
Home energy management problem: towards an optimal and robust solution 77

Home energy management problem: towards an optimal and robust 
solution

Duy Long Ha, Stéphane Ploix, Mireille Jacomino and Minh Hoang Le

0

Home energy management problem:

towards an optimal and robust solution

Duy Long Ha, Stéphane Ploix, Mireille Jacomino and Minh Hoang Le
G-SCOP lab (Grenoble Institute of Technology)

France

1. Introduction

A home automation system basically consists of household appliances linked via a communi-
cation network allowing interactions for control purposes (Palensky & Posta, 1997). Thanks to
this network, a load management mechanism can be carried out: it is called distributed control
in (Wacks, 1993). Load management allows inhabitants to adjust power consumption accord-
ing to expected comfort, energy price variation and CO2 equivalent rejection. For instance,
during the consumption peak periods when power plants rejecting higher quantities of CO2

are used and when energy price is high, it could be possible to decide to delay some services,
to reduce some heater set points or to run requested services even so according to weather
forecasts and inhabitant requests. Load management is all the more interesting that local stor-
age and production means exist. Indeed, battery, photovoltaic panels or wind mills provide
additional flexibilities. Combining all these elements lead to systems with many degrees of
freedom that are very complex to manage by users.
The objective of this study is to setup a general mathematical formulation that makes it pos-
sible to design optimized building electric energy management systems able to determine the
best energy assignment plan, according to given criteria. A building energy management
system consists in two aspects: the load management and the local energy production man-
agement. (House & Smith, 1995) and (Zhou & Krarti, 2005) have proposed optimal control
strategies for HVAC (Home Ventilation and Air Conditioning) system taking into account the
natural thermal storage capacity of buildings that shift the HVAC consumption from peak-
period to off-peak period. Zhou & Krarti (2005) has shown that this control strategy can save
up to 10% of the electricity cost of a building. However, these approaches do not take into
account the energy resource constraints, which generally depend on the autonomy needs of
off-grid systems (Muselli et al., 2000) or on the total power production limits of the suppliers
in grid connected systems.
The household load management problem can be formulated as a assignment problem where
energy is considered as a resource shared by appliances, and tasks are energy consumptions
of appliances. Ha et al. (2006a) presents a three-layers household energy control system that
is both able to satisfy the maximum available electrical power constraint and to maximize
user satisfaction criteria. This approach carries out more reactivity to adapt consumption
to the energy provider requirements. Ha et al. (2006b) proposes a global solution for the
household load management problem. In order to adapt the consumption to the available
energy, the home automation system controls the appliances in housing by determining the
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starting time of services and also by computing the temperature set points of HVAC systems.
This problem has been formulated as a multi-objective constraint satisfaction problem and
has been solved by a dynamic Tabu Search. This approach can carry out the coordination of
appliance consumptions of HVAC system and of services in making it possible to set up a
compromise between the cost and the user comfort criteria.
With an energy production management production point of view, Henze & Dodier (2003)
has proposed an adaptive optimal control for an off-grid PV-hybrid system using a quadratic
cost function and a Q-learning approach. It is more efficient than conventional control but
it requires to be trained beforehand with actual data covering a long time period. Gener-
ally speaking, studies in literature focus only on one aspect of the home energy management
problem: the load management or the local energy production but not on the joined load and
production management problem.
This chapter formulates the global approach for the building energy management problem as
a scheduling problem that takes into account the load consumption and local energy produc-
tion points of view. The optimization problem of the building energy management is modeled
using both continuous and discrete variables: it is modeled as a mixed integer linear problem.

2. Problem description

In this chapter, energy is restricted to electricity consumption and production. Each service
is depicted by an amount of consumed/produced electrical power; it is supported by one or
several appliances.

2.1 The concept of service

Housing with appliances aims at providing comfort to inhabitants thanks to services which
can be decomposed into three kinds: the end-user services that produce directly comfort to
inhabitants, the intermediate services that manage energy storage and the support services
that produce electrical power to intermediate and end-user services. Support services deal
with electric power supplying thanks to conversion from a primary energy to electricity. Fuel
cells based generators, photovoltaic power suppliers, grid power suppliers such as EDF in France,
belong to this class. Intermediate services are generally achieved by electrochemical batteries.
Among the end-user services, well-known services such as clothe washing, water heating, specific
room heating, cooking in oven and lighting can be found.
A service with index i is denoted SRV(i). Appliances are just involved in services: they are
not central from an inhabitant point of view. Consequently, they are not explicitly modelled.

2.2 Caracterisation of services

Let us assume a given time range for anticipating the energy needs (typically 24 hours). A
service is qualified as permanent if its energetic consumption/production/storage covers the
whole time range of energy assignment plan, otherwise, the service is named temporary service.
The following table gives some examples of services according to this classification.

temporary services permanent services

support services photovoltaic panels power provider

intermediate services - storage

end-user services washing room heating

The services can also be classified according to the way their behavior can be modified.
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Whatever the service is, an end-user, an intermediate or a support service can be modifiable
or not. A service is qualified as modifiable by a home automation system if the home automation
system is capable to modify its behavior (the starting time for example).
There are different ways of modifying services. Sometimes, modifiable services can be con-
sidered as continuously modifiable such as the temperature set points in room heating services
or the shift of a washing. Some other services may be modified discretely such as the in-
terruption of a washing service. The different ways of modifying services can be combined:
for instance, a washing service can be considered both as interruptible and as continuously
shiftable. A service modeled as discretely modifiable contains discrete decision variables in
its model whereas a continuously modifiable service contains continuous decision variables.
Of course, a service may contain both discrete and continuous decision variables.
A service can also be characterized by the way it is known by a home automation system. The
consumed or produced power may be observable or not. Moreover, for end-user services, the
impact of a service on the inhabitant comfort may be known or not.
Obviously, a service can be taken into account by a home automation system if it is at least ob-
servable. Some services are indirectly observable. Indeed, all the not observable services can
be gathered into a virtual non modifiable service whose consumption/production is deduced
from a global power meter measurement and from the observable service consumptions and
productions. In addition, a service can be taken into account for long term schedulings if it is
predictable. In the same way as for observable services, all the unpredictable services can be
gathered into a global no-modifiable predictable service. A service can be managed by a home
automation system if it is observable and modifiable. Moreover, it can be long-term managed
if it is predictable and modifiable.
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Fig. 1. Structure of services in housing
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Fig. 2. Schema of the 3 layers control mechanism

2.3 Principle of control mechanism

An important issue in home automation problems is the uncertainties in the model data. For
instance, solar radiation, outdoor temperature or services requested by inhabitants may not
be predicted with accuracy. In order to solve this issue, a three-layer architecture is presented
in this chapter: a local layer, a reactive layer and an anticipative layer (see figure 2).
The anticipative layer is responsible for scheduling end-user, intermediate and support services
taking into account predicted events and costs in order to avoid as much as possible the use of
the reactive layer. The prediction procedure forecasts various informations about future user
requests but also about available power resources and costs. Therefore, it uses information
from predictable services and manage continuously modifiable and shiftable services. This
layer has slow dynamics and includes predictive models with learning mechanisms, includ-
ing models dealing with inhabitant behaviors. This layer also contains a predictive control
mechanism that schedules energy consumption and production of end-user services several
hours in advance. This layer computes plans according to available predictions. The sampling
period of the anticipative layer is denoted ∆. This layer relies on the most abstract models.
The reactive layer has been detailed in (Abras et al., 2006). Its objective is to manage adjust-
ments of energy assignment in order to follow up a plan computed by the upper anticipative
layer in spite of unpredicted events and perturbations. Therefore, this layer manages modi-
fiable services and uses information from observable services (comfort for end-user services
and power for others). This layer is responsible for decision-making in case of violation of
predefined constraints dealing with energy and inhabitant comfort expectations: it performs
arbitrations between services. The set-points determined by the plan computed by the upper
anticipative layer are dynamically adjusted in order to avoid user dissatisfaction. The con-
trol actions may be dichotomic in enabling/disabling services or more gradual in adjusting
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Fig. 3. Plans computed by the anticipative mechanism

set-points such as reducing temperature set point in room heating services or delaying a tem-
porary service. Actions of the reactive layer have to remain transparent for the plan computed
by the anticipative layer: it can be considered as a fast dynamic unbalancing system taking
into account actual housing state, including unpredicted disturbances, to satisfy energy, com-
fort and cost constraints. If the current state is too far from the computed plan, the anticipative
layer has to re-compute it.
The local layer is composed of devices together with their existing local control systems gen-
erally embedded into appliances by manufacturers. It is responsible for adjusting device con-
trols in order to reach given set points in spite of perturbations. This layer abstracts devices
and services for upper layers: fast dynamics are hidden by the controllers of this level. This
layer is considered as embedded into devices: it is not detailed into this chapter.
This chapter mainly deals with the scheduling mechanism of the anticipative layer, which
computes anticipative plans as shown in figure 3.

3. Modeling services

Modeling services can be decomposed into two aspects: the modeling of the behaviors, which
depends on the types of involved models, and the modeling of the quality of the execution of
services, which depends on the types of service. Whatever the type of model it is, it has to be
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defined all over a time horizon K∆ for anticipative problem solving composed of K sampling
periods lasting ∆ each.

3.1 Modeling behavior of services

In order to model the behavior of the different kinds of services in housing, three different
types of models have been used: discrete events are modeled by finite state machines, con-
tinuous behaviors are modeled by differential equations and mixed discrete and continuous
evolutions are modeled by hybrid models that combine the two previous ones.

Using finite state machines (FSM)

A finite state machine dedicated to a service SRV is composed of a finite number of states
{Lm; m ∈ {1, ..., M}} and a set of transitions between those states {Tp,q ∈ {0, 1}; (p, q) ∈ S ⊂

{1, ..., M}2}. Each state Lm of a service SRV is linked to a phase characterized by a maximal
power production Pm > 0 or consumption Pm < 0.
A transition triggers a state change. It is described by a condition that has to be satisfied
to be enabled. The condition can be a change of a state variable measured by a sensor, a
decision of the antipative mechanism or an elapsed time for phase transition. If it exists a
transition between the state Lm and Lm′ then Tm,m′ = 1, otherwise Tm,m′ = 0. An action can
be associated to each state: it may be a modification of a set-point or an on/off switching. As
an example, let’s consider a washing service.
The service provided by a washing machine may be modeled by a FSM with 4 states: the
first state is the stand-by state L1 with a maximal power of P1 = −5W (it is negative because
it deals with consumed power). The transition towards the next state is triggered by the
anticipative mechanism. The second state is the water heating state L2 with P2 = −2400W.
The transition to the next state is triggered after τ2 time units. The next state corresponds to
the washing characterized by P3 = −500W. And finally, after a given duration τ3 depending
on the type of washing (i.e. the type of requested service), the spin-drying state is reached with
P3 = −1000W. After a given duration τ4, the stand-by state is finally recovered. Considering
that the initial state is L1, this behavior can be formalized by:



















(state = L1) ∧ (t = tstart) → state = L2

(state = L2) ∧ (t = tstart+τ2 ) → state = L3

(state = L3) ∧ (t = tstart+τ2+τ3 ) → state = L4

(state = L4) ∧ (t = tstart+τ2+τ3+τ4 ) → state = L1

(1)

Using differential equations

In buildings, thermal phenomena are continuous phenomena. In particular, the thermal be-
havior of a HVAC system can be modeled by state space models:

{

dxc(t)
dt = Acxc(t) + Bcuc(t) + Fc pc(t)

yc(t) = Cxc(t)
(2)

xc(t) contains state variables, usually temperature. uc(t) contains controlled input variables
such as energy flows. pc(t) contains known but uncontrolled input variables such as outside
temperature or solar radiance. A first order state space thermal model relevant for control
purpose has been proposed in Nathan (2001) but the second order model based on an electric
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analogy proposed in Madsen (1995) has been preferred for our control purpose because it
models the dynamic of indoor temperature. For a room heating service SRV(i), it yields:























d

dt

[

Tin(i, t)

Tenv(i, t)

]

= Ac

[

Tin(i, t)

Tenv(i, t)

]

+ Bc

[

P(i, t)
]

+ Fc

[

Tout(i, t)

φs(i, t)

]

Tin(i, t) = Cc

[

Tin(i, t)

Tenv(i, t)

] (3)

with Ac =

[

−1
rincenv

1
rincenv

1
rincin

− renv+rin

renvrincin

]

, Bc =

[

0
1

−cin

]

, Fc =

[

0 0
1

renvcin

w

cin

]

and Cc =
[

1 0
]

This model allows a rather precise description of the dynamic variations of indoor tempera-
ture with:

• Tin, Tout, Tenv the respective indoor, outdoor and housing envelope temperatures

• cin, cenv the thermal capacities of first indoor environment and second the envelope of
the housing

• rin, renv thermal resistances

• w the equivalent surface of the windows

• P the power consumed by the thermal generator, P ≤ 0. In this chapter, this flow is
assumed to correspond to an electric energy flow.

• φs the energy flow generated by the solar radiance

In order to solve the anticipative problem, continuous time models have to be discretized
according to the anticipation period ∆. Equation (2) modelling service SRV(i) becomes:

∀k ∈ {1, . . . , K},
[

Tin(i, k + 1)
Tenv(i, k + 1)

]

= Ai

[

Tin(i, k)
Tenv(i, k)

]

+ Bi

[

E(i, k)
]

+ Fi

[

Tout(i, k)
φs(i, k)

]

(4)

with Ai = eAc∆, Bi = (eAc∆ − In)A−1
c ∆−1Bc, Fi = (eAc∆ − In)A−1

c Fc, E(i, k) = P(i, k)∆ and
E(i, k) ≤ 0.

Using hybrid models

Some services cannot be modeled by a finite state machine nor by differential equations. Both
approaches have to be combined: the resulting model is then based on a finite state machine
where each state Lm actually becomes a set of states which evolution is depicted by a differ-
ential equation.
An electro-chemical storage service supported by a battery may be modeled by a hybrid
model (partially depicted in figure 4). x(t) stands for the quantity of energy inside the battery
and u(t) the controlled electrical power exchanged with the grid network.

Using static models

Power sources are usually modelled by static constraints. Local intermittent power resources,
such as photovoltaic power system or local electric windmill, and power suppliers are con-
sidered here. Using weather forecasts, it is possible to predict the power production w(i, k)
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during each sampling period [k∆, (k + 1)∆] of a support service SRV(i). The available energy
for each sampling period k is then given by:

E(i, k) = w(i, k)∆ ∀k ∈ {1, ..., K} (5)

with w(i, k) ≥ 0
According to the subscription between inhabitants and a power supplier, the maximum avail-
able power is given. It may depends on time. For a service of power supply SRV(i), it can be
modelled by the following constraint:

E(i, k) ≤ pmax(i, k)∆ ∀k ∈ {1, ..., K} (6)

where pmax(i, k) stands for the maximum available power.

3.2 Modeling quality of the execution of services

Depending on the type of service, the quality of the service achievement may be assessed
in different ways. End-user services provide comfort to inhabitants, intermediate services
provide autonomy and support services provide power that can be assessed by its cost and its
impact on the environment. In order to evaluate these qualities different types of criteria have
been introduced.

End-user services

Generally speaking, modifiable permanent services use to control a physical variable: the user
satisfaction depends on the difference between an expected value and an actual one. Let’s
consider for example the HVAC controlling a temperature. A flat can usually be split into
several HVAC services related to rooms (or thermal zones) assumed to be independent.
According to the comfort standard 7730 (AFNOR, 2006), three qualitative categories of ther-
mal comfort can be distinguished: A, B and C. In each category, (AFNOR, 2006) proposes
typical value ranges for temperature, air speed and humidity of a thermal zone that depends
on the type of environment: office, room,. . . These categories are based on an aggregated cri-
terion named Predictive Mean Vote (PMV) modelling the deviation from a neutral ambience.
The absolute value of this PMV is an interesting index to evaluate the quality of a HVAC
service. In order to simplify the evaluation of the PMV, typical values for humidity and air
speed are used. Therefore, only the ambient temperature corresponding to the neutral value
of PMV (PMV=0) is dynamically concerned. Under this assumption, an ideal temperature Topt

is obtained. Depending on the environment, an acceptable temperature range coming from

discharging stand-by charging

u(t) > 0u(t) = 0

u(t) < 0 u(t) = 0

u(t) > 0

u(t) < 0

dx(t)

dt
= ρu(t)

u(t) < 0

dx(t)

dt
= ρu(t)

u(t) > 0u(t) = 0

Fig. 4. Hybrid model of a battery
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discharging stand-by charging

the standard leads to an interval [Tmin, Tmax]. For instance, in an individual office in category
A, with typical air speed and humidity conditions, the neutral temperature is Topt = 22◦C and
the acceptable range is [21◦C, 23◦C].
Therefore, considering the HVAC service SRV(i), the discomfort criterion D(i, k), which is
more usable than comfort criterion here, is modelled by the following formula where assump-
tions are depicted by two parameters a1 and a2:

D(i, k) = |PMV(Tin(i, k))| =



















a1 ×
(Topt − Tin(i, k))

Topt − TMin
if Tin(i, k) ≤ Topt

a2 ×
(Tin(i, k)− Topt)

TMax − Topt
if Tin(i, k) > Topt

(7)

The global comfort criterion is defined as following:

D(i) =
K

∑
k=1

D(i, k) (8)

Generally speaking, modifiable temporary end-user services do not aim at controlling a phys-
ical variable. Temporary services such as washing are expected by inhabitants to finished at
a given time. Therefore, the quality of achievement of a temporary service depends on the
amount of time it is shifted. Therefore, in the same way as for permanent services, a user
dissatisfaction criterion for a service SRV(i) is defined by:

D(i) =



















f (i)− fopt(i)

fmax(i)− fopt(i)
if f (i) > fopt(i)

fopt(i)− f (i)

fopt(i)− fmin(i)
if f (i) ≤ fopt(i)

(9)

where fopt stands for the requested end time and fmin and fmax stand respectively for the
minimum and maximum acceptable end time.

Intermediate services

Intermediate services are composed of two kinds of services: the power storage services, which
store energy to be able to face difficult situations such as off-grid periods, and then lead to the
availability of the stored power supplier services (see figure 1). A power storage service SRV(i)
and a stored power service SRV(j); j �= i are associated to each storage system.
The quality of a power storage service has to be evaluated: it is related to the amount of stored
energy. This quality is called autonomy.
Let us consider a electric storage system modelled by a power storage service SRV(i) and by
a stored power supplier service SRV(j). The stock Estock(k) of the storage system is modelled
by:

Estock(k) = Estock
initial −

k

∑
ζ=1

(E(i, ζ) + E(j, ζ)) (10)

with E(i, ζ) ≤ 0 and E(j, ζ) ≥ 0.
Let Pre f be the reference power taken into account for the computation of the autonomy dura-
tion τautonomy. The autonomy objective A(k) can be defined by:

A(k) = ∑
k∈{1,...,K}

Estock(k) (11)
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Depending on the inhabitant expectations, autonomy can also be formulated by constraints to
be satisfied at any sample time: Pre f τautonomy − Estock(k) = 0, ∀k ∈ {1, . . . , K}.
Let’s now focus on stored power supplier service. What is the quality for this service i.e. the
service that provides stored energy to the housing. It is not a matter of economy nor of ecology
because costs is already taken into account when power production services provide power
to the storage system. It is not also a matter of stored energy: there is no quality of service
defined for stored power supplier service.

Support services

Support services dealing with power resources do not interact directly with inhabitants. How-
ever, inhabitants do care about their cost and their environmental impact. These two aspects
have to be assessed.
In most cases, the economical criterion corresponds to the cost of the provided, stored or sold
energy. This cost may contain depreciation of the device used to produce power.
Let SRV(0) be a photovoltaic support service and SRV(1) be a power supplier service. Let’s
examine the case of power provider such as EDF in France. Energy is sold at a given price
C(1, k) to the customer for each consumed kWh at time k. In order to promote photovoltaic
production, power coming from photovoltaic plants is bought by the supplier at higher price
C(0, k) > C(1, k).
Different power metering principles can be subscribed with a French power supplier. Only
the most widespread principle is addressed. The energy cost is thus given by the following
equation:

C(k) = C(1, k)E(1, k)− C(0, k)E(0, k), ∀k ∈ {1, . . . , K} (12)

The equivalent mass of carbon dioxide rejected in the atmosphere has been used as ecological
criterion for a support service. This criterion is easy to establish for most power devices:
photovoltaic cells, generator and even for energy coming from power suppliers. Powernext
energy exchange institution publishes the equivalent mass of carbon dioxide rejected in the
atmosphere per power unit in function of time (see http://www.powernext.fr). For instance,
in France, electricity coming from the grid network produces 66g/kWh of CO2 during off-peak
periods and 383g/kWh during peak period (Angioletti & Despretz, 2003). Energy coming
from photovoltaic panels is considered as free of CO2 rejection (grey energy is not taken into
account). For each support service SRV(i), a CO2 rejection rate τCO2(i, k) can be defined as the
equivalent volume of CO2 rejected per kWh. Therefore, the total rejection for a support service
SRV(i) during the sampling period k is given by τCO2(i, k)E(i, k) where E(i, k) corresponds to
the energy provided by the support service SRV(i) during the sampling period k.

4. Formulation of the anticipative problem as a linear problem

The formulation of the energy management problem contains both behavioral models with
discrete and continuous variables, differential equation and finite state models, and quality
models with nonlinearities such as in the PMV model. In order to get mixed linear problems
which can be solved by well known efficient algorithms, transformations have to be done. The
ones that have been used are summarized in the next section.

4.1 Transformation tools

Basically, a proposition denoted X is either true or false. It can result from the combination of
propositions thanks to connecting operators such as "∧"(and), "∨"(or), "⊕" (exclusive or), "�"
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(not), "→" (implies), "↔" (if and only if),... Whatever the proposition X is, it can be associated
to a binary variable δ ∈ {0, 1} such as: X = (δ = 1).
Therefore, (Williams, 1993) has shown that, in integer programming, connecting operators
may be modelled by:

�X ↔ δ = 0
X1 ∧ X2 ↔ δ1 + δ2 = 2
X1 ∨ X2 ↔ δ1 + δ2 ≥ 1
X1 ⊕X2 ↔ δ1 + δ2 = 1
X1 → X2 ↔ δ1 − δ2 ≤ 0
X1 ↔ X2 ↔ δ1 − δ2 = 0

(13)

According to (Bemporad & Morari, 1998), the transformation into a standard linear problem
can be achieved using lower and upper bounds of dom( f (x); x ∈ dom(x)) = dom(ax − b; x ∈
dom(x)) ⊂ [m, M]. Then, Binary variables can be connected to linear conditions as follows:

δ = (ax − b ≤ 0) ↔

{

ax − b ≤ M(1 − δ)
ax − b > mδ

(14)

Consider for instance the statement a1x ≤ b1 ↔ a2x′ ≤ b2. Using the previous transformation,
it can be formulated as:















a1x − b1 ≤ M(1 − δ)
a1x − b1 ≤ mδ

a2x′ − b2 ≤ M(1 − δ)
a2x′ − b2 ≤ mδ

with dom(a1x − b1; x ∈ dom(x)) ∪ dom(a2x′ − b2; x′ ∈ dom(x′)) ⊂ [m, M].
In many cases, such as in presence of absolute values like in PMV evaluation, products of
discrete and continuous variables appear. They have to be reformulated in order to get mixed
linear problems. Auxiliary variables may be used for this purpose. First consider the product
of 2 binary variables δ1 and δ2: δ3 = δ1 × δ2. It can be transformed into a discrete linear
problem:

δ3 = δ1 × δ2 ↔















−δ1 + δ3 ≤ 0
−δ2 + δ3 ≤ 0
δ1 + δ2 − δ3 ≤ 1
δ1, δ2, δ3 ∈ {0, 1}

(15)

Consider now the product of a binary variable with a continuous variable: z = δ × x where
δ ∈ {0, 1} and x ∈ [m, M]. It means that δ = 0 → z = 0 and δ = 1 → z = x. Therefore, the
semi-continuous variable z can be transformed into a mixed linear problem:

z = δ × x ↔















z ≤ M × δ

z ≥ mδ

z ≤ x − m(1 − δ)
z ≥ x − M(1 − δ)

(16)

These transformations can now be used to remove nonlinearities from the PMV computations,
time shifting of services and power storage.
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4.2 Linearization of PMV

Generally speaking, behavioral models of HVAC systems is given by Eq. (2) and an example is
given by (3). Model (4) is already linear but nonlinearities come up with the absolute value of
the PMV evaluation. Let’s introduce a binary variable δa(k) satisfying δa(k) = 1 ↔ Tin(k) ≤
Topt ∀k. Then, the PMV function (7) can be reformulated into a mixed linear form for every
service SRV(i):

|PMV(Ti,a(k))| = δa(k)× a1 ×
(Ta(i,k)−Topt)

Topt−TMin
+ (1 − δa(k))× a2 ×

(Topt−Ta(k))
TMax−Topt

= F1δa(k) + F2Ta(k) + F3za(k) + F4

(17)

Using eq. (14) to transform the absolute value, the equivalent form of the condition that con-
tains Ta(k) ≤ Topt is given by:

{

Ta(k)− Topt ≤ (Tmax − Topt)(1 − δa(k))
Ta(k)− Topt ≥ ǫ + (Tmin − Topt − ǫ)δa(k)

(18)

A semi-continuous variable za(k) is added to take place of the product δa(k) × Tin(k) in eq.

(17). According to eq. (16), the transformation of za(k) � δa(k)× Tin(k) leads to:















za(k) ≤ (Tmax − Topt)δa(k)
za(k) ≥ (Tmin − Topt)δa(k)
za(k) ≤ Tin(k)− (Tmin − Topt)(1 − δa(k))
za(k) ≥ Tin(k)− (Tmax − Topt)(1 − δa(k))

(19)

After the linearization of PMV, let’s now consider the linearization of the time shifting of
services.

4.3 Formalizing time shifting

state 1 of SRV(i)

time

∆
duration

1 2 3 4 5 6 7 8

E(i, 1, 2) E(i, 1, 3) E(i, 1, 4) E(i, 1, 5)

fmin(i, 1) fmax(i, 1)

f(i, 1)

consumed
energy

DUR(i, j)

Fig. 5. Shift of temporary services

Temporary services are modelled by finite state machines. The consumption of a state can be
shifted such as task in scheduling problems. The starting and ending times of services can be
synchronized to an anticipative period such as in (Duy Ha, 2007). It leads to a discrete-time
formulation of the problem. However, this approach is both a restriction of the solution space
and an approximation because the length of a time service has to be a multiple of ∆. The
general case has been considered here.
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state 1 of SRV(i)

time

duration

1 2 3 4 5 6 7 8
consumed

energy

In the scientific literature, continuous time formulations of scheduling problems exist (Cas-
tro & Grossmann, 2006; Pinto & Grossmann, 1995; 1998). However, these results concerns
scheduling problems with disjunctive resource constraints. Instead of computing the starting
time of tasks, the aim is to determine the execution sequence of tasks on shared resources.
In energy management problems, the matter is not restricted to determine such sequence be-
cause several services can be achieved at the same time.
An alternative formulation based on transformations (14) and (16), suitable for the energy
management in housings, is introduced.
Temporary services can be continuously shifted. Let DUR(i, j), f (i, j) and p(i, j) be respec-
tively the duration of the state j of service SRV(i), the ending time and the power related to
the service SRV(i) during the state j. f (i, j) is defined according to inhabitant comfort models:
they correspond to extrema in the comfort models presented in section 3.2.
According to (Esquirol & Lopez, 1999), the potential consumption/production duration (ef-
fective duration if positive) d(i, j, k) of a service SRV(i) in state j during a sampling period
[k∆, (k + 1)∆] is given by (see figure 5):

d(i, j, k) = min( f (i, j), (k + 1)∆)− max( f (i, j)− DUR(i, j), k∆) (20)

Therefore, the consumption/production energy E(i, j, k) of the service SRV(i) in state j during
a sampling period [k∆, (k + 1)∆] is given by:

E(i, j, k) =

{

d(i, j, k)p(i, j) if d(i, j, k) > 0

0 otherwise
(21)

E(i, j, k) can be modelled using a binary variable: δt0(i, j, k) = (d(i, j, k) ≥ 0) and a semi-
continuous variable zt0 (i, j, k) = δt0(i, j, k)d(i, j, k) such as in (14) and in (16). It leads to the
following inequalities:

d(i, j, k) ≤ δt0(i, j, k)K∆ (22)

d(i, j, k) > (δt0(i, j, k)− 1)K∆ (23)

E(i, j, k) = zt0 (i, j, k)p(i, j) (24)

zt0 (i, j, k) ≤ δt0(i, j, k)K∆ (25)

zt0 (i, j, k) ≥ −δt0(i, j, k)K∆ (26)

zt0 (i, j, k) ≤ d(i, j, k) + (1 − δt0(i, j, k))K∆ (27)

zt0 (i, j, k) ≥ d(i, j, k)− (1 − δt0(i, j, k))K∆ (28)

But the model still contains nonlinear functions min and max in the expression of d(i, j, k).
Therefore, equation (20) has to be transformed into a mixed-linear form. Let’s introduce 2
binary variables δt1(i, j, k) and δt2(i, j, k) defined by:

δt1(i, j, k) = ( f (i, j)− k∆ ≥ 0)

δt2(i, j, k) = ( f (i, j)− DUR(i, j)− k∆ ≥ 0)

Using (14), it yields:

f (i, j)− k∆ ≤ δt1(i, j, k)K∆ (29)

f (i, j)− k∆ ≥ (δt1(i, j, k)− 1)K∆ (30)

f (i, j)− DUR(i, j)− k∆ ≤ δt2(i, j, k)K∆ (31)

f (i, j)− DUR(i, j)− k∆ ≤ (δt2(i, j, k)− 1)K∆ (32)
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Therefore, min and max of equation (20) become:

fmin(i, j, k) = δt1(i, j, k + 1)(k + 1)∆ + (1 − δt1(i, j, k + 1)) f (i, j) (33)

smax(i, j, k) = δt2(i, j, k)( f (i, j)− DUR(i, j)) + (1 − δt2(i, j, k)) k∆ (34)

with min( f (i, j), (k + 1)∆) = fmin(i, j, k) and max( f (i, j)− DUR(i, j), k∆) = smax(i, j, k).
The duration d(i, j, k) can then be evaluated:

d(i, j, k) = fmin(i, j, k)− smax(i, j, k) (35)

Equations (22) to (35) model the time shifting of a temporary service.
Let’s now consider nonlinearities inherent to power storage services modelled by hybrid mod-
els.

4.4 Linearization of power storage

A storage service SRV(i) with a maximum capacity of Emax
stock can be modelled at time k by:

Estock(i, k) = max(min(Emax
stock, Estock(i, k − 1) + E(i, k − 1)), 0)

Let’s define the following binary variables: δ1(i, k) = (Estock(i, k) ≤ Emax
stock) and δ2(i, k) =

(Estock(i, k) ≥ 0). Using (14), it yields:

Estock(i, k)− Emax
stock ≤ (1 − δ1(i, k)) Emax

stock (36)

Estock(i, k)− Emax
stock > −δ1(i, k)Emax

stock (37)

Estock(i, k) ≤ δ2(i, k)Emax
stock (38)

Estock(i, k) > (δ2(i, k)− 1) Emax
stock (39)

The stored energy can then be written:

Estock(i, k) = δ1(i, k − 1)δ2(i, k − 1) (Estock(i, k − 1) + E(i, k − 1)) . . .

· · ·+ (1 − δ1(i, k))Emax
stock

With variables δ3(i, k) = δ1(i, k)δ2(i, k), z1(i, k) = δ3(i, k)Estock(i, k) and z2(i, k) = δ3(i, k)E(i, k)
and using transformations (15) and (16), the energy Estock(i, k) can be rewritten into a linear
form:

Estock(i, k) = z1(i, k − 1) + z2(i, k − 1) + (1 − δ1(i, k))Emax
stock (40)

The following constraints must be satisfied:

− δ1(i, k) + δ3(i, k) ≤ 0 (41)

−δ2(i, k) + δ3(i, k) ≤ 0 (42)

δ1(i, k) + δ2(i, k)− δ3(i, k) ≤ 1 (43)

z1(i, k) ≤ δ3(i, k)Emax
stock (44)

z1(i, k) ≥ −δ3(i, k)Emax
stock (45)

z1(i, k) ≤ Estock(i, k) + (1 − δ3(i, k))Emax
stock (46)

z1(i, k) ≥ Estock(i, k)− (1 − δ3(i, k))Emax
stock (47)

z2(i, k) ≤ δ3(i, k)Emax
stock (48)

z2(i, k) ≥ −δ3(i, k)Emax
stock (49)

z2(i, k) ≤ E(i, k) + (1 − δ3(i, k))Emax
stock (50)

z2(i, k) ≥ E(i, k)− (1 − δ3(i, k))Emax
stock (51)
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Equations (40) to (51) are a linear model of a power storage service.
Main services have been modelled by mixed integer linear form. Other services can be mod-
elled in the same way. Let’s now focus on how to solve the resulting mixed integer linear
problem.

5. Solving approach

Anticipative control in home energy management can be formulated as an multicriteria
mixed-linear programming problem represented by a set of constraints and optimization cri-
teria.

5.1 Problem summary

In a actual problem, the number of constraints is so large they cannot be detailed in this chap-
ter. Nevertheless, the fundamental modelling and transformation principles have been pre-
sented in sections 3 and 4.
HVAC services are representative examples of permanent services. They have been modelled
by equations like (4) and (19). The decision variables are heating powers Φs(i, k).
Temporary services, such as clothe washing, are modelled by equations like (22) to (35). The
decision variables are the ending times: f (i, j).
Storage services are modelled by equations like (40) to (51). The decision variables are energy
exchange with the storage systems: E(i, j).
Power supplier services are modelled by equations like (5). There is no decision variable for
these services.
These results can be adapted to fit most situations. If necessary, more details about modelling
can be found in (Duy Ha, 2007). As a summary, the following constraints may be encountered:

• linearized behavioral models of services

• linearized comfort models related to end-user services

In addition, a constraint modelling the production/consumption balance has to be added.
Generally speaking, this constraint can be written:

∀k ∈ {1, . . . , K}, ∑
i∈I

E(i, k) = 0 (52)

where I contains the indexes of available predictable services.
If there is a grid power supplier modelled by a support service SRV(0), the imported en-
ergy can be adjusted to effective needs (it is also true for fuel cells based support services).
Therefore, E(0, k) has to be set to the maximum available energy for a sampling period:
E(0, k) = Pmax(0, k)∆ where Pmax(0, k) stands for the maximum available power during sam-
pling period k. Consequently, (52) becomes:

∀k ∈ {1, . . . , K}, ∑
i∈I

E(i, k) ≥ 0 (53)

All the predictable but not modifiable services provide data to the optimization problem.
Their indexes are contained in Imodi f iable ⊂ I . Decision variables are all related to predictable
and modifiable services: they may be binary or continuous decision variables. The problem to
be solved is thus a mixed-linear programming problem. Moreover, the optimization problem
is a multi-criteria problem using the following criteria: economy, dissatisfaction, CO2eq and
autonomy criteria.
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Economy criterion is given by (12) when there is only a grid power supplier and a photo-
voltaic power supplier. Depending of the predictable support services I support∗ excluding
photovoltaic power supplier and on the existence of photovoltaic power supplier SRV(0),

Jautonomy =
K

∑
k=1

(

∑
i∈I support∗

C(i, k)E(i, k)− C(0, k)E(0, k)

)

(54)

where C(i, k) stands for the kWh cost of the support service i.
Dissatisfaction criterion comes from expressions like (7) and (9). Let I end−user ⊂ I be the
indexes of predictable end-user services. The comfort criteria may be given by:

Jdiscom f ort = ∑
i∈I end−user

sumk∈{1,...,K}D(i, k) (55)

The autonomy criterion comes from (11). It is given by:

Jautonomy = sumk∈{1,...,K}A(k) (56)

If there are several storage systems, the respective A(k) have to be summed up in the criterion
Jautonomy.
Finally, the CO2 equivalent rejection can be computed like the autonomy criteria:

JCO2eq =
K

∑
k=1

∑
i∈I support

τCO2(i, k)E(i, k) (57)

where τCO2(i, k) stands for the CO2 equivalent volume rejection for 1 kWh consummed by the
support service i and I support gathers the indexes of predictable support services.
All these criteria can be aggregated into a global criterion. α-criterion approaches can also be
used.

5.2 Decomposition into subproblems

In section 2.2, services have been split into permanent and temporary services. Let I temporary

be the indexes of modifiable and predictable temporary services. It is quite usual in hous-
ing that some modifiable and predictable temporary services cannot occur at the same time,
whatever the solution is. Using this property, the search space can be reduced.
Let’s defined the horizon of a service.

Definition 1. The horizon of a service SRV(i), denoted H(SRV(i)), is a time interval in which
SRV(i) may consume or produce energy.

The horizon of a service SRV(i) is denoted: [H(SRV(i)), H(SRV(i))] ⊆ [0, K∆]. A permanent
service has an horizon equal to [0, K∆]. A temporary service SRV(i) has an horizon given by
H(SRV(i)) = smin(i) (the earliest starting of the service) and H(SRV(i)) = fmax(i) (the latest
ending of the service).
Only predictable and modifiable services are considered in the following because they contain
decision variables. Two predictable and modifiable services may interact if and only if there
is a non empty intersection between their horizons.

Definition 2. Two predictable and modifiable services SRV(i) and SRV(j) are in direct temporal
relation if H(SRV(i))

⋂
H(SRV(j)) �= ∅. The direct temporal relation between SRV(i) and SRV(j)

is denoted
︷ ︸︸ ︷

SRV(i), SRV(j) = 1 if it exists, and
︷ ︸︸ ︷

SRV(i), SRV(j) = 0 otherwise.
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If H(SRV(i))
⋂

H(SRV(j)) = ∅, SRV(i) and SRV(j) are said temporally independent. Even
if two services SRV(i) and SRV(j) are not in direct temporal relation, it may exists an indirect
relation that can be found by transitivity. For instance, consider an additional service SRV(l).

If
︷ ︸︸ ︷

SRV(i), SRV(l) = 1,
︷ ︸︸ ︷

SRV(i), SRV(l) = 1 and
︷ ︸︸ ︷

SRV(i), SRV(j) = 0, SRV(i) and SRV(j) are
said to be indirect temporal relation.
Direct temporal relations can be represented by a graph where nodes stands for predictable
and modifiable services and edges for direct temporal relations. If the direct temporal relation
graph of modifiable and predictable services is not connected, the optimization problem can
be split into independent sub-problems. The global solution corresponds to the union of sub-
problem solutions (Diestel, 2005). This property is interesting because it may lead to important
reduction of the problem complexity.

6. Application example of the mixed-linear programming

After the decomposition into independent sub-problems, each sub-problem related to a spe-
cific time horizon can be solved using Mixed-Linear programming. The open source solver
GLKP (Makhorin, 2006) has been used to solve the problem but commercial solver such as
CPLEX (ILOG, 2006) can also be used. Mixed-Linear programming solvers combined a branch
and bound (Lawler & Wood, 1966) algorithm for binary variables with linear programming
for continuous variables.
Let’s consider a simple example of allocation plan computation for a housing for the next 24h
with an anticipative period ∆ =1h. The plan starts at 0am. Energy coming from a grid power
supplier has to be shared between 3 different end-user services:

• SRV(1) is a room HVAC service whose model is given by (3). According to the in-
habitant programming, the room is occupied from 6pm to 6am. Out of the occupation
periods, the inhabitant dissatisfaction D(1, k) is not taken into account. Room HVAC
service is thus considered here as a permanence service. The thermal behavior is given
by:





Tin(1, k + 1)

Tenv(1, k + 1)



 =





0.299 0.686

0.203 0.794









Tin(1, k)

Tenv(1, k)



+

[
1.264
0.336

]

E(1, k)+

[
0.015 0.44
0.004 0.116

] [
Text(k)
φs(1, k)

]

(58)
The comfort model of service SRV(1) in period k is

D(1, k) =







22 − Tin(i, k)

5
if Tin(i, k) ≤ 22

Tin(i, k)− 22

5
if Tin(i, k) > 22

(59)

The global comfort of service SRV(1) is the sum of comfort model of the whole period:

D(1) =
K

∑
k=1

D(1, k) (60)

• Service SRV(2) corresponds to an electric water heater. It is considered as a temporary
preemptive service. Its horizon is given by H(SRV(2)) = [3, 22]. The maximal power
consumption is 2kW and 3.5kWh can be stored within the heater.
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