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1. Introduction 

Seismic exploration is one of the main geophysical methods to extract quantitative 
inferences about the Earth’s interior at different scales from the recording of seismic waves 
near the surface. Main applications are civil engineering for cavity detection and landslide 
characterization, site effect modelling for seismic hazard, CO2 sequestration and nuclear-
waste storage, oil and gas exploration, and fundamental understanding of geodynamical 
processes. Acoustic or elastic waves are emitted either by controlled sources or natural 
sources (i.e., earthquakes). Interactions of seismic waves with the heterogeneities of the 
subsurface provide indirect measurements of the physical properties of the subsurface 
which govern the propagation of elastic waves (compressional and shear wave speeds, 
density, attenuation, anisotropy). Quantitative inference of the physical properties of the 
subsurface from the recordings of seismic waves at receiver positions is the so-called seismic 
inverse problem that can be recast in the framework of local numerical optimization. The 
most complete seismic inversion method, the so-called full waveform inversion (Virieux & 
Operto (2009) for a review), aims to exploit the full information content of seismic data by 
minimization of the misfit between the full seismic wavefield and the modelled one. The 
theoretical resolution of full waveform inversion is half the propagated wavelength. In full 
waveform inversion, the full seismic wavefield is generally modelled with volumetric 
methods that rely on the discretization of the wave equation (finite difference, finite 
element, finite volume methods). 
In the regime of small deformations associated with seismic wave propagation, the 
subsurface can be represented by a linear elastic solid parameterized by twenty-one elastic 
constants and the density in the framework of the constitutive Hooke’s law. If the 
subsurface is assumed isotropic, the elastic constants reduce to two independent 
parameters, the Lamé parameters, which depend on the compressional (P) and the shear (S) 
wave speeds. In marine environment, the P wave speed has most of the time a dominant 
footprint in the seismic wavefield, in particular, on the hydrophone component which 
records the pressure wavefield. The dominant footprint of the P wave speed on the seismic 
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wavefield has prompted many authors to develop and apply seismic modelling and 
inversion under the acoustic approximation, either in the time domain or in the frequency 
domain. 
This study focuses on frequency-domain modelling of acoustic waves as a tool to perform 
seismic imaging in the acoustic approximation. In the frequency-domain, wave modelling 
reduces to the resolution of a complex-valued large and sparse system of linear equations 
for each frequency, the solution of which is the monochromatic wavefield and the right-
hand side (r.h.s) is the source. Two key issues in frequency-domain wave modelling concern 
the linear algebra technique used to solve the linear system and the numerical method used 
for the discretization of the wave equation. The linear system can be solved with Gauss 
elimination techniques based on sparse direct solver (e.g., Duff et al.; 1986), Krylov-subspace 
iterative methods (e.g., Saad; 2003) or hybrid direct/iterative method and domain 
decomposition techniques (e.g., Smith et al.; 1996). In the framework of seismic imaging 
applications which involve a large number of seismic sources (i.e., r.h.s), one motivation 
behind the frequency-domain formulation of acoustic wave modelling has been to develop 
efficient approaches for multi-r.h.s modelling based on sparse direct solvers (Marfurt; 1984). 
A sparse direct solver performs first a LU decomposition of the matrix which is independent 
of the source followed by forward and backward substitutions for each source to get the 
solution (Duff et al.; 1986). This strategy has been shown to be efficient for 2D applications 
of acoustic full waveform inversion on realistic synthetic and real data case studies (Virieux 
& Operto; 2009). Two drawbacks of the direct-solver approach are the memory requirement 
of the LU decomposition resulting from the fill-in of the matrix during the LU 
decomposition (namely, the additional non zero coefficients introduced during the 
elimination process) and the limited scalability of the LU decomposition on large-scale 
distributed-memory platforms. It has been shown however that large-scale 2D acoustic 
problems involving several millions of unknowns can be efficiently tackled thanks to recent 
development of high-performance parallel solvers (e.g., MUMPS team; 2009), while 3D 
acoustic case studies remain limited to computational domains involving few millions of 
unknowns (Operto et al.; 2007). An alternative approach to solve the time-harmonic wave 
equation is based on Krylov-subspace iterative solvers (Riyanti et al.; 2006; Plessix; 2007; 
Riyanti et al.; 2007). Iterative solvers are significantly less memory demanding than direct 
solvers but the computational time linearly increases with the number of r.h.s. Moreover, 
the impedance matrix, which results from the discretization of the wave equation, is 
indefinite (the real eigenvalues change sign), and therefore ill-conditioned. Designing 
efficient pre-conditioner for the Helmholtz equation is currently an active field of research 
(Erlangga & Nabben; 2008). Efficient preconditioners based on one cycle of multigrid 
applied to the damped wave equation have been developed and leads to a linear increase of 
the number of iterations with frequency when the grid interval is adapted to the frequency 
(Erlangga et al.; 2006). This makes the time complexity of the iterative approaches to be 
O(N4), where N denotes the dimension of the 3D N3

 cubic grid. Intermediate approaches 
between the direct and iterative approaches are based on domain decomposition methods 
and hybrid direct/iterative solvers. In the hybrid approach, the iterative solver is used to 
solve a reduced system for interface unknowns shared by adjacent subdomains while the 
sparse direct solver is used to factorize local impedance matrices assembled on each 
subdomains during a preprocessing step (Haidar; 2008; Sourbier et al.; 2008). A short review 
of the time and memory complexities of the direct, iterative and hybrid approaches is 
provided in Virieux et al. (2009). 
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The second issue concerns the numerical scheme used to discretize the wave equation. Most 
of the methods that have been developed for seismic acoustic wave modelling in the 
frequency domain rely on the finite difference (FD) method. This can be justified by the fact 
that, in many geological environments such as offshore sedimentary basins, the subsurface 
of the earth can be viewed as a weakly-contrasted medium at the scale of the seismic 
wavelengths, for which FD methods on uniform grid provide the best compromise between 
accuracy and computational efficiency. In the FD time-domain method, high-order accurate 
stencils are generally designed to achieve the best trade-off between accuracy and 
computational efficiency (Dablain; 1986). However, direct-solver approaches in frequency-
domain modelling prevent the use of such high-order accurate stencils because their large 
spatial support will lead to a prohibitive fill-in of the matrix during the LU decomposition 
(Stekl & Pratt; 1998; Hustedt et al.; 2004). Another discretization strategy, referred to as the 
mixed-grid approach, has been therefore developed to perform frequency-domain 
modelling with direct solver: it consists of the linear combination of second-order accurate 
stencils built on different rotated coordinate systems combined with an anti-lumped mass 
strategy, where the mass term is spatially distributed over the different nodes of the stencil 
(Jo et al.; 1996). The combination of these two tricks allows one to design both compact and 
accurate stencils in terms of numerical anisotropy and dispersion. 
Sharp boundaries of arbitrary geometry such as the air-solid interface at the free surface are 
often discretized along staircase boundaries of the FD grid, although embedded boundary 
representation has been proposed (Lombard & Piraux; 2004; Lombard et al.; 2008; Mattsson 
et al.; 2009), and require dense grid meshing for accurate representation of the medium. The 
lack of flexibility to adapt the grid interval to local wavelengths, although some attempts 
have been performed in this direction (e.g., Pitarka; 1999; Taflove & Hagness; 2000), is 
another drawback of FD methods. These two limitations have prompted some authors to 
develop finite-element methods in the time domain for seismic wave modelling on 
unstructured meshes. The most popular one is the high-order spectral element method 
(Seriani & Priolo; 1994; Priolo et al.; 1994; Faccioli et al.; 1997) that has been popularized in 
the field of global scale seismology by Komatitsch and Vilotte (1998); Chaljub et al. (2007). A 
key feature of the spectral element method is the combined use of Lagrange interpolants 
and Gauss-Lobatto-Legendre quadrature that makes the mass matrix diagonal and, 
therefore, the numerical scheme explicit in time-marching algorithms, and allows for 
spectral convergence with high approximation orders (Komatitsch & Vilotte; 1998). The 
selected quadrature formulation leads to quadrangle (2D) and hexahedral (3D) meshes, 
which strongly limit the geometrical flexibility of the discretization. Alternatively, 
discontinuous form of the finite-element method, the so-called discontinuous Galerkin (DG) 
method (Hesthaven & Warburton; 2008), popularized in the field of seismology by Kaser, 
Dumbser and co-workers (e.g., Dumbser & Käser; 2006) has been developed. In the DG 
method, the numerical scheme is strictly kept local by duplicating variables located at nodes 
shared by neighboring cells. Consistency between the multiply defined variables is ensured 
by consistent estimation of numerical fluxes at the interface between two elements. 
Numerical fluxes at the interface are introduced in the weak form of the wave equation by 
means of integration by part followed by application of the Gauss’s theorem. Key 
advantages of the DG method compared to the spectral element method is its capacity of 
considering triangular (2D) and tetrahedral (3D) non-conform meshes. Moreover, the 
uncoupling of the elements provides a higher level of flexibility to locally adapt the size of 
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the elements (h adaptivity) and the interpolation orders within each element (p adaptivity) 
because neighboring cells exchange information across interfaces only. Moreover, the DG 
method provides a suitable framework to implement any kind of physical boundary 
conditions involving possible discontinuity at the interface between elements. One example 
of application which takes fully advantage of the discontinuous nature of the DG method is 
the modelling of the rupture dynamics (BenJemaa et al.; 2007, 2009; de la Puente et al.; 2009). 
The dramatic increase of the total number of degrees of freedom compared to standard 
finite-element methods, that results from the uncoupling of the elements, might prevent an 
efficient use of DG methods. This is especially penalizing for frequency-domain methods 
based on sparse direct solver where the computational cost scales with the size of the matrix 
N in O(N6) for 3D problems. The increase of the size of the matrix should however be 
balanced by the fact the DG schemes are more local and sparser than FEM ones (Hesthaven 
& Warburton; 2008), which makes smaller the numerical bandwidth of the matrix to be 
factorized. 
When a zero interpolation order is used in cells (piecewise constant solution), the DG 
method reduces to the finite volume method (LeVeque; 2002). The DG method based on 
high-interpolation orders has been mainly developed in the time domain for the 
elastodynamic equations (e.g., Dumbser & Käser; 2006). Implementation of the DG method 
in the frequency domain has been presented by Dolean et al. (2007, 2008) for the time-
harmonic Maxwell equations and a domain decomposition method has been used to solve 
the linear system resulting from the discretization of the Maxwell equations. A 
parsimonious finite volume method on equilateral triangular mesh has been presented by 
Brossier et al. (2008) to solve the 2D P-SV elastodynamic equations in the frequency domain. 
The finite-volume approach of Brossier et al. (2008) has been extended to low-order DG 
method on unstructured triangular meshes in Brossier (2009). 
We propose a review of these two quite different numerical methods, the mixed-grid FD 
method with simple regular-grid meshing and the DG method with dense unstructured 
meshing, when solving frequency-domain visco-acoustic wave propagation with sparse 
direct solver in different fields of application. After a short review of the time-harmonic 
visco-acoustic wave equation, we first review the mixed-grid FD method for 3D modelling. 
We first discuss the accuracy of the scheme which strongly relies on the optimization 
procedure designed to minimize the numerical dispersion and anisotropy. Some key 
features of the FD method such as the absorbing and free-surface boundary conditions and 
the source excitation on coarse FD grids are reviewed. Then, we present updated numerical 
experiments performed with the last release of the massively-parallel sparse direct solver 
MUMPS (Amestoy et al.; 2006). We first assess heuristically the memory complexity and the 
scalability of the LU factorization. Second, we present simulations in two realistic synthetic 
models representative of oil exploration targets. We assess the accuracy of the solutions and 
the computational efficiency of the mixed-grid FD frequency-domain method against that of 
a conventional FD time-domain method. In the second part of the study, we review the DG 
frequency-domain method applied to the first-order acoustic wave equation for pressure 
and particle velocities. After a review of the spatial discretization, we discuss the impact of 
the order of the interpolating Lagrange polynomials on the computational cost of the 
frequency-domain DG method and we present 2D numerical experiments on unstructured 
triangular meshes to highlight the fields of application where the DG method should 
outperform the FD method. 
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Although the numerical methods presented in this study were originally developed for 
seismic applications, they can provide a useful framework for other fields of application 
such as computational ocean acoustics (Jensen et al.; 1994) and electrodynamics (Taflove & 
Hagness; 2000). 

2. Frequency-domain acoustic wave equation 

Following standard Fourier transformation convention, the 3D acoustic first-order velocity-
pressure system can be written in the frequency domain as 
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where ω is the angular frequency, ┢(x, y, z) is the bulk modulus, b(x, y, z) is the buoyancy, 
p(x, y, z, ω) is the pressure, vx(x, y, z, ω), vy(x, y, z, ω), vz(x, y, z, ω) are the components of the 
particle velocity vector. fx(x, y, z, ω), fy(x, y, z, ω), fz(x, y, z, ω) are the components of the 
external forces. The first block row of equation 1 is the time derivative of the Hooke’s law, 
while the three last block rows are the equation of motion in the frequency domain. 
The first-order system can be recast as a second-order equation in pressure after elimination 
of the particle velocities in equation 1, that leads to a generalization of the Helmholtz 
equation: 
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where x = (x,y, z) and s(x,ω) = ∇ · f denotes the pressure source. In exploration seismology, 
the source is generally a local point source corresponding to an explosion or a vertical force. 
Attenuation effects of arbitrary complexity can be easily implemented in equation 2 using 
complex-valued wave speeds in the expression of the bulk modulus, thanks to the 
correspondence theorem transforming time convolution into products in the frequency 
domain. For example, according to the Kolsky-Futterman model (Kolsky; 1956; Futterman; 
1962), the complex wave speed c  is given by: 
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where the P wave speed is denoted by c, the attenuation factor by Q and a reference 
frequency by ωr. 
Since the relationship between the wavefields and the source terms is linear in the first-
order and second-order wave equations, equations 1 and 2 can be recast in matrix form: 
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 ,+ = =⎡ ⎤⎣ ⎦M S u Au b  (4) 

where M is the mass matrix, S is the complex stiffness/damping matrix. The sparse 
impedance matrix A has complex-valued coefficients which depend on medium properties 
and angular frequency. The wavefield (either the scalar pressure wavefield or the pressure-
velocity wavefields) is denoted by the vector u and the source by b (Marfurt; 1984). The 
dimension of the square matrix A is the number of nodes in the computational domain 
multiplied by the number of wavefield components. The matrix A has a symmetric pattern 
for the FD method and the DG method discussed in this study but is generally not 
symmetric because of absorbing boundary conditions along the edges of the computational 
domain. In this study, we shall solve equation 4 by Gaussian elimination using sparse direct 
solver. A direct solver performs first a LU decomposition of A followed by forward and 
backward substitutions for the solutions (Duff et al.; 1986). 

  ( )= =Au LU u b  (5) 

 ;= =Ly b Uu y  (6) 

Exploration seismology requires to perform seismic modelling for a large number of 
sources, typically, up to few thousands for 3D acquisition. Therefore, our motivation behind 
the use of direct solver is the efficient computation of the solutions of the equation 4 for 
multiple sources. The LU decomposition of A is a time and memory demanding task but is 
independent of the source, and, therefore is performed only once, while the substitution 
phase provides the solution for multiple sources efficiently. One bottleneck of the direct-
solver approach is the memory requirement of the LU decomposition resulting from the fill-
in, namely, the creation of additional non-zero coefficients during the elimination process. 
This fill-in can be minimized by designing compact numerical stencils that allow for the 
minimization of the numerical bandwidth of the impedance matrix. In the following, we 
shall review a FD method and a finite-element DG method that allow us to fullfill this 
requirement. 

3. Mixed-grid finite-difference method 

3.1 Discretization of the differential operators 

In FD methods, high-order accurate stencils are generally designed to achieve the best 
tradeoff between accuracy and computational efficiency (Dablain; 1986). However, direct-
solver methods prevent the use of high-order accurate stencils because their large spatial 
support will lead to a prohibitive fill-in of the matrix during the LU decomposition (Hustedt 
et al.; 2004). Alternatively, the mixed-grid method was proposed by Jo et al. (1996) to design 
both accurate and compact FD stencils. The governing idea is to discretize the differential 
operators of the stiffness matrix with different second-order accurate stencils and to linearly 
combine the resulting stiffness matrices with appropriate weighting coefficients. The 
different stencils are built by discretizing the differential operators along different rotated 
coordinate systems ( x , y , z ) such that their axes span as many directions as possible in 
the FD cell to mitigate numerical anisotropy. In practice, this means that the partial 
derivatives with respect to x, y and z in equations 1 or 2 are replaced by a linear combination 
of partial derivatives with respect to x , y  and z  using the chain rule followed by the 
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discretization of the differential operators along the axis x , y  and z . In 2D, the coordinate 
systems are the classic Cartesian one and the 45°-rotated one (Saenger et al.; 2000) which 
lead to the 9-point stencil (Jo et al.; 1996). In 3D, three coordinate systems have been 
identified (Operto et al.; 2007) (Figure 1): [1] the Cartesian one which leads to the 7-point 
stencil, [2] three coordinate systems obtained by rotating the Cartesian system around each 
Cartesian axis x, y, and z. Averaging of the three elementary stencils leads to a 19-point 
stencil. [3] four coordinate systems defined by the four main diagonals of the cubic cell. 
Averaging of the four elementary stencils leads to the 27-point stencil. The stiffness matrix 
associated with the 7-point stencil, the 19-point stencil and the 27-point stencil will be 
denoted by S1, S2, S3, respectively. 
The mixed-grid stiffness matrix Smg is a linear combination of the stiffness matrices just-
mentioned: 

 32
1 1 2 3 ,

3 4mg

ww
w= + +S S S S  (7) 

where we have introduced the weighting coefficients w1, w2 and w3 which satisfy: 

 1 2 3 1w w w+ + =  (8) 

In the original mixed-grid approach (Jo et al.; 1996), the discretization on the different 
coordinate systems was directly applied to the second-order wave equation, equation 2, 
with the second-order accurate stencil of Boore (1972). Alternatively, Hustedt et al. (2004) 
proposed to discretize first the first-order velocity-pressure system, equation 1, with second-
order staggered-grid stencils (Yee; 1966; Virieux; 1986; Saenger et al.; 2000) and, second, to  
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Fig. 1. Elementary FD stencils of the 3D mixed-grid stencil. Circles are pressure grid points. 
Squares are positions where buoyancy needs to be interpolated in virtue of the staggered-
grid geometry. Gray circles are pressure grid points involved in the stencil. a) Stencil on the 
classic Cartesian coordinate system. This stencil incorporates 7 coefficients. b) Stencil on the 
rotated Cartesian coordinate system. Rotation is applied around x on the figure. This stencil 
incorporates 11 coefficients. Same strategy can be applied by rotation around y and z. 
Averaging of the 3 resultant stencils defines a 19-coefficient stencil. c) Stencil obtained from 
4 coordinate systems, each of them being associated with 3 main diagonals of a cubic cell. 
This stencil incorporates 27 coefficients (Operto et al.; 2007). 
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eliminate the auxiliary wavefields (i.e., the velocity wavefields) following a parsimonious 
staggered-grid method originally developed in the time domain (Luo & Schuster; 1990). The 
parsimonious staggered-grid strategy allows us to minimize the number of wavefield 
components involved in the equation 4, and therefore to minimize the size of the system to 
be solved while taking advantage of the flexibility of the staggered-grid method to discretize 
first-order difference operators. The parsimonious mixed-grid approach originally proposed 
by Hustedt et al. (2004) for the 2D acoustic wave equation was extended to the 3D wave 
equation by Operto et al. (2007) and to a 2D pseudo-acoustic wave equation for transversely 
isotropic media with tilted symmetry axis by Operto et al. (2009). The staggered-grid 
method requires interpolation of the buoyancy in the middle of the FD cell which should be 
performed by volume harmonic averaging (Moczo et al.; 2002). 
The pattern of the impedance matrix inferred from the 3D mixed-grid stencil is shown in 
Figure 2. The bandwidth of the matrix is of the order of N2

 (N denotes the dimension of a 3D 
cubic N 3 domain) and was kept minimal thanks to the use of low-order accurate stencils. 
 

1
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1 65 129 193 257 321 385 449
Column number of impedance matrix

 
Fig. 2. Pattern of the square impedance matrix discretized with the 27-point mixed-grid 
stencil (Operto et al.; 2007). The matrix is band diagonal with fringes. The bandwidth is 
O(2N1N2) where N1 and N2 are the two smallest dimensions of the 3D grid. The number of 
rows/columns in the matrix is N1 × N2 × N3. In the figure, N1 = N2 = N3 = 8 

3.2 Anti-lumped mass 
The linear combination of the rotated stencils in the mixed-grid approach is complemented 
by the distribution of the mass term ω2/┢ in equation 2 over the different nodes of the 
mixed-grid stencil to mitigate the numerical dispersion: 
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where 
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In equation 9, the different nodes of the 27-point stencils are labelled by indices lmn where 
l,m,n ∈ {−1, 0,1} and 000 denotes the grid point in the middle of the stencil. 
We used the notations 
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This anti-lumped mass strategy is opposite to mass lumping used in finite element methods 
to make the mass matrix diagonal. The anti-lumped mass approach, combined with the 
averaging of the rotated stencils, allows us to minimize efficiently the numerical dispersion 
and to achieve an accuracy representative of 4th-order accurate stencil from a linear 
combination of 2nd-order accurate stencils. The anti-lumped mass strategy introduces four 
additional weighting coefficients wm1, wm2, wm3 and wm4, equations 9 and 10. The coefficients 
w1, w2, w3, wm1, wm2, wm3 and wm4 are determined by minimization of the phase-velocity 
dispersion in infinite homogeneous medium. Alternatives FD methods for designing 
optimized FD stencils can be found in Holberg (1987); Takeuchi and Geller (2000). 

3.3 Numerical dispersion and anisotropy 
The dispersion analysis of the 3D mixed-grid stencil was already developed in details in 
Operto et al. (2007). We focus here on the sensitivity of the accuracy of the mixed-grid 
stencil to the choice of the weighting coefficients w1, w2, w3, wm1, wm2, wm3. We aim to design 
an accurate stencil for a discretization criterion of 4 grid points per minimum propagated 
wavelength. This criterion is driven by the spatial resolution of full waveform inversion, 
which is half a wavelength. To properly sample subsurface heterogeneities, the size of 
which is half a wavelength, four grid points per wavelength should be used according to 
Shannon’s theorem. 
Inserting the discrete expression of a plane wave propagating in a 3D infinite homogeneous 
medium of wave speed c and density equal to 1 in the wave equation discretized with the 
mixed-grid stencil gives for the normalized phase velocity (Operto et al.; 2007): 
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and a = 2
G
π

 cosφcos θ; b = 2
G
π

 cosφsin θ; c = 2
G
π

 sinφ. Here, the normalized phase velocity is 
the ratio between the numerical phase velocity ω/k and the wave speed c. G = 

h
λ  = 2

kh
π

 is the 
number of grid points per wavelength ┣. φ and θ are the incidence angles of the plane wave. 
We look for the 5 independent parameters wm1, wm2, wm3, w1, w2 which minimize the least-
squares norm of the misfit (1. − phv# ). The two remaining weighting coefficients wm4 and w3 
are inferred from equations 8 and 10, respectively. We estimated these coefficients by a 
global optimization procedure based on a Very Fast Simulating Annealing algorithm (Sen & 
Stoffa; 1995). We minimize the cost function for 5 angles φ and θ spanning between 0 and 
45°and for different values of G. 
In the following, the number of grid points for which phase velocity dispersion is minimized 
will be denoted by Gm. The values of the weighting coefficients as a function of Gm are given in 
Table 1. For high values of Gm, the Cartesian stencil has a dominant contribution (highlighted 
by the value of w1), while the first rotated stencil has the dominant contribution for low values 
of Gm as shown by the value of w2. The dominant contribution of the Cartesian stencil for large 
values of Gm is consistent with the fact that it has a smaller spatial support (i.e., 2 × h) than the 
rotated stencils and a good accuracy for G greater than 10 (Virieux; 1986). The error on the 
phase velocity is plotted in polar coordinates for four values of G (4, 6, 8, 10) and for Gm=4 in 
Figure 3a. We first show that the phase velocity dispersion is negligible for G=4, that shows the 
efficiency of the optimization. However, more significant error (0.4 %) is obtained for 
intermediate values of G (for example, G=6 in Figure 3a). This highlights the fact that the 
weighting coefficients were optimally designed to minimize the dispersion for one grid 
interval in homogeneous media. We show also the good isotropy properties of the stencil, 
shown by the rather constant phase-velocity error whatever the direction of propagation. The 
significant phase-velocity error for values of G greater than Gm prompt us to simultaneously 
minimize the phase-velocity dispersion for four values of G: Gm= 4,6,8,10 (Figure 3b). We show 
that the phase-velocity error is now more uniform over the values of G and that the maximum 
phase-velocity-error was reduced (0.25 % against 0.4 %). However, the nice isotropic property 
of the mixed-grid stencil was degraded and the phase-velocity dispersion was significantly 
increased for G=4. We conclude that the range of wavelengths propagated in a given medium 
should drive the discretization criterion used to infer the weighting coefficients of the mixed 
grid stencil and that a suitable trade-off should be found between the need to manage the 
heterogeneity of the medium and the need to minimize the error for a particular wavelength. 
Of note, an optimal strategy might consist of adapting locally the values of the weighting 
coefficients to the local wave speed during the assembling of the impedance matrix. This 
strategy was not investigated yet. 
 
Gm 4,6,8,10 4 8 10 20 40

wm1 0.4966390 0.5915900 0.5750648 0.7489436 0.7948160 0.6244839
wm2 7.51233E-02 4.96534E-02 5.76759E-02 1.39044E-02 3.71392E-03 5.06646E-02
wm3 4.38464E-03 5.10851E-03 5.56914E-03 6.38921E-03 5.54043E-03 1.42369E-03
wm4 6.76140E-07 6.14837E-03 1.50627E-03 1.13699E-02 1.45519E-02 6.8055E-03
w1 5.02480E-05 8.8075E-02 0.133953 0.163825 0.546804 0.479173
w2 0.8900359 0.8266806 0.7772883 0.7665769 0.1784437 0.2779923
w3 0.1099138 8.524394E-02 8.87589E-02 6.95979E-02 0.2747527 0.2428351  

Table 1. Coefficients of the mixed-grid stencil as a function of the discretization criterion Gm 

for the minimization of the phase velocity dispersion. 
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G = 10 G = 8 G = 6 G = 4  
Fig. 3. Phase-velocity dispersion shown in spherical coordinates for four values of G. (a) The 
phase-velocity dispersion was minimized for G = 4. (b) the phase-velocity dispersion was  
minimized for 4 values of G: 4, 6, 8 and 10. 

Comparison between numerical and analytical pressure monochromatic wavefields computed 
in a homogeneous medium of wave speed 1.5 km/s and density 1000 kg/m3 confirms the 
former theoretical analysis (Figure 4). The frequency is 3.75 Hz corresponding to a propagated 
wavelength of 400 m. The grid interval for the simulation is 100 m corresponding to G = 4. 
Simulations were performed when the weighting coefficients of the mixed-grid stencils are 
computed for Gm = 4 and Gm = {4, 6, 8,10}. The best agreement is obtained for the weighting 
coefficients associated with Gm = 4 as expected from the dispersion analysis. 
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Fig. 4. (a) Real part of a 3.75-Hz monochromatic wavefield computed with the mixed-grid 
stencil in a 3D infinite homogeneous medium. The explosive point source is at x=2 km, y=1 
km, z=2 km. (b-c) Comparison between the analytical (gray) and the numerical solution 
(black) for a receiver line oriented in the Y direction across the source position. The thin 
black line is the difference. The amplitudes were corrected for 3D geometrical spreading.  
(b) Gm = 4, 6, 8, 10. (c) Gm = 4. 
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3.4 Boundary conditions 
In seismic exploration, two boundary conditions are implemented for wave modelling: 
absorbing boundary conditions to mimic an infinite medium and free surface conditions on 
the top side of the computational domain to represent the air-solid or air-water interfaces. 

3.4.1 PML absorbing boundary conditions 
We use Perfectly-Matched Layers (PML) absorbing boundary conditions (Berenger; 1994) to 
mimic an infinite medium. In the frequency domain, implementation of PMLs consists of 
applying in the wave equation a new system of complex-valued coordinates x#  defined by 
(e.g., Chew & Weedon; 1994): 

 
1.
( )xx x xξ

∂ ∂=∂ ∂#
 (12) 

In the PML layers, the damped wave equation writes: 

 
2 1 ( ) 1 ( ) 1 ( )

( , ) ( , ),
( ) ( ) ( ) ( ) ( ) ( ) ( )x x y y z z

b b b
p s

x x x x y y y y z z z z

ω ω ωκ ξ ξ ξ ξ ξ ξ
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂+ + + = −⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

x x x
x x

x
 (13) 

where ξx(x) = 1 + iγx(x)/ω and γx(x) is a 1D damping function which defines the PML 
damping behavior in the PML layers. These functions differ from zero only inside the PML 

layers. In the PML layers, we used ( )2( ) 1 ( )pml
L x

L
x c cos πγ −= −  where L denotes the width of 

the PML layer and x is a local coordinate in the PML layer whose origin is located at the 
outer edges of the model. The scalar cpml is defined by trial and error depending on the width 
of the PML layer. The procedure to derive the unsplitted second-order wave equation with 
PML conditions, equation 13, from the first-order damped wave equation is given in Operto 
et al. (2007). 
The absorption of the PML layers at grazing incidence can be improved by using 
convolutional PML (C-PML) (Kuzuoglu & Mittra; 1996; Roden & Gedney; 2000; Komatitsch 
& Martin; 2007). In the C-PML layers, the damping function ξx(x) becomes: 

 ( ) ,x
x x

x

d
x i

i
ξ κ α ω= + +  (14) 

where dx and αx are generally quadratic and linear functions, respectively. Suitable 
expression for ┢x, dx and αx are discussed in Kuzuoglu & Mittra (1996); Collino & Monk 
(1998); Roden & Gedney (2000); Collino & Tsogka (2001); Komatitsch & Martin (2007); 
Drossaert & Giannopoulos (2007). 

3.4.2 Free surface boundary conditions 
Planar free surface boundary conditions can be simply implemented in the frequency 
domain with two approaches. In the first approach, the free surface matches the top side of 
the FD grid and the pressure is forced to zero on the free surface by using a diagonal 
impedance matrix for rows associated with collocation grid points located on the top side of 
the FD grid. Alternatively, the method of image can be used to implement the free surface 
along a virtual plane located half a grid interval above the topside of the FD grid (Virieux; 
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1986). The pressure is forced to vanish at the free surface by using a ficticious plane located 
half a grid interval above the free surface where the pressure is forced to have opposite 
values to that located just below the free surface. 
From a computer implementation point of view, an impedance matrix is typically built row 
per row. One row of the linear system can be written as: 

 
1 2 3 1 2 3

3 2 1

000
1,1 1,1 1,1

i i i i i i
i i i

a p s
=− =− =−

=∑ ∑ ∑  (15) 

where 
1 2 3i i ia  are the coefficients of the 27-point mixed grid stencil and 000 denote the indices 

of the collocation coefficient located in the middle of the stencil in a local coordinate system. 
The free surface boundary conditions writes: 

 
2 3 2 31 0 ,i i i ip p− = −  (16) 

for i2 = {−1, 0,1} and i3 = {−1, 0,1}. The indices i1=-1 and i1=0 denotes here the grid points just 
above and below the free surface, respectively. 
For a grid point located on the top side of the computational domain (i.e., half a grid interval 
below free surface), equation 15 becomes: 

 ( )2 3 2 3 2 3 2 3 2 3

3 2 3 2

1 1 0 1 0 000
1,1 1,1 1,1 1,1

,i i i i i i i i i i
i i i i

a p a a p s−=− =− =− =−
+ − =∑ ∑ ∑ ∑  (17) 

where 
2 31i ip−  has been replaced by the opposite value of 

2 30 i ip  according to equation 16. 
Our practical experience is that both implementation of free surface boundary conditions 
give results of comparable accuracy. Of note, rigid boundary conditions (zero displacement 
perpendicular to the boundary) or periodic boundary conditions (Ben-Hadj-Ali et al.; 2008) 
can be easily implemented with the method of image following the same principle than for 
the free surface condition. 

3.5 Source implementation on coarse grids 
Seismic imaging by full waveform inversion is initiated at frequency as small as possible to 
mitigate the non linearity of the inverse problem. The starting frequency for modelling can 
be as small as 2 Hz which can lead to grid intervals as large as 200 m. In this framework, 
accurate implementation of point source at arbitrary position in a coarse grid is critical. One 
method has been proposed by Hicks (2002) where the point source is approximated by a 
windowed Sinc function. The Sinc function is defined by 

 
( )

( ) ,
sin x

sinc x
x

π
π=  (18) 

where x = (xg − xs), xg denotes the position of the grid nodes and xs denotes the position of the 
source. The Sinc function is tapered with a Kaiser function to limit its spatial support. For 
multidimensional simulations, the interpolation function is built by tensor product 
construction of 1D windowed Sinc functions. If the source positions matches the position of 
one grid node, the Sinc function reduces to a Dirac function at the source position and no 
approximation is used for the source positioning. If the spatial support of the Sinc function  
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Fig. 5. a) Real part of a 3.75-Hz monochromatic wavefield in a homogeneous half space. (b) 
Comparison between numerical (black) and analytical (gray) solutions at receiver positions. 
The Sinc interpolation with 4 coefficients was used for both the source implementation and 
the extraction of the solution at the receiver positions on a coarse FD grid. 

intersects a free surface, part of the Sinc function located above the free surface is mirrored 
into the computational domain with a reverse sign following the method of image. Vertical 
force can be implemented in a straightforward way by replacing the Sinc function by its 
vertical derivative. The same interpolation function can be used for the extraction of the 
pressure wavefield at arbitrary receiver positions. The accuracy of the method of Hicks 
(2002) is illustrated in Figure 5 which shows a 3.5-Hz monochromatic wavefield computed 
in a homogeneous half space. The wave speed is 1.5 km/s and the density is 1000 kg/m3. 
The grid interval is 100 m. The free surface is half a grid interval above the top of the FD 
grid and the method of image is used to implement the free surface boundary condition. 
The source is in the middle of the FD cell at 2 km depth. The receiver line is oriented in the Y 
direction. Receivers are in the middle of the FD cell in the horizontal plane and at a depth of 
6 m just below the free surface. This setting is representative of a ocean bottom survey 
where the receiver is on the sea floor and the source is just below the sea surface (in virtue of 
the spatial reciprocity of the Green functions, sources are processed here as receivers and 
vice versa). Comparison between the numerical and the analytical solutions at the receiver 
positions are first shown when the source is positioned at the closest grid point and the 
numerical solutions are extracted at the closest grid point (Figure 5b). The amplitude of the 
numerical solution is strongly overestimated because the numerical solution is extracted at a 
depth of 50 m below free surface (where the pressure vanishes) instead of 6 m. Second, a 
significant phase shift between numerical and analytical solutions results from the 
approximate positioning of the sources and receivers. In contrast, a good agreement 
between the numerical and analytical solutions both in terms of amplitude and phase is 
shown in Figure 5c where the source and receiver positioning were implemented with the 
windowed Sinc interpolation. 

3.6 Resolution with the sparse direct solver MUMPS 
To solve the sparse system of linear equations, equation 4, we used the massively parallel 
direct MUMPS solver designed for distributed memory platforms. The reader is referred to 
Guermouche et al. (2003); Amestoy et al. (2006); MUMPS team (2009) for an extensive 
description of the method and their underlying algorithmic aspects. The MUMPS solver is 
based on a multifrontal method (Duff et al.; 1986; Duff and Reid; 1983; Liu; 1992), where the 
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resolution of the linear system is subdivided into 3 main tasks. The first one is an analysis 
phase or symbolic factorization. Reordering of the matrix coefficients is first performed in 
order to minimize fill-in. We used the METIS algorithm which is based on a hybrid 
multilevel nested-dissection and multiple minimum degree algorithm (Karypis & Kumar; 
1999). Then, the dependency graph which describes the order in which the matrix can be 
factored is estimated as well as the memory required to perform the subsequent numerical 
factorization. The second task is the numerical factorization. The third task is the solution 
phase performed by forward and backward substitutions. During the solution phase, 
multiple-shot solutions can be computed simultaneously from the LU factors taking 
advantage of threaded BLAS3 (Basic Linear Algebra Subprograms) library and are either 
assembled on the host or kept distributed on the processors for subsequent parallel 
computations. 
We performed the factorization and the solutions phases in complex arithmetic single 
precision. To reduce the condition number of the matrix, a row and column scaling is 
applied in MUMPS before factorization. The sparsity of the matrix and suitable equilibration 
have made single precision factorization accurate enough so far for the 2D and 3D problems 
we tackled. If single precision factorization would be considered not accurate enough for 
very large problems, an alternative approach to double precision factorization may be the 
postprocessing of the solution by a simple and fast iterative refinement performed in double 
precision (Demmel (1997), pages 60-61 and Langou et al. (2006); Kurzak & Dongarra (2006)). 
The main two bottlenecks of sparse direct solver is the time and memory complexity and the 
limited scalability of the LU decomposition. By complexity is meant the increase of the 
computational cost (either in terms of elapsed time or memory) of an algorithm with the size 
of the problem, while scalability describes the ability of a given algorithm to use an 
increasing number of processors. The theoretical memory and time complexity of the LU 
decomposition for a sparse matrix, the pattern of which is shown in Figure 2, is O(N4) and 
O(N6), respectively, where N is the dimension of a 3D cubic N3 grid. 
We estimated the observed memory complexity and scalability of the LU factorization by 
means of numerical experience. The simulations were performed on the SGI ALTIX ICE 
supercomputer of the computer center CINES (France). Nodes are composed of two quad-
core INTEL processors E5472. Each node has 30 Gbytes of useful memory. We used two MPI 
process per node and four threads per MPI process. In order to estimate the memory 
complexity, we performed simulations on cubic models of increasing dimension with PML 
absorbing boundary conditions along the 6 sides of the model. The medium is homogeneous 
and the source is on the middle of the grid. Figure 6a shows the memory required to store 
the complex-valued LU factors as a function of N. Normalization of this curve by the real 
memory complexity will lead to a horizontal line. We found an observed memory 
complexity of O(Log2(N)N3.9) (Figure 6b) which is consistent with the theoretical one. In 
order to assess the scalability of the LU factorization, we consider a computational FD grid 
of dimensions 177 x 107 x 62 corresponding to 1.17 millions of unknowns. The size of the 
grid corresponds to a real subsurface target for oil exploration at low frequency (3.5 Hz). We 
computed a series of LU factorization using an increasing number of processors Np, starting 
with 

refpN  = 2. The elapsed time of the LU factorization (TLU) and the parallelism efficiency 
(TLU(

refpN ) × 
refpN  /TLU(Np) × Np) are shown in Figure 6(c-d). The efficiency drops rapidly 

as the number of processors increased, down to a value of 0.5 for NP = 32 (Figure 6d). This 
clearly indicates that the most suitable platform for sparse direct solver should be composed 
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of a limited number of nodes with a large amount of shared memory. The efficiency of the 
multi-r.h.s solution phase is significantly improved  by using multithreaded BLAS3 library. 
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Fig. 6. (a-b) Memory complexity of LU factorization. (a) Memory in Gbytes required for 
storage of LU factors. (b) Memory required for storage of LU factors divided by Log2N.N3.9. 
N denotes the dimension of a 3D N3

 grid. The largest simulation for N = 207 corresponds to 
8.87 millions of unknowns. (c-d) Scalability analysis of LU factorization. (c) Elapsed time for 
LU factorization versus the number of MPI processes. (d) Efficiency. 

3.7 Numerical examples 
We present acoustic wave modelling in two realistic 3D synthetic velocity models, the 
SEG/EAGE overthrust and salt models, developed by the oil exploration community to 
assess seismic modelling and imaging methods (Aminzadeh et al.; 1997). The simulation 
was performed on the SGI ALTIX ICE supercomputer just described. 

3.7.1 3D EAGE/SEG overthrust model 

The 3D SEG/EAGE Overthrust model is a constant density onshore acoustic model covering 
an area of 20 km × 20 km × 4.65 km (Aminzadeh et al.; 1997)(Figure 7a). From a geological 
viewpoint, it represents a complex thrusted sedimentary succession constructed on top of a 
structurally decoupled extensional and rift basement block. The overthrust model is 
discretized with 25 m cubic cells, representing an uniform mesh of 801 × 801 × 187 nodes. 
The minimum and maximum velocities in the Overthrust model are 2.2 and 6.0 km/s 
respectively. We present the results of a simulation performed with the mixed-grid FD 
method (referred to as FDFD in the following) for a frequency of 7 Hz and for a source 
located at x=2.4 km, y=2.4 km and z=0.15 km. The model was resampled with a grid interval 
of 75 m that corresponds to four grid points per minimum wavelength. The size of the 
resampled FD grid is 266 x 266 x 62. PML layers of 8 grid points were added along the 6 
sides of the 3D FD grid. This leads to 6.2 millions of pressure unknowns. For the simulation, 
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we used the weights of the mixed-grid stencil obtained for Gm = 4, 6, 8, 10. These weights 
provided slightly more accurate results than the weights obtained for Gm = 4, in particular 
for waves recorded at long source-receiver offsets. The 7-Hz monochromatic wavefield 
computed with the FDFD method is compared with that computed with a classic O(Δt2,Δx4) 
staggered-grid FD time-domain (FDTD) method where the monochromatic wavefield is 
integrated by discrete Fourier transform within the loop over time steps (Sirgue et al.; 2008) 
(Figure 7). 
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Fig. 7. (a) Overthrust velocity model. (b-c) 7-Hz monochromatic wavefield (real part) 
computed with the FDFD (b) and FDTD (c) methods.(d) Direct comparison between FDFD 
(gray) and FDTD (black) solutions. The receiver line in the dip direction is: (top) at 0.15-km 
depth and at 2.4 km in the cross direction. The amplitudes were corrected for 3D 
geometrical spreading; (bottom) at 2.5-km depth and at 15 km in the cross direction. 
 

We used the same spatial FD grid for the FDTD and FDFD simulations. The simulation 
length was 15 s in the FDTD modelling. We obtain a good agreement between the two 
solutions (Figure 7d). The statistics of the FDFD and FDTD simulations are outlined in Table 
2. The FDFD simulation was performed on 32 MPI processes with 2 threads and 15 Gbytes 
of memory per MPI process. The total memory required by the LU decomposition of the 
impedance matrix was 260 Gbytes. The elapsed time for LU decomposition was 1822 s and 
the elapsed time for one r.h.s was 0.97 s. Of note, we processed efficiently groups of 16 
sources in parallel during the solution step by taking advantage of the multi-rhs 
functionality of MUMPS and the threaded BLAS3 library. The elapsed time for the FDTD 
simulation was 352 s on 4 processors. Of note, C-PML absorbing boundary conditions were 
implemented in the full model during FDTD modelling to mimic attenuation effects   
 

www.intechopen.com



Thank You for previewing this eBook 
You can read the full version of this eBook in different formats: 

 HTML (Free /Available to everyone) 
 

 PDF / TXT (Available to V.I.P. members. Free Standard members can 
access up to 5 PDF/TXT eBooks per month each month) 
 

 Epub & Mobipocket (Exclusive to V.I.P. members) 

To download this full book, simply select the format you desire below 

 

 

 

http://www.free-ebooks.net/

