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1. Introduction

In the manufacturing industry, the requirement for high-speed, fast-response and high-
precision performances is critical . Model predictive control (MPC) which, was developed in
the late 1970’s, refers to a class of computer control algorithms that utilizes an explicit
process model to predict the future response of the plant (Qin & Badgwell, 2004). In the last
two decades, MPC has been widely accepted for set point tracking and overcoming model
mismatch in the refining, petrochemical, chemical, pulp and paper making and food
processing industries (Rossiter, 2006). The model predictive control is also introduced to the
positioning control of ultra-precision stage driven by a linear actuator (Hashimoto,Goko,et
al.,2008). Some of the most popular MPC algorithms that found wide acceptance in industry
are Dynamic Matrix Control (DMC), Model Algorithmic Control (MAC), Predictive
Functional Control (PFC), Extended Prediction Self Adaptive Control (EPSAC), Extended
Horizon Adaptive Control (EHAC) and Generalized Predictive Control (GPC) (Sorensen,
Norgaard ,et al., 1999). In most of the controllers, the disturbances arising from manipulated
variable are taken care off only after they have already influenced the process output. Thus,
there is a necessity to develop the controller to predict and optimize process performance. In
MPC the control algorithm that uses an optimizer to solve for the control trajectory over a
future time horizon based on a dynamic model of the processes, has become a standard
control technique in the process industries over the past few decades. In most applications
of model predictive techniques, a linear model is used to predict the process behavior over
the horizon of interest. But as most real processes show a nonlinear behavior, some work
has to be done to extend predictive control techniques to incorporate nonlinearities of the
plant. The most expensive part of the realization of a nonlinear predictive control scheme is
the derivation of the mathematical model. In many cases it is even impossible to obtain a
suitable physically founded process model due to the complexity of the underlying process
or lack of knowledge of critical parameters of the model. The promising way to overcome
these problems is to use neural network as a nonlinear models that can approximate the
dynamic behavior of the process efficiently

Generalized Predictive Control (GPC) is an independently developed branch of class of
digital control methods known as Model Predictive Control (MPC). (Clarke, Mohtadi, et al.,
1987) and has become one of the most popular MPC methods both in industry and
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academia. It has been successfully implemented in many industrial applications, showing
good performance and a certain degree of robustness. It can handle many different control
problems for a wide range of plants with a reasonable number of design variables, which
have to be specified by the user depending upon a prior knowledge of the plant and control
objectives. GPC is known to control non-minimum phase plants, open loop unstable plants
and plants with variable or unknown dead time. GPC is robust with respect to modeling
errors and sensor noise. The ability of GPC for controlling nonlinear plants and to make
accurate prediction can be enhanced if neural network is used to learn the dynamics of the
plant. In this Chapter, we have discussed the neural network to form a control strategy
known as Neural Generalized Predictive Control (NGPC) (Rao, Murthy, et al., 2006). The
NGPC algorithm operates in two modes, i.e. prediction and control. It generates a sequence
of future control signals within each sampling interval to optimize control effort of the
controlled systems. In NGPC the control vector calculations are made at each sampling
instants and are dependent on control and prediction horizon. A computational comparison
between GPC and NGPC schemes is given in (Rao, Murthy, et al., 2007).The effect of smaller
output horizon in neural generalized predictive control is dealt in (Pitche, Sayyer-Rodsari,et
al.,2000). The nonlinear model predictive control using neural network is also developed in
(Chen,Yuan,et al.,2002). Two model predictive control (MPC) approaches, an on-line and an
off-line MPC approach, for constrained uncertain continuous-time systems with piecewise
constant control input are presented (Raff & Sinz, 2008)

Numerous journal articles and meeting papers have appeared on the use of neural network
models as the basis for MPC with finite prediction horizons. Most of the publications
concentrate on the issues related to constructing neural network models. Very little attention
is given to issues of stability or closed-loop performance, although these are still open and
unresolved issues. A predictive control strategy based on improved back propagation
neural network in order to compensate real time control in nonlinear system with time
delays is proposed in (Sun,Chang,et al.,2002).For nonlinear processes, the predictive control
would be unsatisfactory. Like neural networks, fuzzy logic also attracted considerable
attentions to control nonlinear processes. There are many advantages to control nonlinear
system since they has an approximation ability using nonlinear mappings. Generally, they
do not use the parametric models such as the form of transfer functions or state space
equations. Therefore, the result of modeling or controlling nonlinear systems is not the
analytic consequence and we only know that the performance of those is satisfactory.
Especially, if the controller requires the parametric form of the nonlinear system, there
doesn’t exist any ways linking the controller and fuzzy modeling method. The fuzzy model
based prediction is derived with output operating point and optimized control is calculated
through the fuzzy prediction model using the optimization techniques in (Kim, Ansung, et
al.,1998).

In this Chapter, a novel algorithm called Generalized Predictive Control (GPC) is shown to
be particularly effective for the control of industrial processes. The capability of the
algorithm is tested on variety of systems. An efficient implementation of GPC using a multi-
layer feed-forward neural network as the plant’s nonlinear model is presented to extend the
capability of GPC ie. NGPC for controlling linear as well as nonlinear process very
efficiently. A neural model of the plant is used in the conventional GPC stating it as a neural
generalized predictive control (NGPC). As a relatively well-known example, we consider
Duffing’s nonlinear equation for testing capability of both GPC and NGPC algorithms. The
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output of trained neural network is used as the predicted output of the plant. This predicted
output is used in the cost function minimization algorithm. GPC criterion is minimized
using two different schemes: a Quasi Newton algorithm and Levenberg Marquardt
algorithm. GPC and NGPC are applied to the linear and nonlinear systems to test its
capability. The performance comparison of these configurations has been given in terms of
Integral square error (ISE) and Integral absolute error (IAE). For each system only few more
steps in set point were required for GPC than NGPC to settle down the output, but more
importantly there is no sign of instability. Performance of NGPC is also tested on a highly
nonlinear process of continues stirred tank reactor (CSTR) and linear process dc motor.

The ideas appearing in greater or lesser degree in all the predictive control family are
basically:

o Explicit use of a model to predict the process output at future time instants
(horizon).

. Calculation of a control sequence minimizing an objective function.

. Receding strategy, so that at each instant the horizon is displaced towards the

future, which involves the application of the first control signal of the sequence calculated at
each step.

2. MPC Strategy

The methodology of all the controllers belonging to the MPC family is characterized by the
following strategy, as represented in Fig.1:

1. The future outputs for a determined horizon N, called the prediction horizon, are
predicted at each instant k using the process model. These predicted outputs y(t+j/t) for j =
1 ... N depend on the known values up to instant  (past inputs and outputs) and on the
future control signals u(t+j/t), j =0 ... N-1, which are those to be sent to the system and to
be calculated.

2. The set of future control signals is calculated by optimizing a determined criterion in
order to keep the process as close as possible to the reference trajectory w(t+j) (which can be
the set point itself or a close). This criterion usually takes the form of a quadratic function of
the errors between the predicted output signal and the predicted reference trajectory. The
control effort is included in the objective function in most cases. An explicit solution can be
obtained if the criterion is quadratic, the model is linear and there are no constraints;
otherwise an iterative optimization method has to be used. Some assumptions about the
structure of the future control law are made in some cases, such as that it will be constant
from a given instant.

3. The control signal u(t/t) is sent to the process whilst the next control signal calculated
are rejected, because at the next sampling instant y(t+1) is already known and stepl is
repeated with this new value and all the sequences are brought up to date. Thus the u(t+1 | f)
is calculated (which in principle will be different to the u(t+1|t) because of the new
information available) using receding horizon control.
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Fig. 1. MPC Strategy

3. Generalized Predictive Controller (GPC)

3.1 Introduction

The basic idea of GPC is to calculate a sequence of future control signals in such a way that
it minimizes a multistage cost function defined over a prediction horizon. The index to be
optimized is the expectation of a quadratic function measuring the distance between the
predicted system output and some reference sequence over the horizon plus a quadratic
function measuring the control effort. Generalized Predictive Control has many ideas in
common with the other predictive controllers since it is based upon the same concepts but it
also has some differences. As will be seen later, it provides an analytical solution (in the
absence of constraints), it can deal with unstable and non-minimum phase plants and
incorporates the concept of control horizon as well as the consideration of weighting of
control increments in the cost function. The general set of choices available for GPC leads to
a greater variety of control objective compared to other approaches, some of which can be
considered as subsets or limiting cases of GPC. The GPC scheme is shown in Fig. 2. It
consists of the plant to be controlled, a reference model that specifies the desired
performance of the plant, a linear model of the plant, and the Cost Function Minimization
(CFM) algorithm that determines the input needed to produce the plant’s desired
performance. The GPC algorithm consists of the CFM block. The GPC system starts with the
input signal, (), which is presented to the reference model. This model produces a tracking
reference signal, w(t), that is used as an input to the CFM block. The CFM algorithm
produces an output which is used as an input to the plant. Between samples, the CFM
algorithm uses this model to calculate the next control input, u(t+1), from predictions of the
response from the plant’s model. Once the cost function is minimized, this input is passed to
the plant.
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Fig. 2. Basic Structure of GPC

3.2 Formulation of Generalized Predictive Control
Most single-input single-output (SISO) plants, when considering operation around
particular set-points and after linearization, can be described by the following:

ac"Hym =" BE"hua - ez e M
where u(f)and y(f) are the control and output sequence of the plant and e(?) is a zero

mean white noise. 4, B and Care the following polynomials in the backward shift

-1,
operatorz " :

-1, _ -1 -2 —na
A(z )—1+alz ta,z T ta, 2

-1, _ -1 -2 —-nb
B(z )—b0+blz +b22 + e +bnbz
C(z_l):1+clz_l+czz_2+ ...... +cncz_nc

where, d is the dead time of the system. This model is known as a Controller Auto-
Regressive Moving-Average (CARMA) model. It has been argued that for many industrial
applications in which disturbances are non-stationary an integrated CARMA (CARIMA)
model is more appropriate. A CARIMA model is given by,

4G Ny = e e e 2)

with A :l—z_1

For simplicity, C polynomial in (2) is chosen to be 1. Notice that if C ~1 can be truncated it
can be absorbed into 4 and B .

3.3 Cost Function
The GPC algorithm consists of applying a control sequence that minimizes a multistage cost
function,
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where P(f+ j|t)is an optimum j-step ahead prediction of the system output on data up to

time k, N, and  are the minimum and maximum costing horizons, ,  control horizon,
u

s(j) and ;(;) are weighing sequences and w(s+ j) is the future reference trajectory,

which can considered to be the constant.
The objective of predictive control is to compute the future control sequencey(s),

u(t+1),...u(t+ N, ) in such a way that the future plant output ,(;+ j) is driven close to
w(r+ j) - This is accomplished by minimizing J (Ny,N5 ,N,,) -

3.4 Cost Function Minimization Algorithm
In order to optimize the cost function the optimal prediction of y(z+ ;) for ;>N and

j<Nj is required. To compute the predicted output, consider the following Diophantine
equation,

1=E;(z"HYade" Y7 Irj7h with 4z = a4z ) 4
The polynomials E, and g | are uniquely defined with degrees j—1 and na
respectively. They can be obtained dividing 1 by 4(z-') until the remainder can be
factorized as -/ F,(z7)- The quotient of the division is the polynomial g (2 An

example demonstrating calculation of E; and Fj coefficients in Diophantine equation (4) is
shown in Example 1 given below:

1+1.3z7 41,5422 + ..

1-1.827 +0.8272 1-0.5z7" +—— CE&D

T 1-1.8z7 +0.827"
_ 13z'-08:2 *—— K

-1
4@ 13270 =234z +1.0427

3 F2

1.54z7% —1.04z
1.54z7% 25227 +1.23z™"

164z°% 123z% +— F

Example 1. Diophantine equation demonstration example
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If (2) is multiplied by AE (z7")z/ we get,
AGEDE Yy + )= E,(zBEAUG+ j=d =1)+ E (z)e(t + ) ()
Substituting (4), in (5) we get,
(A=zF(z"y(t+ j)=E,(z)B(z )Au(t+ j—d =)+ F,(z)y() + E (z De(t + J)
which can be rewritten as:

Y+ )= F @)+ E (2B AUG+ j=d = D)+ F(z)y(0)+ B (z el + ) (6)
degree of polynomial is g (z') = j —1 the noise terms in equation are all in the future. The
best prediction of y (7 + j) is given by,

P+ I =G (2 NAul+ j—d =)+ F (z () @)
where, 6 (27 = B (z")B ()
It is very simple to show that, the polynomials E,., and F, can be obtained recursively.

Consider that polynomials £, and £, have been obtained by dividing 1 by A(z™") until

the remainder of the division can be factorized as , -/ F(z7')- These polynomials can be
expressed as:

F(zY)=fio+ fiaz '+ 27+ + fimaz ¢ ®8)

E(z)=e,g+e, 27 +e,,27 +...... +e, ,,z VU )

Suppose that the same procedure is used to obtain E,., and F,. that is, dividing 1 by

A (z") until the remainder of the division can be factorized as 7~ (/- F,,(z -y with

-1 -1 —na
Fj+1(Z ) = fj+1,0 + Jj+11 z to + Jj+l,na z (10)

It is clear that only another step of the division is performed to obtain the polynomials £,
and F,

j+l

. The polynomial £, will be given by:

E . (z)=E(z)+e,, 2z’ (11)

J+lLj

with e = fj,o . The coefficients of polynomial Fj 1 can then be expressed as:

L)
Sy = S = 080 i=0.. na-1 (12)
The Polynomial (G ;. can be obtained recursively as follows:
G, ,=E, B=(E,+ [,z ")B (13)
G/‘H =G/+f/.0 z"'B (14)

That is, the first j coefficient of G " will be identical to those of G } and the remaining
coefficients will be given by:

9 0i=9,,0% Fi0b, for i=0..... nb (15)
To solve the GPC problem the set of control signals 4 (¢) ,u (¢ + 1), ..., u (¢t + N) has to be

obtained in order to optimize expression. As the system considered has a dead time d
sampling periods, the output of the system will be influenced by signal # (¢) after sampling

periodd + 1. The values Ny s N and N u defining the horizon can be defined

2
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byy, a4+~ N,-a+n andy - y . Notice that there is no point in making
N, » d +1 asterms added to expression will only depend on the past control signals. On
the other hand, if N > d +1, the first point in the reference sequence, being the ones

guessed with most certainly, will not be taken into account.
Now consider the following set of j ahead optimal predictions given below:
y+d+1]t) =G, Au(t)+ Fy, (1)

FU+d+201) =G, ,Au(t+1)+ F,y(1) 16)
y+d+N|t)=G, yAu(t+ N -1+ F, ,y(®)
which can be re-written as:
Yy =Gu+F(z)y()+G (z7)Au(r-1) (17)
where,
y(+d+1]|t) Au(t) 9, 0
po|Yerdezin fp, | AuGED o b g
P(t+d+N|t) Au(t+ N —1) Iy v - Yo
(Gd+1(z_])_go)z Fd+1(z_1)
G'(Zfl)= (Gd+z(z_l)_go_912_1)22 ;F(Zfl): Fd+z(z_l)
(de,(zfl)—go—91271 ...... gN_lzf(Nfl))zN Fd+N(zfl)

Note that if the plant dead time is d > 1 the first d - 1 rows of G will be null, but if instead
N, is assumed to be equal to d the leading element is non-zero. However, as d will not in
general be known in the self-tuning case one key feature of the GPC approach is that a stable
solution is possible even if the leading rows of G are zero.
Notice that the last two terms in (17) only depends on the past and can be grouped into
f leading to:
)A/ =Gu+ f
Notice that if all initial conditions are zero, the free response f is also zero. If a unit step is
applied to the input at time ¢, that is
Au(t)=1,Au(t+1)=0, ..., Au(t+ N -1)=0

then expected output sequence [P (¢ +1), P(¢+2),.....5(t+ N)]" is equal to the first
column of matrix G . That is, the first column of matrix G can be calculated as the step
response of the plant when a unit step is applied to the manipulated variable. The free
response term can be calculated recursively by:

f,.,=z(1-Az""NF, + Bz HAu(t—d + j) (18)
with ¢ — () and Au(r+ j)=0 for j=0.
The equation (3) can be written as:

J=Gu+ f-w) (Gu+ f-w)y+iu'u (19)

where,
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w=[w(t+d+1) wit+d+2) ... w(t+d+N)]"

It has been considered that the future reference trajectory keeps constant along the horizon
or its evolution is unknown and therefore w(z + i) = w(t) .
The equation (19) can be written as:
JZ;—uTHu+bTu+f0 (20)
where,
H=2(G"G +RI)
b =2(f-w)'G
f, = (f-w) " (f-w)
The minimum of ], assuming there are no constraints on the control signals, can be found by
making the gradient of J equal to zero, which leads to:
u=—H'b=(G'G+A)"'G"(w-f) (21)
The dimension of the matrix involved in equation (19) is N x N. Although in the non-
adaptive case the inversion need be performed only once. In a self-tuning version the
computational load of inverting at each sample would be excessive. Moreover, if the wrong
value for dead-time is assumed, G 7 G 1is singular and hence a finite non-zero value of
weighting 4 would be required for a realizable control law, which is inconvenient because
the accurate value for 4 would not be known a priori. Notice that the control signal that is
actually sent to the process is the first element of vector U , which is given by:
Au=K(w-f) (22)
where K is the first row of matrix (G”G + 27)"'G 7 . If there are no future predicted
errors, that is, if (w - fy=0, then there is no control move, since the objective will be
fulfilled with the free evolution of the process. However, in the other case, there will be an
increment in the control action proportional (with a factor K) to that future error. Notice that
the action is taken with respect to future errors, not past errors, as is the case in conventional
feedback controllers.
Also notice that when only the first element of U is applied, then at the next sampling
instants, new data are acquired and a new set of control moves is calculated. Once again,
only the first control move is implemented. These activities repeated at each sampling
instant, and the strategy is referred to as a receding horizon approach. It may strange to
calculate an §,, -step control policy and then only implement the first move. The important
advantage of this receding horizon approach is that new information in the form of the most
recent measurements y(k) is utilized immediately instead of being ignored for the next NV,

sampling instants. Otherwise, the multi-step predictions and control moves would be based
on old information and thus be adversely affected by unmeasured disturbances.
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4. Introduction to Neural Generalized Predictive Control

The Generalized Predictive Control (GPC), introduced in above section, belongs to a class of
digital control methods called Model-Based Predictive Control (MBPC). GPC is known to
control a non-minimum phase plants, open-loop unstable plants and plants with variable or
unknown dead time. GPC had been originally developed with linear plant predictor models
which, leads to a formulation that can be solved analytically. But most of the real processes
show nonlinear behavior. Some work has to be done to extend the predictive control
techniques to incorporate nonlinear models. Developing adequate nonlinear empirical
models is very difficult and there is no model form that is clearly suitable to represent
general nonlinear processes. Part of the success of standard model based predictive
techniques was due to the relative ease with which step and impulse responses or low order
transfer functions could be obtained. A major mathematical obstacle to complete theory of
nonlinear processes is the lack of superposition principal for nonlinear systems. The
selection of the minimization algorithm affects the computational efficiency of the
algorithm. Explicit solution for it can be obtained if the criterion is quadratic, the model is
linear and there are no constraints; otherwise an iterative optimization method has to be
used. In this work a Newton-Raphson method is used as the optimization algorithm. The
main cost of the Newton-Raphson algorithm is in the calculation of the Hessian, but even
with this overhead the low iteration numbers make Newton-Raphson a faster algorithm for
real-time control (Soloway & Haley,1997).

The Neural Generalized Predictive Control (NGPC) scheme is shown in Fig. 3. It consists of
four components, the plant to be controlled, a reference model that specifies the desired
performance of the plant, a neural network that models the plant, and the Cost Function
Minimization (CFM) algorithm that determines the input needed to produce the plant’s
desired performance. The NGPC algorithm consists of the CFM block and the neural net
block.

Minimization (CFM)

1
I S Plant
WM'Z» Cost Function M __________ O |

Neural Plant A
Vo .+

]
|
)
1
1
1
1
]
]
|
)
: NGPC Algorithm

Fig. 3. Block Diagram of NGPC System

The NGPC system starts with the input signal, w(t), which is applied to the reference model.
This model produces a tracking reference signal, w(t+k), that is used as an input to the CFM
block. The CFM algorithm produces an output which is either used as an input to the plant
or the plant’s model. The double pole double throw switch, S, is set to the plant when the
CFM algorithm has solved for the best input, u(n), that will minimize a specified cost
function. Between samples, the switch is set to the plant’s model where the CFM algorithm
uses this model to calculate the next control input, u(n+1), from predictions of the response
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from the plant’'s model. Once the cost function is minimized, this input is passed to the
plant. The computational performance of a GPC implementation is largely based on the
minimization algorithm chosen for the CFM block. The selection of a minimization method
can be based on several criteria such as: number of iterations to a solution, computational
costs and accuracy of the solution. In general these approaches are iteration intensive thus
making real-time control difficult. In this work Newton-Raphson as an optimization
technique is used. Newton-Raphson is a quadratically converging. The improved
convergence rate of Newton-Raphson is computationally costly, but is justified by the high
convergence rate of Newton-Raphson. The quality of the plant’s model affects the accuracy
of a prediction. A reasonable model of the plant is required to implement GPC. With a linear
plant there are tools and techniques available to make modeling easier, but when the plant
is nonlinear this task is more difficult. Currently there are two techniques used to model
nonlinear plants. One is to linearize the plant about a set of operating points. If the plant is
highly nonlinear the set of operating points can be very large. The second technique
involves developing a nonlinear model which depends on making assumptions about the
dynamics of the nonlinear plant. If these assumptions are incorrect the accuracy of the
model will be reduced. Models using neural networks have been shown to have the
capability to capture nonlinear dynamics. For nonlinear plants, the ability of the GPC to
make accurate predictions can be enhanced if a neural network is used to learn the
dynamics of the plant instead of standard modeling techniques. Improved predictions affect
rise time, over-shoot, and the energy content of the control signal.

5. Formulation of NGPC

5.1 Cost Function
As mentioned earlier, the NGPC algorithm is based on minimizing a cost function over a
finite prediction horizon. The cost function of interest to this application is,

N, 2 Ny 2
TN NS N = Y 85, jin-wis ]+ X AD[aus j-1y]

N1 = Minimum costing prediction horizon
N, = Maximum costing prediction horizon
Ny= Length of control horizon

; (t+ + klr) = Predicted output from neural network
u(t+ k| t) = Manipulated input
w(t+ k) = Reference trajectory

0and A = Weighing factor

This cost function minimizes not only the mean squared error between the reference signal
and the plant’s model, but also the weighted squared rate of change of the control input
with it’s constraints. When this cost function is minimized, a control input that meets the
constraints is generated that allows the plant to track the reference trajectory within some
tolerance. There are four tuning parameters in the cost function, N;, N2, N, and A. The
predictions of the plant will run from N; to N: future time steps. The bound on the control
horizon is N,. The only constraint on the values of N, and Nj is that these bounds must be
less than or equal to N> The second summation contains a weighting factor, A that is
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introduced to control the balance between the first two summations. The weighting factor
acts as a damper on the predicted u(n+1).

5.2 Cost Function Minimization Algorithm

The objective of the CFM algorithm is to minimize | in equation (24) with respect to [u(n+l),
u(n+2), ..., u(n+N,)]7, denoted as U. This is accomplished by setting the Jacobian of equation
(23) to zero and solving for U. With Newton-Rhapson used as the CFM algorithm, | is
minimized iteratively to determine the best U. An iterative process yields intermediate
values for | denoted J(k). For each iteration of J(k) an intermediate control input vector is also
generated and is denoted as:

Cu(t+1) |
u(t+2)

U(k)i k=1, ..... N. (24)

| u(t+ N,) |
The Newton-Raphson method is one of the most widely used of all root-locating formula. If

the initial guess at the root is x;, a tangent can be extended from the point [x;, f(x;)]. The point
where this tangent crosses the x axis usually represents an improved estimate of the root. So

the first derivative at x on rearranging can be given as: Xty = Xy — S (x)
i+ i '
I (x)

Using this Newton-Raphson update rule, U (k + 1) is given by,

82J "o oJ
Uk +1)=U(k)- k)| =—(k)' where =2 (25)
( ) (k) (auz()j aU() S(x) U
and the Jacobian is denoted as,
_ oJ _
ou(t+1)
(26)
oJ
=Y (k) =
53U (k)
oJ
| Ou(t+ N,) |

Also the Hessian is given by,
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0*J 0*J
ou(t+1)>° C 0 du(t+1)ou(t+ N,)
2J ) .o ) 27
aaU2(k)_ ' ()
0*J 0*J
| Qu(t+ N,)ou, (t+1) = du(t+ N,)? |

Each element of the Jacobian is calculated by partially differentiating equation (23) with
respect to vector U.

oJ & yn (1+)) OAu(t+j) 28
du(r+h) ijlé'(]){yn(t+]) W(HJ)} (1+h) Zﬂ Aqu)}au(Hh) %)

where, h =1,....,N, .
Once again equation (28) is partially differentiated with respect to vector U to get each
element of the Hessian.

27 & | @) { . ,}_a}(zﬂ-)a}(w)
6u(t+m)6u(t+h)72j;,|50) Ou(t +m)ou(t +h) (o4 ))=wle)) Su(t+m) ou(t+h)

N2 . . 2 .
+22/1(j) 6An(t+])6An(t+])+ 8An(t+]) (29)
8u(t+m) 8u(t+h) Ou(t+ m)ou(t+ h)
The ;™ p™  elements of the Hessian matrix in equation (27) are,
h=1,... ,N and m =1,..... , N

u

J=Ny

The last computation needed to evaluate U (k + 1) is the calculation of the predicted output

of the plant, y (t + J), and it's derivatives. The next sections define the equation of a

multilayer feed forward neural network, and define the derivative equations of the neural
network.

6. Neural Network for Prediction

In NGPC the model of the plant is a neural network. This neural model is constructed and
trained using MATLAB Neural Network System Identification Toolbox commands
(Norgaard, 2000). The output of trained neural network is used as the predicted output of
the plant. This predicted output is used in the Cost Function Minimization Algorithm. If
Ya(t) is the neural network’s output then it is nothing but plant’s predicted output
5 (¢ + klry - The initial training of the neural network is typically done off-line before

control is attempted. The block configuration for training a neural network to model the
plant is shown in Fig. 4. The network and the plant receive the same input, u(t). The network
has an additional input that either comes from the output of the plant, y(t), or the neural
network’s, y,(t). The one that is selected depends on the plant and the application. This
input assists the network with capturing the plant’s dynamics and stabilization of unstable
systems. To train the network, its weights are adjusted such that a set of inputs produces the
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desired set of outputs. An error is formed between the responses of the network, y,(t), and
the plant, y(t). This error is then used to update the weights of the network through gradient
descent learning. In this work, a Levenberg-Marquardt method is used as gradient descent
learning algorithm for updating the weights. This is standard method for minimization of
mean-square error criteria, due to its rapid convergence properties and robustness. This
process is repeated until the error is reduced to an acceptable level. Since a neural network
is used to model the plant, the configuration of the network architecture should be
considered. This implementation of NGPC adopts input/output models.

u(®) y(t)
> Plant i >
s
z1 ‘_X—
X
Neural Plant P (t ) e(t)
Model

\

Fig. 4.Block Diagram of Off-line Neural Network Training

The diagram shown in Fig. 5, depicts a multi-layer feed-forward neural network with a time
delayed structure. For this example, the inputs to this network consists of two external
inputs, u(f) and two outputs y(t-1), with their corresponding delay nodes, u(t), u(t-1) and y(t-
1), y(t-2). The network has one hidden layer containing five hidden nodes that uses bi-polar
sigmoidal activation output function. There is a single output node which uses a linear
output function, of one for scaling the output.

Input Hidden Output
layer  layer layer

yt-H——>
Y(-2)—> u(k)
uty—>
ety —>
Fig. 5.Neural Network Architecture

The equation describing this network architecture is:
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v (=3 w7, (net (1) 0
and
net, (t)= Z”i:] WU (t - i)+z:] Wi i1V (t— i) (31)

where,
v, (1) is the output of the neural network

7, 0) is the output function for the ;” node of the hidden layer

net, ( 1) is the activation level of the ;* node’s output function

hid is the number of hidden nodes in the hidden layer
n, is the number of input nodes associated with u(.)
d is the number of input nodes associated with y(.)

w, is the weight connecting the ;" hidden node to the output node

w

i is the weight connecting the i " hidden input node to the j” hidden node

y (l‘ —i ) is the delayed output of the plant used as input to the network

u (l -1 ) is the input to the network and its delays

This neural network is trained in offline condition with plants input/output data.

Prediction Using Neural Network

The NGPC algorithm uses the output of the plant's model to predict the plant's dynamics to
an arbitrary input from the current time, ¢, to some future time, #+k. This is accomplished by
time shifting equations equation (30) and (31), by k, resulting in the following equations
given by,

hid

y”(t+k)=2wjfj(netj(t+k)) (32)
=l
and
| u(n+k—-i)k-N, <i ™) .
net/-(t-‘rk)_;Wj,iH{u(n+Nu)’k_NuZi + & (Wj,nd+i+lyn(t+k_l))

di/
+ Z (w].)nd+i+ly(t+k—i)) (33)
i=k+1
The first summation in equation (33) breaks the input into two parts represented by the
conditional. The condition where k — N, < ihandles the previous future values of the u

up to u(t+Nu-1).The condition where k—Nu > [ sets the input from u(t+ Nu) to

u (t + k) equal to y (t + N, ) The second condition will only occur if N, > N, . The
next summation of equation (33) handles the recursive part of prediction. This feeds back

the network output, y, , for kor d 4 times, which ever is smaller. The last summation of
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equation (33) handles the previous values of y. The following section derives the derivatives

of equation (32) and (33) with respect to the input & (l‘ + h) .

6.1 Neural Network Derivative Equations
To evaluate the Jacobian and the Hessian in equation (26) and (27) the network’s first and
second derivative with respect to the control input vector are needed.
Jacobian Element Calculation:
The elements of the Jacobian are obtained by differentiating y,(t+k) in equation (32) with
respect to u(t+h) resulting in
oyn (14 k) ¥ of , (net, (t+k)) (34)
ou (t+ h) < ou (t+ h)

j=1

Applying chain rule to afj (netj (z + k))/@u (t + h) results in
of (et (t+k)) of, (net, (t+k))oner, (t+ k) (35)
ou(t+hn)y  onet,(t+k) ou(t+h)
where 5 f, (ne t (t+k )) / onet, (t+ k) is the output function’s derivative which will

become zero as we are using a linear (constant value) output activation function and

6netj(t+k)_i S(k-ih),k-N,<i (36)
ou(r+h)y 2 S (N, k) k- N, 2
min(k.dy) Oyn (t+k —i)

+ 5 (k—i-1)

~ wj,i+nd+] au (t+h)
Note that in the last summation of equation (36) the step function, §, was introduced. This
was added to point out that this summation evaluates to zero for k-i<l, thus the partial does
not need to be calculated for this condition.

6.2 Hessian Element Calculation
The Hessian elements are obtained by once again differentiating equations (34) by u(t+m),
resulting in equation (37):
azyn(t+k) W y 82f/.(netj(t+k)) @)
ou(t+ h)ou(t+m) “= j@u(t-i-h)@u(t—i-m)

where,

0> f, (net, (t+k)) _ (net, (t+k))  0%net,(1+k) %)
au(t-i-h)@u(t—i-m) anetj(t+k) au(t-i-h)au(t-i-m)
.\ *f (netf(t+k)) onet (t+ k) onet, (1+ k)
anetbl_(zjuk)z 6u(t+h) 6u(t+m)
The equation (38) is the result of applying the chain rule twice.
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7. Simulation Results

The objective of this study is to show how GPC and NGPC implementation can cope with
linear as well as nonlinear systems. GPC is applied to the systems with changes in system
order. The Neural based GPC is implemented using MATLAB Neural Network Based
System Design Toolbox (Norgaard, 2000)

7.1 GPC and NGPC for Linear Systems
The above derived GPC and NGPC algorithm is applied to the different linear models with
varying system order, to test its capability. This is done by carrying out simulation in
MATLAB 7.0.1 (Mathworks Natic, 2007). Different systems with large dynamic differences
are considered for simulation. GPC and NGPC are showing robust performance for these
systems. In below figures, for every individual system the systems output with GPC and
NGPC is plotted in single figure for comparison purpose. Also the control efforts taken by
the both controllers are plotted in consequent figures for every individual figure.
In this simulation, neural network architecture considered is as follows. The inputs to this
network consists of two external inputs, u(f) and two outputs y(t-1), with their
corresponding delay nodes, u(t), u(t-1) and y(t-1), y(t-2). The network has one hidden layer
containing five hidden nodes that uses bi-polar sigmoidal activation output function. There
is a single output node which uses a linear output function, of one for scaling the output.
For all the systems Prediction Horicon N; =1, N, =7 and Control Horizon (N,) is 2. The
weighing factor A for control signal is kept to 0.3 and 0 for reference trajectory is set to 0. The
same controller setting is used for all the systems simulation. The following simulation
results are obtained showing the plant output when GPC and NGPC are applied. Also the
required control action for different systems is shown.
System I: The GPC and NGPC algorithms are applied to a second order system given
below.

G(s)=— 1 (39)

1+10s+40s

The Fig.6. Shows the plant output with GPC and NGPC for setpoint tracking. The Fig. 7
shows the control efforts taken by both controllers. The simulation results reveal that
performance of NGPC is better than GPC.
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