a finite time-horizon, and approximates the
remaining infinite tail of the cost accumulation using a penalty surface derived from either a
local solution of the Dynamic Programming surface, or an appropriate approximation of that
surface. As such, the key benefit of MPC over other optimal control methods is simply that its
finite horizon allows for a convenient trade-off between the online computational burden of
solving the Minimum Principle, and the offline burden of generating the penalty surface.
In contrast to other approaches for constructive nonlinear controller design, optimal control
frameworks facilitate the inclusion of constraints, by imposing feasibility of the candidates
as a condition in the decision-making process. While these approaches can be numerically
burdensome, optimal control (and by extension, MPC) provides the only real framework for
addressing the control of systems in the presence of constraints - in particular those involving
the state x. In practice, the predictive aspect of MPC is unparalleled in its ability to account
for the risk of future constraint violation during the current control decision.

1.3 Current Limitations in Model Predictive Control

While the underlying theoretical basis for model predictive control is approaching a state
of relative maturity, application of this approach to date has been predominantly limited to
“slow" industrial processes that allow adequate time to complete the controller calculations.
There is great incentive to extend this approach to applications in many other sectors, moti-
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vated in large part by its constraint-handling abilities. Future applications of significant inter-
est include many in the aerospace or automotive sectors, in particular constraint-dominated
problems such as obstacle avoidance. At present, the significant computational burden of
MPC remains the most critical limitation towards its application in these areas.
The second key weakness of the model predictive approach remains its susceptibility to un-
certainties in the model (1). While a fairly well-developed body of theory has been devel-
oped within the framework of robust-MPC, reaching an acceptable balance between computa-
tional complexity and conservativeness of the control remains a serious problem. In the more
general control literature, adaptive control has evolved as an alternative to a robust-control
paradigm. However, the incorporation of adaptive techniques into the MPC framework has
remained a relatively open problem.

2. Notational and Mathematical Preliminaries

Throughout the remainder of this dissertation, the following is assumed by default (where
s ∈ Rs and S represent arbitrary vectors and sets, respectively):

• all vector norms are Euclidean, defining balls B(s, δ)�{s′ | ‖s − s′‖≤δ}, δ ≥ 0.

• norms of matrices S ∈ Rm×s are assumed induced as ‖S‖ � max‖s‖=1 ‖Ss‖.

• the notation s[a,b] denotes the entire continuous-time trajectory s(τ), τ ∈ [a, b], and

likewise ṡ[a,b] the trajectory of its forward derivative ṡ(τ).

• For any set S ⊆ Rs, define

i) its closure cl{S}, interior S̊, and boundary ∂S = cl{S} \ S̊

ii) its orthogonal distance norm ‖s‖S � infs′∈S ‖s − s′‖

iii) a closed δ-neighbourhood B(S, δ)�{s ∈ Rs | ‖s‖S ≤δ}

iv) an interior approximation
←−
B (S, δ)�{s ∈ S | infs′∈∂S ‖s − s′‖≥δ}

v) a (finite, closed, open) cover of S as any (finite) collection {Si} of (open,
closed) sets Si ⊆ Rs such that S ⊆ ∪iS

i.

vi) the maximal closed subcover cov {S} as the infinite collection {Si} contain-
ing all possible closed subsets Si ⊆ S; i.e., cov {S} is a maximal “set of sub-
sets".

Furthermore, for any arbitrary function α : S → R we assume the following definitions:

• α(·) is Cm+ if it is at least m-times differentiable, with all derivatives of order m yielding
locally Lipschitz functions.

• A function α : S → (−∞, ∞] is lower semi-continuous (LS-continuous) at s if it satisfies
(see Clarke et al. (1998)):

lim inf
s′→s

α(s′) ≥ α(s) (2)

• a continuous function α : R≥0 → R≥0 belongs to class K if α(0) = 0 and α(·) is strictly
increasing on R>0. It belongs to class K∞ if it is furthermore radially unbounded.

• a continuous function β : R≥0 × R≥0 → R≥0 belongs to class KL if i) for every fixed
value of τ, it satisfies β(·, τ) ∈ K, and ii) for each fixed value of s, then β(s, ·) is strictly
decreasing and satisfies limτ→∞ β(s, τ) = 0.

• the scalar operator satb
a(·) denotes saturation of its arguments onto the interval [a, b],

a < b. For vector- or matrix-valued arguments, the saturation is presumed by default
to be evaluated element-wise.
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3. Brief Review of Optimal Control

The underlying assumption of optimal control is that at any time, the pointwise cost of x
and u being away from their desired targets is quantified by a known, physically-meaningful
function L(x, u). Loosely, the goal is to then reach some target in a manner that accumulates
the least cost. It is not generally necessary for the “target" to be explicitly described, since
its knowledge is built into the function L(x, u) (i.e it is assumed that convergence of x to
any invariant subset of {x | ∃u s.t. L(x, u) = 0} is as acceptable). The following result,
while superficially simple in appearance, is in fact the key foundation underlying the optimal
control results of this section, and by extension all of model predictive control as well. Proof
can be found in many references, such as Sage & White (1977).

Definition 3.1 (Principle of Optimality:). If u∗
[t1,t2]

is an optimal trajectory for the interval t ∈

[t1, t2], with corresponding solution x∗
[t1,t2]

to (1), then for any τ ∈ (t1, t2) the sub-arc u∗
[τ, t2]

is

necessarily optimal for the interval t ∈ [τ, t2] if (1) starts from x∗(τ).

4. Variational Approach: Euler, Lagrange

and Pontryagin

Pontryagin’s Minimum principle (also known as the Maximum principle, Pontryagin (1961))
represented a landmark extension of classical ideas of variational calculus to the problem of
control. Technically, the Minimum Principle is an application of the classical Euler-Lagrange
and Weierstrass conditions2 Hestenes (1966), which provide first-order necessary conditions to
characterize extremal time-trajectories of a cost functional.3. The Minimum Principle there-
fore characterizes minimizing trajectories (x[0,T], u[0,T]) corresponding to a constrained finite-
horizon problem of the form

VT(x0, u[0,T]) =
∫ T

0
L(x, u) dτ + W(x(T)) (3a)

s.t. ∀τ ∈[0, T] :

ẋ = f (x, u), x(0) = x0 (3b)

g(x(τ)) ≤ 0, h(x(τ), u(τ)) ≤ 0, w(x(T)) ≤ 0 (3c)

where the vectorfield f (·, ·) and constraint functions g(·), h(·, ·), and w(·) are assumed suffi-
ciently differentiable.
Assume that g(x0) < 0, and, for a given (x0, u[0,T]), let the interval [0, T) be partitioned into

(maximal) subintervals as τ ∈ ∪
p
i=1[ti, ti+1), t0 = 0, tp+1 = T, where the interior ti represent

intersections g < 0 ⇔ g = 0 (i.e., the {ti} represent changes in the active set of g). Assuming
that g(x) has constant relative degree r over some appropriate neighbourhood, define the fol-

lowing vector of (Lie) derivatives: N(x) � [g(x), g(1)(x), . . . g(r−1)(x)]T , which characterizes
additional tangency constraints N(x(ti)) = 0 at the corners {ti}. Rewriting (3) in multiplier
form

VT =
∫ T

0
H(x, u)− λT ẋ dτ + W(x(T)) + µww(x(T)) + ∑

i

µT
N(ti)N(x(ti)) (4a)

H � L(x, u) + λT f (x, u) + µhh(x, u) + µgg(r)(x, u) (4b)

2 phrased as a fixed initial point, free endpoint problem
3 i.e., generalizing the NLP necessary condition

∂p
∂x = 0 for the extrema of a function p(x).
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overa Taking the first variation of the right-hand sides of (4a,b) with respect to perturbations
in x[0,T] and u[0,T] yields the following set of conditions (adapted from statements in Bert-
sekas (1995); Bryson & Ho (1969); Hestenes (1966)) which necessarily must hold for VT to be
minimized:

Proposition 4.1 (Minimum Principle). Suppose that the pair (u∗
[0,T], x∗

[0,T]) is a minimizing solu-

tion of (3). Then for all τ ∈ [0, T], there exists multipliers λ(τ) ≥ 0, µh(τ) ≥ 0, µg(τ) ≥ 0, and

constants µw ≥ 0, µi
N ≥ 0, i ∈ I , such that

i) Over each interval τ ∈ [ti, ti+1], the multipliers µh(τ), µg(τ) are piecewise continuous, µN(τ)
is constant, λ(τ) is continuous, and with (u∗

[ti , ti+1]
, x∗

[ti , ti+1]
) satisfies

ẋ∗ = f (x∗, u∗), x∗(0) = x0 (5a)

λ̇T = ∇xH a.e., with λT(T) = ∇xW(x∗(T)) + µw∇xw(x∗(T)) (5b)

where the solution λ[0,T] is discontinuous at τ ∈ {ti}, i ∈ {1, 3, 5...p}, satisfying

λT(t−i ) = λT(t+i ) + µT
N(t+i )∇x N(x(ti)) (5c)

ii) H(x∗, u∗, λ, µh, µg) is constant over intervals τ ∈ [ti, ti+1], and for all τ ∈ [0, T] it satisfies

(where U (x) � {u | h(x, u) ≤ 0 and
(

g(r)(x, u) ≤ 0 if g(x) = 0
)

} ):

H(x∗, u∗, λ, µh, µg) ≤ min
u∈U(x)

H(x∗, u, λ, µh, µg) (5d)

∇uH(x∗(τ), u∗(τ), λ(τ), µh(τ), µg(τ)) = 0 (5e)

iii) For all τ ∈ [0, T], the following constraint conditions hold

g(x∗) ≤ 0 h(x∗, u∗) ≤ 0 w(x∗(T)) ≤ 0 (5f)

µg(τ)g(r)(x∗, u∗) = 0 µh(τ)h(x∗, u∗) = 0 µww(x∗(T)) = 0 (5g)

µT
N(τ)N(x∗) = 0

(

and N(x∗) = 0, ∀τ ∈ [ti, ti+1], i ∈ {1, 3, 5...p}
)

(5h)

The multiplier λ(t) is called the co-state, and it requires solving a two-point boundary-value
problem for (5a) and (5b). One of the most challenging aspects to locating (and confirming)
a minimizing solution to (5) lies in dealing with (5c) and (5h), since the number and times of
constraint intersections are not known a-priori.

5. Dynamic Programming: Hamilton, Jacobi,

and Bellman

The Minimum Principle is fundamentally based upon establishing the optimality of a partic-
ular input trajectory u[0,T]. While the applicability to offline, open-loop trajectory planning
is clear, the inherent assumption that x0 is known can be limiting if one’s goal is to develop
a feedback policy u = k(x). Development of such a policy requires the consideration of all
possible initial conditions, which results in an optimal cost surface J∗ : R

n → R, with an asso-
ciated control policy k : R

n → R
m. A constructive approach for calculating such a surface,

referred to as Dynamic Programming, was developed by Bellman Bellman (1957). Just as the
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Minimum Principle was extended out of the classical trajectory-based Euler-Lagrange equa-
tions, Dynamic Programming is an extension of classical Hamilton-Jacobi field theory from
the calculus of variations.
For simplicity, our discussion here will be restricted to the unconstrained problem:

V∗(x0) = min
u[0,∞)

∫

∞

0
L(x, u) dτ (6a)

s.t. ẋ = f (x, u), x(0) = x0 (6b)

with locally Lipschitz dynamics f (·, ·). From the Principle of Optimality, it can be seen that
(6) lends itself to the following recursive definition:

V∗(x(t)) = min
u[t, t+∆t]

{

∫ t+∆t

t
L(x(τ), u(τ))dτ + V∗(x(t + ∆t))

}

(7)

Assuming that V∗ is differentiable, replacing V∗(x(t + ∆t) with a first-order Taylor-series and
the integrand with a Riemannian sum, the limit ∆t → 0 yields

0 = min
u

{

L(x, u)+
∂V∗

∂x
f (x, u)

}

(8)

Equation (8) is one particular form of what is known as the Hamilton-Jacobi-Bellman (HJB)
equation. In some cases (such as L(x, u) quadratic in u, and f (x, u) affine in u), (8) can
be simplified to a more standard-looking PDE by evaluating the indicated minimization in
closed-form4. Assuming that a (differentiable) surface V∗ : Rn → R is found (generally
by off-line numerical solution) which satisfies (8), a stabilizing feedback u = kDP(x) can be

constructed from the information contained in the surface V∗ by simply defining5 kDP(x) �

{u | ∂V∗

∂x f (x, u) = −L(x, u)}.
Unfortunately, incorporation of either input or state constraints generally violates the as-
sumed smoothness of V∗(x). While this could be handled by interpreting (8) in the context
of viscosity solutions (see Clarke et al. (1998) for definition), for the purposes of application to
model predictive control it is more typical to simply restrict the domain of V∗ : Ω → R such
that Ω ⊂ Rn is feasible with respect to the constraints.

6. Inverse-Optimal Control Lyapunov Functions

While knowledge of a surface V∗(x) satisfying (8) is clearly ideal, in practice analytical so-
lutions are only available for extremely restrictive classes of systems, and almost never for
systems involving state or input constraints. Similarly, numerical solution of (8) suffers the
so-called “curse of dimensionality" (as named by Bellman) which limits its applicability to
systems of restrictively small size.
An alternative design framework, originating in Sontag (1983), is based on the following:

Definition 6.1. A control Lyapunov function (CLF) for (1) is any C1, proper, positive definite
function V : Rn → R≥0 such that, for all x �= 0:

inf
u

∂V

∂x
f (x, u) < 0 (9)

4 In fact, for linear dynamics and quadratic cost, (8) reduces down to the linear Ricatti equation.
5 kDP(·) is interpreted to incorporate a deterministic selection in the event of multiple solutions. The

existence of such a u is implied by the assumed solvability of (8)
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Design techniques for deriving a feedback u = k(x) from knowledge of V(·) include the well-
known “Sontag’s Controller" of Sontag (1989), which led to the development of “Pointwise
Min-Norm" control of the form Freeman & Kokotović (1996a;b); Sepulchre et al. (1997):

min
u

γ(u) s.t.
∂V

∂x
f (x, u) < −σ(x) (10)

where γ, σ are positive definite, and γ is radially unbounded. As discussed in Freeman
& Kokotović (1996b); Sepulchre et al. (1997), relation (9) implies that there exists a function
L(x, u), derived from γ and σ, for which V(·) satisfies (8). Furthermore, if V(x) ≡ V∗(x), then
appropriate selection of γ, σ (in particular that of Sontag’s controller Sontag (1989)) results in
the feedback u = kcl f (x) generated by (9) satisfying kcl f (·) ≡ kDP(·). Hence this technique is
commonly referred to as “inverse-optimal" control design, and can be viewed as a method for
approximating the optimal control problem (6) by replacing V∗(x) directly.

7. Review of Nonlinear MPC based on Nominal Models

The ultimate objective of a model predictive controller is to provide a closed-loop feedback u =
κmpc(x) that regulates (1) to its target set (assumed here x = 0) in a fashion that is optimal
with respect to the infinite-time problem (6), while enforcing pointwise constraints of the form
(x, u) ∈ X × U in a constructive manner. However, rather than defining the map κmpc : X →

U by solving a PDE of the form (8) (i.e thereby pre-computing knowledge of κmpc(x) for every
x ∈ X), the model predictive control philosophy is to solve for, at time t, the control move
u = κmpc(x(t)) for the particular value x(t) ∈ X. This makes the online calculations inherently
trajectory-based, and therefore closely tied to the results in Section 4 (with the caveat that the
initial conditions are continuously referenced relative to current (t, x)). Since it is not practical
to pose (online) trajectory-based calculations over an infinite prediction horizon τ ∈ [t, ∞), a
truncated prediction τ ∈ [t, t+T] is used instead. The truncated tail of the integral in (6) is
replaced by a (designer-specified) terminal penalty W : Xf → R≥0, defined over any local
neighbourhood Xf ⊂ X of the target x = 0. This results in a feedback of the form:

u = κmpc(x(t)) � u∗
[t, t+T](t) (11a)

where u∗
[t, t+T] denotes the solution to the x(t)-dependent problem:

u∗
[t, t+T] � arg min

u
p

[t, t+T]

(

VT(x(t), u
p

[t, t+T]
) �

∫ t+T

t
L(xp, up) dτ + W(xp(t+T))

)

(11b)

s.t. ∀τ ∈ [t, t+T] : d
dτ

xp = f (xp, up), xp(t) = x(t) (11c)

(xp(τ), up(τ)) ∈ X × U (11d)

xp(t+T) ∈ Xf (11e)

Clearly, if one could define W(x) ≡ V∗(x) globally, then the feedback in (11) must satisfy
κmpc(·) ≡ kDP(·). While W(x) ≡ V∗(x) is generally unachievable, this motivates the selection
of W(x) as a CLF such that W(x) is an inverse-optimal approximation of V∗(x). A more
precise characterization of the selection of W(x) is the focus of the next section.
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8. General Sufficient Conditions for Stability

A very general proof of the closed-loop stability of (11), which unifies a variety of earlier, more
restrictive, results is presented6 in the survey Mayne et al. (2000). This proof is based upon
the following set of sufficient conditions for closed-loop stability:

Criterion 8.1. The function W : Xf → R≥0 and set Xf are such that a local feedback k f : Xf → U

exists to satisfy the following conditions:

C1) 0 ∈ Xf ⊆ X, Xf closed (i.e., state constraints satisfied in Xf )

C2) k f (x) ∈ U, ∀x ∈ Xf (i.e., control constraints satisfied in Xf )

C3) Xf is positively invariant for ẋ = f (x, k f (x)).

C4) L(x, k f (x))+ ∂W
∂x f (x, k f (x)) ≤ 0, ∀x ∈ Xf .

Only existence, not knowledge, of k f (x) is assumed. Thus by comparison with (9), it can be
seen that C4 essentially requires that W(x) be a CLF over the (local) domain Xf , in a manner
consistent with the constraints.
In hindsight, it is nearly obvious that closed-loop stability can be reduced entirely to con-
ditions placed upon only the terminal choices W(·) and Xf . Viewing VT(x(t), u∗

[t,t+T]) as a

Lyapunov function candidate, it is clear from (3) that VT contains “energy" in both the
∫

L dτ

and terminal W terms. Energy dissipates from the front of the integral at a rate L(x, u) as time
t flows, and by the principle of optimality one could implement (11) on a shrinking horizon
(i.e., t + T constant), which would imply V̇ = −L(x, u). In addition to this, C4 guarantees that
the energy transfer from W to the integral (as the point t + T recedes) will be non-increasing,
and could even dissipate additional energy as well.

9. Robustness Considerations

As can be seen in Proposition 4.1, the presence of inequality constraints on the state variables
poses a challenge for numerical solution of the optimal control problem in (11). While locating
the times {ti} at which the active set changes can itself be a burdensome task, a significantly
more challenging task is trying to guarantee that the tangency condition N(x(ti+1)) = 0 is
met, which involves determining if x lies on (or crosses over) the critical surface beyond which
this condition fails.
As highlighted in Grimm et al. (2004), this critical surface poses more than just a computa-
tional concern. Since both the cost function and the feedback κmpc(x) are potentially discon-
tinuous on this surface, there exists the potential for arbitrarily small disturbances (or other
plant-model mismatch) to compromise closed-loop stability. This situation arises when the
optimal solution u∗

[t,t+T] in (11) switches between disconnected minimizers, potentially result-

ing in invariant limit cycles (for example, as a very low-cost minimizer alternates between
being judged feasible/infeasible.)
A modification suggested in Grimm et al. (2004) to restore nominal robustness, similar to the
idea in Marruedo et al. (2002), is to replace the constraint x(τ) ∈ X of (11d) with one of the
form x(τ) ∈ X

o(τ − t), where the function X
o : [0, T] → X satisfies X

o(0) = X, and the strict
containment X

o(t2) ⊂ X
o(t1), t1 < t2. The gradual relaxation of the constraint limit as future

predictions move closer to current time provides a safety margin that helps to avoid constraint
violation due to small disturbances.

6 in the context of both continuous- and discrete-time frameworks
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The issue of robustness to measurement error is addressed in Tuna et al. (2005). On one hand,
nominal robustness to measurement noise of an MPC feedback was already established in
Grimm et al. (2003) for discrete-time systems, and in Findeisen et al. (2003) for sampled-data
implementations. However, Tuna et al. (2005) demonstrates that as the sampling frequency
becomes arbitrarily fast, the margin of this robustness may approach zero. This stems from
the fact that the feedback κmpc(x) of (11) is inherently discontinuous in x if the indicated
minimization is performed globally on a nonconvex surface, which by Coron & Rosier (1994);
Hermes (1967) enables a fast measurement dither to generate flow in any direction contained
in the convex hull of the discontinuous closed-loop vectorfield. In other words, additional
attractors or unstable/infeasible modes can be introduced into the closed-loop behaviour by
arbitrarily small measurement noise.
Although Tuna et al. (2005) deals specifically with situations of obstacle avoidance or stabi-
lization to a target set containing disconnected points, other examples of problematic noncon-
vexities are depicted in Figure 1. In each of the scenarios depicted in Figure 1, measurement
dithering could conceivably induce flow along the dashed trajectories, thereby resulting in
either constraint violation or convergence to an undesired equilibrium.
Two different techniques were suggested in Tuna et al. (2005) for restoring robustness to the
measurement error, both of which involve adding a hysteresis-type behaviour in the optimiza-
tion to prevent arbitrary switching of the solution between separate minimizers (i.e., making
the optimization behaviour more decisive).

Fig. 1. Examples of nonconvexities susceptible to measurement error

10. Robust MPC

10.1 Review of Nonlinear MPC for Uncertain Systems

While a vast majority of the robust-MPC literature has been developed within the framework
of discrete-time systems7, for consistency with the rest of this thesis most of the discussion
will be based in terms of their continuous-time analogues. The uncertain system model is

7 Presumably for numerical tractability, as well as providing a more intuitive link to game theory.
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therefore described by the general form

ẋ = f (x, u, d) (12)

where d(t) represents any arbitrary L∞-bounded disturbance signal, which takes point-wise8

values d ∈ D. Equivalently, (12) can be represented as the differential inclusion model ẋ ∈

F(x, u) � f (x, u,D).
In the next two sections, we will discuss approaches for accounting explicitly for the distur-
bance in the online MPC calculations. We note that significant effort has also been directed
towards various means of increasing the inherent robustness of the controller without requir-
ing explicit online calculations. This includes the suggestion in Magni & Sepulchre (1997)
(with a similar discrete-time idea in De Nicolao et al. (1996)) to use a modified stage cost

L(x, u) � L(x, u)+ 〈∇xV∗
T (x), f (x, u)〉 to increase the robustness of a nominal-model imple-

mentation, or the suggestion in Kouvaritakis et al. (2000) to use an prestabilizer, optimized
offline, of the form u = Kx + v to reduced online computational burden. Ultimately, these ap-
proaches can be considered encompassed by the banner of nominal-model implementation.

10.1.1 Explicit robust MPC using Open-loop Models

As seen in the previous chapters, essentially all MPC approaches depend critically upon the
Principle of Optimality (Def 3.1) to establish a proof of stability. This argument depends inher-
ently upon the assumption that the predicted trajectory x

p

[t, t+T]
is an invariant set under open-

loop implementation of the corresponding u
p

[t, t+T]
; i.e., that the prediction model is “perfect".

Since this is no longer the case in the presence of plant-model mismatch, it becomes necessary
to associate with u

p

[t, t+T]
a cone of trajectories {x

p

[t, t+T]
}D emanating from x(t), as generated by

(12).
Not surprisingly, establishing stability requires a strengthening of the conditions imposed on
the selection of the terminal cost W and domain Xf . As such, W and Xf are assumed to satisfy
Criterion (8.1), but with the revised conditions:

C3a) Xf is strongly positively invariant for ẋ ∈ f (x, k f (x),D).

C4a) L(x, k f (x))+ ∂W
∂x f (x, k f (x), d) ≤ 0, ∀(x, d) ∈ Xf ×D.

While the original C4 had the interpretation of requiring W to be a CLF for the nominal sys-
tem, so the revised C4a can be interpreted to imply that W should be a robust-CLF like those
developed in Freeman & Kokotović (1996b).
Given such an appropriately defined pair (W, Xf ), the model predictive controller explicitly

considers all trajectories {x
p

[t, t+T]
}D by posing the modified problem

u = κmpc(x(t)) � u∗
[t, t+T](t) (13a)

where the trajectory u∗
[t, t+T]

denotes the solution to

u∗
[t, t+T]� arg min

u
p
[t, t+T]

T∈[0,Tmax ]

(

max
d[t, t+T]∈D

VT(x(t), u
p

[t, t+T]
, d[t, t+T])

)

(13b)

8 The abuse of notation d[t1 , t2 ]
∈ D is likewise interpreted pointwise
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The function VT(x(t), u
p

[t, t+T]
, d[t, t+T]) appearing in (13) is as defined in (11), but with (11c) re-

placed by (12). Variations of this type of design are given in Chen et al. (1997); Lee & Yu (1997);
Mayne (1995); Michalska & Mayne (1993); Ramirez et al. (2002), differing predominantly in the
manner by which they select W(·) and Xf .
If one interprets the word “optimal" in Definition 3.1 in terms of the worst-case trajectory in
the optimal cone {x

p

[t, t+T]
}∗D , then at time τ ∈ [t, t+T] there are only two possibilities:

• the actual x[t,τ] matches the subarc from a worst-case element of {x
p

[t, t+T]
}∗D , in which

case the Principle of Optimality holds as stated.

• the actual x[t,τ] matches the subarc from an element in {x
p

[t, t+T]
}∗D which was not the

worst case, so implementing the remaining u∗
[τ, t+T]

will achieve overall less cost than

the worst-case estimate at time t.

One will note however, that the bound guaranteed by the principle of optimality applies only
to the remaining subarc [τ, t+T], and says nothing about the ability to extend the horizon. For
the nominal-model results of Chapter 7, the ability to extend the horizon followed from C4)
of Criterion (8.1). In the present case, C4a) guarantees that for each terminal value {x

p

[t, t+T]
(t+

T)}∗D there exists a value of u rendering W decreasing, but not necessarily a single such value

satisfying C4a) for every {x
p

[t, t+T]
(t+T)}∗D . Hence, receding of the horizon can only occur at

the discretion of the optimizer. In the worst case, T could contract (i.e., t+T remains fixed)
until eventually T = 0, at which point {x

p

[t, t+T]
(t+T)}∗D ≡ x(t), and therefore by C4a) an

appropriate extension of the “trajectory" u∗
[t,t]

exists.

Although it is not an explicit min-max type result, the approach in Marruedo et al. (2002)
makes use of global Lipschitz constants to determine a bound on the the worst-case distance
between a solution of the uncertain model (12), and that of the underlying nominal model es-
timate. This Lipschitz-based uncertainty cone expands at the fastest-possible rate, necessarily
containing the actual uncertainty cone {x

p

[t, t+T]
}D . Although ultimately just a nominal-model

approach, it is relevant to note that it can be viewed as replacing the “max" in (13) with a
simple worst-case upper bound.
Finally, we note that many similar results Cannon & Kouvaritakis (2005); Kothare et al. (1996)
in the linear robust-MPC literature are relevant, since nonlinear dynamics can often be ap-
proximated using uncertain linear models. In particular, linear systems with polytopic de-
scriptions of uncertainty are one of the few classes that can be realistically solved numerically,
since the calculations reduce to simply evaluating each node of the polytope.

10.1.2 Explicit robust MPC using Feedback Models

Given that robust control design is closely tied to game theory, one can envision (13) as rep-
resenting a player’s decision-making process throughout the evolution of a strategic game.
However, it is unlikely that a player even moderately-skilled at such a game would restrict
themselves to preparing only a single sequence of moves to be executed in the future. Instead,
a skilled player is more likely to prepare a strategy for future game-play, consisting of several
“backup plans" contingent upon future responses of their adversary.
To be as least-conservative as possible, an ideal (in a worst-case sense) decision-making pro-
cess would more properly resemble

u = κmpc(x(t)) � u∗
t (14a)

www.intechopen.com



Model Predictive Control36

where u∗
t ∈ Rm is the constant value satisfying

u∗
t � arg min

ut

(

max
d[t, t+T]∈D

min
u

p

[t, t+T]
∈U (ut)

VT(x(t), u
p

[t, t+T]
, d[t, t+T])

)

(14b)

with the definition U (ut) � {u
p

[t, t+T]
| up(t) = ut}. Clearly, the “least conservative" prop-

erty follows from the fact that a separate response is optimized for every possible sequence
the adversary could play. This is analogous to the philosophy in Scokaert & Mayne (1998),
for system x+ = Ax + Bu + d, in which polytopic D allows the max to be reduced to select-
ing the worst index from a finitely-indexed collection of responses; this equivalently replaces
the innermost minimization with an augmented search in the outermost loop over all input
responses in the collection.
While (14) is useful as a definition, a more useful (equivalent) representation involves mini-
mizing over feedback policies k : [t, t+T]× X → U rather than trajectories:

u = κmpc(x(t)) � k∗(t, x(t)) (15a)

k∗(·, ·) � arg min
k(·,·)

max
d[t, t+T]∈D

(

VT(x(t), k(·, ·), d[t, t+T])

)

(15b)

VT(x(t), k(·, ·), d[t, t+T]) �
∫ t+T

t
L(xp, k(τ, xp(τ))) dτ + W(xp(t+T)) (15c)

s.t. ∀τ ∈ [t, t+T] : d
dτ

xp = f (xp, k(τ, xp(τ)), d), xp(t)= x(t) (15d)

(xp(τ), k(τ, xp(τ))) ∈ X × U (15e)

xp(t+T) ∈ Xf (15f)

There is a recursive-like elegance to (15), in that κmpc(x) is essentially defined as a search over
future candidates of itself. Whereas (14) explicitly involves optimization-based future feedbacks,
the search in (15) can actually be (suboptimally) restricted to any arbitrary sub-class of feed-
backs k : [t, t+T]×X → U. For example, this type of approach first appeared in Kothare et al.
(1996); Lee & Yu (1997); Mayne (1995), where the cost functional was minimized by restricting
the search to the class of linear feedback u = Kx (or u = K(t)x).
The error cone {x

p

[t, t+T]
}∗D associated with (15) is typically much less conservative than that of

(13). This is due to the fact that (15d) accounts for future disturbance attenuation resulting
from k(τ, xp(τ)), an effect ignored in the open-loop predictions of (13). In the case of (14) and
(15) it is no longer necessary to include T as an optimization variable, since by condition C4a
one can now envision extending the horizon by appending an increment k(T+δt, ·) = k f (·).
This notion of feedback MPC has been applied in Magni et al. (2003; 2001) to solve H∞ dis-
turbance attenuation problems. This approach avoids the need to solve a difficult Hamilton-
Jacobi-Isaacs equation, by combining a specially-selected stage cost L(x, u) with a local HJI
approximation W(x) (designed generally by solving an H∞ problem for the linearized sys-
tem). An alternative perspective of the implementation of (15) is developed in Langson et al.
(2004), with particular focus on obstacle-avoidance in Raković & Mayne (2005). In this work,
a set-invariance philosophy is used to propagate the uncertainty cone {x

p

[t, t+T]
}D for (15d) in

the form of a control-invariant tube. This enables the use of efficient methods for constructing
control invariant sets based on approximations such as polytopes or ellipsoids.
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11. Adaptive Approaches to MPC

The sectionr will be focused on the more typical role of adaptation as a means of coping with
uncertainties in the system model. A standard implementation of model predictive control
using a nominal model of the system dynamics can, with slight modification, exhibit nominal
robustness to disturbances and modelling error. However in practical situations, the sys-
tem model is only approximately known, so a guarantee of robustness which covers only
“sufficiently small" errors may be unacceptable. In order to achieve a more solid robustness
guarantee, it becomes necessary to account (either explicitly, or implicitly) for all possible
trajectories which could be realized by the uncertain system, in order to guarantee feasible
stability. The obvious numerical complexity of this task has resulted in an array of different
control approaches, which lie at various locations on the spectrum between simple, conser-
vative approximations versus complex, high-performance calculations. Ultimately, selecting
an appropriate approach involves assessing, for the particular system in question, what is an
acceptable balance between computational requirements and closed-loop performance.
Despite the fact that the ability to adjust to changing process conditions was one of the ear-
liest industrial motivators for developing predictive control techniques, the progress in this
area has been negligible. The small amount of progress that has been made is restricted to
systems which do not involve constraints on the state, and which are affine in the unknown
parameters. We will briefly describe two such results.

11.1 Certainty-equivalence Implementation

The result in Mayne & Michalska (1993) implements a certainty equivalence nominal-model9

MPC feedback of the form u(t) = κmpc(x(t), θ̂(t)), to stabilize the uncertain system

ẋ = f (x, u, θ) � f0(x, u) + g(x, u)θ (16)

subject to an input constraint u ∈ U. The vector θ ∈ R
p represents a set of unknown con-

stant parameters, with θ̂ ∈ R
p denoting an identifier. Certainty equivalence implies that the

nominal prediction model (11c) is of the same form as (16), but with θ̂ used in place of θ.
At any time t ≥ 0, the identifier θ̂(t) is defined to be a (min-norm) solution of

∫ t

0
g(x(s), u(s))T

(

ẋ(s)− f0(x(s), u(s))
)

ds =
∫ t

0
g(x(s), u(s))T g(x(s), u(s))ds θ̂ (17)

which is solved over the window of all past history, under the assumption that ẋ is mea-
sured (or computable). If necessary, an additional search is performed along the nullspace

of
∫ t

0 g(x, u)T g(x, u)ds in order to guarantee θ̂(t) yields a controllable certainty-equivalence
model (since (17) is controllable by assumption).
The final result simply shows that there must exist a time 0 < ta < ∞ such that the regressor
∫ t

0 g(x, u)T g(x, u)ds achieves full rank, and thus θ̂(t) ≡ θ for all t ≥ ta. However, it is only by
assumption that the state x(t) does not escape the stabilizable region during the identification
phase t ∈ [0, ta]; moreover, there is no mechanism to decrease ta in any way, such as by
injecting excitation.

9 Since this result arose early in the development of nonlinear MPC, it happens to be based upon a
terminal-constrained controller (i.e., Xf ≡ {0}); however, this is not critical to the adaptation.
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11.1.1 Stability-Enforced Approach

One of the early stability results for nominal-model MPC in (Primbs (1999); Primbs et al.
(2000)) involved the use of a global CLF V(x) instead of a terminal penalty. Stability was
enforced by constraining the optimization such that V(x) is decreasing, and performance
achieved by requiring the predicted cost to be less than that accumulated by simulation of
pointwise min-norm control.
This idea was extended in Adetola & Guay (2004) to stabilize unconstrained systems of the
form

ẋ = f (x, u, θ) � f0(x) + gθ(x)θ + gu(x)u (18)

Using ideas from robust stabilization, it is assumed that a global ISS-CLF10 is known for the
nominal system. Constraining V(x) to decrease ensures convergence to a neighbourhood of
the origin, which gradually contracts as the identification proceeds. Of course, the restrictive-
ness of this approach lies in the assumption that V(x) is known.

12. An Adaptive Approach to Robust MPC

Both the theoretical and practical merits of model-based predictive control strategies for non-
linear systems are well established, as reviewed in Chapter 7. To date, the vast majority of
implementations involve an “accurate model" assumption, in which the control action is com-
puted on the basis of predictions generated by an approximate nominal process model, and
implemented (un-altered) on the actual process. In other words, the effects of plant-model
mismatch are completely ignored in the control calculation, and closed-loop stability hinges
upon the critical assumption that the nominal model is a “sufficiently close" approximation of
the actual plant. Clearly, this approach is only acceptable for processes whose dynamics can
be modelled a-priori to within a high degree of precision.
For systems whose true dynamics can only be approximated to within a large margin of un-
certainty, it becomes necessary to directly account for the plant-model mismatch. To date, the
most general and rigourous means for doing this involves explicitly accounting for the error
in the online calculation, using the robust-MPC approaches discussed in Section 10.1. While
the theoretical foundations and guarantees of stability for these tools are well established,
it remains problematic in most cases to find an appropriate approach yielding a satisfactory
balance between computational complexity, and conservatism of the error calculations. For
example, the framework of min-max feedback-MPC Magni et al. (2003); Scokaert & Mayne
(1998) provides the least-conservative control by accounting for the effects of future feedback
actions, but is in most cases computationally intractable. In contrast, computationally simple
approaches such as the openloop method of Marruedo et al. (2002) yield such conservatively-
large error estimates, that a feasible solution to the optimal control problem often fails to exist.
For systems involving primarily static uncertainties, expressible in the form of unknown (con-
stant) model parameters θ ∈ Θ ⊂ Rp, it would be more desirable to approach the problem in
the framework of adaptive control than that of robust control. Ideally, an adaptive mechanism
enables the controller to improve its performance over time by employing a process model
which asymptotically approaches that of the true system. Within the context of predictive
control, however, the transient effects of parametric estimation error have proven problematic

10 i.e., a CLF guaranteeing robust stabilization to a neighbourhood of the origin, where the size of the
neighbourhood scales with the L∞ bound of the disturbance signal
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towards developing anything beyond the limited results discussed in Section 11. In short, the
development of a general “robust adaptive-MPC" remains at present an open problem.
In the following, we make no attempt to construct such a “robust adaptive" controller; in-
stead we propose an approach more properly referred to as “adaptive robust" control. The
approach differs from typical adaptive control techniques, in that the adaptation mechanism
does not directly involve a parameter identifier θ̂ ∈ Rp. Instead, a set-valued description of
the parametric uncertainty, Θ, is adapted online by an identification mechanism. By gradually
eliminating values from Θ that are identified as being inconsistent with the observed trajecto-
ries, Θ gradually contracts upon θ in a nested fashion. By virtue of this nested evolution of Θ,
it is clear that an adaptive feedback structure of the form in Figure 2 would retain the stability
properties of any underlying robust control design.

PlantRobust Controller for

Identifier

Fig. 2. Adaptive robust feedback structure

The idea of arranging an identifier and robust controller in the configuration of Figure 2 is
itself not entirely new. For example the robust control design of Corless & Leitmann (1981),
appropriate for nonlinear systems affine in u whose disturbances are bounded and satisfy the
so-called “matching condition", has been used by various authors Brogliato & Neto (1995);
Corless & Leitmann (1981); Tang (1996) in conjunction with different identifier designs for
estimating the disturbance bound resulting from parametric uncertainty. A similar concept
for linear systems is given in Kim & Han (2004).
However, to the best of our knowledge this idea has not been well explored in the situation
where the underlying robust controller is designed by robust-MPC methods. The advantage
of such an approach is that one could then potentially imbed an internal model of the identi-
fication mechanism into the predictive controller, as shown in Figure 3. In doing so the effects
of future identification are accounted for within the optimal control problem, the benefits of
which are discussed in the next section.

13. A Minimally-Conservative Perspective

13.1 Problem Description

The problem of interest is to achieve robust regulation, by means of state-feedback, of the
system state to some compact target set Σo

x ∈ Rn. Optimality of the resulting trajectories are
measured with respect to the accumulation of some instantaneous penalty (i.e., stage cost)
L(x, u) ≥ 0, which may or may not have physical significance. Furthermore, the state and
input trajectories are required to obey pointwise constraints (x, u) ∈ X × U ⊆ Rn × Rm.
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PlantRobust-MPC

Identifier

Identifier

Fig. 3. Adaptive robust MPC structure

It is assumed that the system dynamics are not fully known, with uncertainty stemming from
both unmodelled static nonlinearities as well as additional exogenous inputs. As such, the
dynamics are assumed to be of the general form

ẋ = f (x, u, θ, d(t)) (19)

where f is a locally Lipschitz vector function of state x ∈ Rn, control input u ∈ Rm, dis-
turbance input d ∈ Rd, and constant parameters θ ∈ Rp. The entries of θ may represent
physically meaningful model parameters (whose values are not exactly known a-priori), or
alternatively they could be parameters associated with any (finite) set of universal basis func-
tions used to approximate unknown nonlinearities. The disturbance d(t) represents the com-
bined effects of actual exogenous inputs, neglected system states, or static nonlinearities lying
outside the span of θ (such as the truncation error resulting from using a finite basis).

Assumption 13.1. θ ∈ Θo, where Θo is a known compact subset of Rp.

Assumption 13.2. d(·) ∈ D∞, where D∞ is the set of all right-continuous L∞-bounded functions
d : R → D; i.e., composed of continuous subarcs d[a,b), and satisfying d(τ) ∈ D, ∀τ ∈ R, with

D ⊂ Rd a compact vectorspace.

Unlike much of the robust or adaptive MPC literature, we do not necessarily assume exact
knowledge of the system equilibrium manifold, or its stabilizing equilibrium control map.
Instead, we make the following (weaker) set of assumptions:

Assumption 13.3. Letting Σo
u ⊆ U be a chosen compact set, assume that L : X × U → R≥0 is

continuous, L(Σo
x, Σo

u)≡0, and L(x, u) ≥ γ
L

(

‖(x, u)‖Σo
x×Σo

u

)

, γ
L
∈ K∞. As well, assume that

min
(u,θ,d)∈U×Θo×D

(

L(x, u)

‖ f (x, u, θ, d)‖

)

≥
c2

‖x‖Σo
x

∀x ∈ X \ B(Σo
x, c1) (20)

Definition 13.4. For each Θ⊆Θo, let Σx(Θ)⊆Σo
x denote the maximal (strongly) control-invariant

subset for the differential inclusion ẋ∈ f (x, u, Θ,D), using only controls u ∈ Σo
u.

Assumption 13.5. There exists a constant NΣ < ∞, and a finite cover of Θo (not necessarily unique),
denoted {Θ}Σ, such that
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i. the collection {Θ̊}Σ is an open cover for the interior Θ̊o.

ii. Θ ∈ {Θ}Σ implies Σx(Θ) �= ∅.

iii. {Θ}Σ contains at most NΣ elements.

The most important requirement of Assumption 13.3 is that, since the exact location (in Rn ×
Rm) of the equilibrium11 manifold is not known a-priori, L(x, u) must be identically zero on
the entire region of equilibrium candidates Σo

x × Σo
u. One example of how to construct such

a function would be to define L(x, u) = ρ(x, u)L(x, u), where L(x, u) is an arbitrary penalty
satisfying (x, u) �∈ Σo

x × Σo
u =⇒ L(x, u) > 0, and ρ(x, u) is a smoothed indicator function of

the form

ρ(x, u) =















0 (x, u) ∈ Σo
x × Σo

u
‖(x,u)‖Σo

x×Σo
u

δρ
0 < ‖(x, u)‖Σo

x×Σo
u
< δρ

1 ‖(x, u)‖Σo
x×Σo

u
≥ δρ

(21)

The restriction that L(x, u) is strictly positive definite with respect to Σo
x×Σo

u is made for con-
venience, and could be relaxed to positive semi-definite using an approach similar to that of
Grimm et al. (2005) as long as L(x, u) satisfies an appropriate detectability assumption (i.e.,
as long as it is guaranteed that all trajectories remaining in {x | ∃u s.t. L(x, u) = 0} must
asymptotically approach Σo

x×Σo
u).

The first implication of Assumption 13.5 is that for any θ ∈ Θo, the target Σo
x contains a

stabilizable “equilibrium" Σ(θ) such that the regulation problem is well-posed. Secondly, the
openness of the covering in Assumption 13.5 implies a type of “local-ISS" property of these
equilibria with respect to perturbations in small neighbourhoods Θ of θ. This property ensures
that the target is stabilizable given “sufficiently close" identification of the unknown θ, such
that the adaptive controller design is tractable.

13.2 Adaptive Robust Controller Design Framework

13.2.1 Adaptation of Parametric Uncertainty Sets

Unlike standard approaches to adaptive control, this work does not involve explicitly gener-
ating a parameter estimator θ̂ for the unknown θ. Instead, the parametric uncertainty set Θo is
adapted to gradually eliminate sets which do not contain θ. To this end, we define the infimal
uncertainty set

Z(Θ, x[a,b], u[a,b]) � { θ ∈ Θ | ẋ(τ) ∈ f (x(τ), u(τ), θ,D), ∀τ∈ [a, b]} (22)

By definition, Z represents the best-case performance that could be achieved by any iden-
tifier, given a set of data generated by (19), and a prior uncertainty bound Θ. Since exact
online calculation of (22) is generally impractical, we assume that the set Z is approximated
online using an arbitrary estimator Ψ. This estimator must be chosen to satisfy the following
conditions.

Criterion 13.6. Ψ(·, ·, ·) is designed such that for a≤b≤ c, and for any Θ ⊆ Θo,

C13.6.1 Z ⊆ Ψ

C13.6.2 Ψ(Θ, ·, ·) ⊆ Θ, and closed.

11 we use the word “equilibrium" loosely in the sense of control-invariant subsets of the target Σo
x , which

need not be actual equilibrium points in the traditional sense
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