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Preface

The purpose of these notes is be used to introduce Electrical Engineering students to Electrical
Machines, Power Electronics and Electrical Drives. They are primarily to serve our students at
MSU: they come to the course on Energy Conversion and Power Electronics with a solid background
in Electric Circuits and Electromagnetics, and many want to acquire a basic working knowledge
of the material, but plan a career in a different area (venturing as far as computer or mechanical
engineering). Other students are interested in continuing in the study of electrical machines and
drives, power electronics or power systems, and plan to take further courses in the field.

Starting from basic concepts, the student is led to understand how force, torque, induced voltages
and currents are developed in an electrical machine. Then models of the machines are developed, in
terms of both simplified equations and of equivalent circuits, leading to the basic understanding of
modern machines and drives. Power electronics are introduced, at the device and systems level, and
electrical drives are discussed.

Equations are kept to a minimum, and in the examples only the basic equations are used to solve
simple problems.

These notes do not aim to cover completely the subjects of Energy Conversion and Power
Electronics, nor to be used as a reference, not even to be useful for an advanced course. They are
meant only to be an aid for the instructor who is working with intelligent and interested students,
who are taking their first (and perhaps their last) course on the subject. How successful this endeavor
has been will be tested in the class and in practice.

In the present form this text is to be used solely for the purposes of teaching the introductory
course on Energy Conversion and Power Electronics at MSU.

E.G.STRANGAS

E. Lansing, MichiganandPyrgos, Tinos
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A Note on Symbols

Throughout this text an attempt has been made to use symbols in a consistent way. Hence a script
letter, sayv denotes a scalar time varying quantity, in this case a voltage. Hence one can see

v = 5 sin ωt or v = v̂ sinωt

The same letter but capitalized denotes the rms value of the variable, assuming it is periodic.
Hence:

v =
√

2V sinωt

The capital letter, but now bold, denotes a phasor:

V = V ejθ

Finally, the script letter, bold, denotes a space vector, i.e. a time dependent vector resulting from
three time dependent scalars:

v = v1 + v2e
jγ + v3e

j2γ

In addition to voltages, currents, and other obvious symbols we have:
B Magnetic flux Density (T)
H Magnetic filed intensity (A/m)
Φ Flux (Wb) (with the problem that a capital letter is used to show a time

dependent scalar)
λ, Λ, λλλ flux linkages (of a coil, rms, space vector)
ωs synchronous speed (in electrical degrees for machines with more than

two-poles)
ωo rotor speed (in electrical degrees for machines with more than two-poles)
ωm rotor speed (mechanical speed no matter how many poles)
ωr angular frequency of the rotor currents and voltages (in electrical de-

grees)
T Torque (Nm)
<(·), =(·) Real and Imaginary part of·

x



1
Three Phase Circuits and Power

Chapter Objectives

In this chapter you will learn the following:

• The concepts of power, (real reactive and apparent) and power factor

• The operation of three-phase systems and the characteristics of balanced loads inY and in∆

• How to solve problems for three-phase systems

1.1 ELECTRIC POWER WITH STEADY STATE SINUSOIDAL QUANTITIES

We start from the basic equation for the instantaneous electric power supplied to a load as shown in
figure 1.1

������

������

+

v(t)

i(t)

Fig. 1.1 A simple load

p(t) = i(t) · v(t) (1.1)

1



2 THREE PHASE CIRCUITS AND POWER

wherei(t) is the instantaneous value of current through the load andv(t) is the instantaneous value
of the voltage across it.

In quasi-steady state conditions, the current and voltage are both sinusoidal, with corresponding
amplitudeŝi andv̂, and initial phases,φi andφv, and the same frequency,ω = 2π/T − 2πf :

v(t) = v̂ sin(ωt + φv) (1.2)

i(t) = î sin(ωt + φi) (1.3)

In this case the rms values of the voltage and current are:

V =

√
1
T

∫ T

0

v̂ [sin(ωt + φv)]2 dt =
v̂√
2

(1.4)

I =

√
1
T

∫ T

0

î [sin(ωt + φi)]
2
dt =

î√
2

(1.5)

and these two quantities can be described by phasors,V = V
6 φv andI = I

6 φi .
Instantaneous power becomes in this case:

p(t) = 2V I [sin(ωt + φv) sin(ωt + φi)]

= 2V I
1
2

[cos(φv − φi) + cos(2ωt + φv + φi)] (1.6)

The first part in the right hand side of equation 1.6 is independent of time, while the second part
varies sinusoidally with twice the power frequency. The average power supplied to the load over
an integer time of periods is the first part, since the second one averages to zero. We define as real
power the first part:

P = V I cos(φv − φi) (1.7)

If we spend a moment looking at this, we see that this power is not only proportional to the rms
voltage and current, but also tocos(φv − φi). The cosine of this angle we define as displacement
factor, DF. At the same time, and in general terms (i.e. for periodic but not necessarily sinusoidal
currents) we define as power factor the ratio:

pf =
P

V I
(1.8)

and that becomes in our case (i.e. sinusoidal current and voltage):

pf = cos(φv − φi) (1.9)

Note that this is not generally the case for non-sinusoidal quantities. Figures 1.2 - 1.5 show the cases
of power at different angles between voltage and current.

We call the power factor leading or lagging, depending on whether the current of the load leads
or lags the voltage across it. It is clear then that for an inductive/resistive load the power factor is
lagging, while for a capacitive/resistive load the power factor is leading. Also for a purely inductive
or capacitive load the power factor is 0, while for a resistive load it is 1.

We define the product of the rms values of voltage and current at a load as apparent power,S:

S = V I (1.10)
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Fig. 1.2 Power at pf angle of0o. The dashed line shows average power, in this case maximum
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Fig. 1.3 Power at pf angle of30o. The dashed line shows average power

and as reactive power,Q

Q = V I sin(φv − φi) (1.11)

Reactive power carries more significance than just a mathematical expression. It represents the
energy oscillating in and out of an inductor or a capacitor and a source for this energy must exist.
Since the energy oscillation in an inductor is1800 out of phase of the energy oscillating in a capacitor,
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Fig. 1.4 Power at pf angle of90o. The dashed line shows average power, in this case zero
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Fig. 1.5 Power at pf angle of180o. The dashed line shows average power, in this case negative, the opposite
of that in figure 1.2

the reactive power of the two have opposite signs by convention positive for an inductor, negative for
a capacitor.

The units for real power are, of course,W , for the apparent powerV A and for the reactive power
V Ar.
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Using phasors for the current and voltage allows us to define complex powerS as:

S = VI∗ (1.12)

= V
6 φvI

6 −φi (1.13)

and finally

S = P + jQ (1.14)

For example, when

v(t) =
√

(2 · 120 · sin(377t +
π

6
)V (1.15)

i(t) =
√

(2 · 5 · sin(377t +
π

4
)A (1.16)

thenS = V I = 120 · 5 = 600W , while pf = cos(π/6− π/4) = 0.966 leading. Also:

S = VI∗ = 120 6 π/6 56 −π/4 = 579.6W − j155.3V Ar (1.17)

Figure 1.6 shows the phasors for lagging and leading power factors and the corresponding complex
powerS.

S

S
jQ

jQ

P

P
V

V

I

I

Fig. 1.6 (a) lagging and (b) leading power factor

1.2 SOLVING 1-PHASE PROBLEMS

Based on the discussion earlier we can construct the table below:

Type of load Reactive power Power factor
Reactive Q > 0 lagging

Capacitive Q < 0 leading
Resistive Q = 0 1
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We also notice that if for a load we know any two of the four quantities,S, P , Q, pf , we can
calculate the other two, e.g. ifS = 100kV A, pf = 0.8 leading, then:

P = S · pf = 80kW

Q = −S

√
1− pf2 = −60kV Ar , or

sin(φv − φi) = sin [arccos 0.8]
Q = S sin(φv − φi)

Notice that hereQ < 0, since thepf is leading, i.e. the load is capacitive.
Generally in a system with more than one loads (or sources) real and reactive power balance, but

notapparent power, i.e.Ptotal =
∑

i Pi, Qtotal =
∑

i Qi, butStotal 6=
∑

i Si.
In the same case, if the load voltage wereVL = 2000V , the load current would beIL = S/V

= 100 · 103/2 · 103 = 50A. If we use this voltage as reference, then:

V = 2000 6 0V

I = 50 6 φi = 50 6 36.9o

A

S = V I∗ = 2000 6 0 · 506 −36.9o

= P + jQ = 80 · 103W − j60 · 103V Ar

1.3 THREE-PHASE BALANCED SYSTEMS

Compared to single phase systems, three-phase systems offer definite advantages: for the same power
and voltage there is less copper in the windings, and the total power absorbed remains constant rather
than oscillate around its average value.

Let us take now three sinusoidal-current sources that have the same amplitude and frequency, but
their phase angles differ by1200. They are:

i1(t) =
√

2I sin(ωt + φ)

i2(t) =
√

2I sin(ωt + φ− 2π

3
) (1.18)

i3(t) =
√

2I sin(ωt + φ +
2π

3
)

If these three current sources are connected as shown in figure 1.7, the current returning though node
n is zero, since:

sin(ωt + φ) + sin(ωt− φ +
2π

3
) + sin(ωt + φ +

2π

3
) ≡ 0 (1.19)

Let us also take three voltage sources:

va(t) =
√

2V sin(ωt + φ)

vb(t) =
√

2V sin(ωt + φ− 2π

3
) (1.20)

vc(t) =
√

2V sin(ωt + φ +
2π

3
)

connected as shown in figure 1.8. If the three impedances at the load are equal, then it is easy
to prove that the current in the branchn − n′ is zero as well. Here we have a first reason why
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Fig. 1.7 Zero neutral current in aY -connected balanced system
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Fig. 1.8 Zero neutral current in a voltage-fed,Y -connected, balanced system.

three-phase systems are convenient to use. The three sources together supply three times the power
that one source supplies, but they use three wires, while the one source alone uses two. The wires
of the three-phase system and the one-phase source carry the same current, hence with a three-phase
system the transmitted power can be tripled, while the amount of wires is only increased by50%.

The loads of the system as shown in figure 1.9 are said to be inY or star. If the loads are connected
as shown in figure 1.11, then they are said to be connected in Delta,∆, or triangle. For somebody
who cannot see beyond the terminals of aY or a∆ load, but can only measure currents and voltages
there, it is impossible to discern the type of connection of the load. We can therefore consider the
two systems equivalent, and we can easily transform one to the other without any effect outside the
load. Then the impedances of aY and its equivalent∆ symmetric loads are related by:

ZY =
1
3
Z∆ (1.21)

Let us take now a balanced system connected inY , as shown in figure 1.9. The voltages
between the neutral and each of the three phase terminals areV1n = V

6 φ, V2n = V
6 φ− 2π

3 , and
V3n = V

6 φ+ 2π
3 . Then the voltage between phases1 and2 can be shown either through trigonometry

or vector geometry to be:
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Fig. 1.9 Y Connected Loads: Voltages and Currents
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Fig. 1.10 Y Connected Loads: Voltage phasors

V12 = V1 −V2 =
√

3V
6 φ+ π

3 (1.22)

This is shown in the phasor diagrams of figure 1.10, and it says that the rms value of the line-to-line
voltage at aY load,Vll, is

√
3 times that of the line-to-neutral or phase voltage,Vln. It is obvious

that the phase current is equal to the line current in theY connection. The power supplied to the
system is three times the power supplied to each phase, since the voltage and current amplitudes and
the phase differences between them are the same in all three phases. If the power factor in one phase
is pf = cos(φv − φi), then the total power to the system is:

S3φ = P3φ + jQ3φ

= 3V1I∗1
=

√
3VllIl cos(φv − φi) + j

√
3VllIl sin(φv − φi) (1.23)

Similarly, for a connection in∆, the phase voltage is equal to the line voltage. On the other hand,
if the phase currents phasors areI12 = I

6 φ, I23 = I
6 φ− 2π

3 andI31 = I
6 φ+ 2π

3 , then the current of
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Fig. 1.11 ∆ Connected Loads: Voltages and Currents

line 1, as shown in figure 1.11 is:

I1 = I12 − I31 =
√

3I
6 φ−π

3 (1.24)

To calculate the power in the three-phase,Y connected load,

S3φ = P3φ + jQ3φ

= 3V1I∗1
=

√
3VllIl cos(φv − φi) + j

√
3VllIl sin(φv − φi) (1.25)

1.4 CALCULATIONS IN THREE-PHASE SYSTEMS

It is often the case that calculations have to be made of quantities like currents, voltages, and power,
in a three-phase system. We can simplify these calculations if we follow the procedure below:

1. transform the∆ circuits toY ,

2. connect a neutral conductor,

3. solve one of the three 1-phase systems,

4. convert the results back to the∆ systems.

1.4.1 Example
For the 3-phase system in figure 1.12 calculate the line-line voltage, real power and power factor at
the load.

First deal with only one phase as in the figure 1.13:

I =
120

j1 + 7 + j5
= 13.026 −40.6o

A

Vln = I Zl = 13.02 6 −40.6o

(7 + j5) = 111.976 −5o

V

SL,1φ = VL I∗ = 1.186 · 103 + j0.847 · 103

PL1φ = 1.186kW, QL1φ = 0.847kV Ar

pf = cos(−5o − (−40.6o)) = 0.814 lagging
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