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Preface

This is the latest draft of notes I have used for the graduate course Communication Network Analy-
sis, offered by the Department of Electrical and Computer Engineering at the University of Illinois
at Urbana-Champaign. The notes describe many of the most popular analytical techniques for
design and analysis of computer communication networks, with an emphasis on performance issues
such as delay, blocking, and resource allocation. Topics that are not covered in the notes include
the Internet protocols (at least not explicitly), simulation techniques and simulation packages, and
some of the mathematical proofs. These are covered in other books and courses.

The topics of these notes form a basis for understanding the literature on performance issues
in networks, including the Internet. Specific topics include

• The basic and intermediate theory of queueing systems, along with stability criteria based on
drift analysis and fluid models

• The notion of effective bandwidth, in which a constant bit rate equivalent is given for a bursty
data stream in a given context

• An introduction to the calculus of deterministic constraints on traffic flows

• The use of penalty and barrier functions in optimization, and the natural extension to the use
of utility functions and prices in the formulation of dynamic routing and congestion control
problems

• Some topics related to performance analysis in wireless networks, including coverage of basic
multiple access techniques, and transmission scheduling

• The basics of dynamic programming, introduced in the context of a simple queueing control
problem

• The analysis of blocking and the reduced load fixed point approximation for circuit switched
networks.

Students are assumed to have already had a course on computer communication networks, al-
though the material in such a course is more to provide motivation for the material in these notes,
than to provide understanding of the mathematics. In addition, since probability is used exten-
sively, students in the class are assumed to have previously had two courses in probability. Some
prior exposure to the theory of Lagrange multipliers for constrained optimization and nonlinear
optimization algorithms is desirable, but not necessary.

I’m grateful to students and colleagues for suggestions and corrections, and am always eager
for more. Bruce Hajek, December 2006

1



2



Chapter 1

Countable State Markov Processes

1.1 Example of a Markov model

Consider a two-stage pipeline as pictured in Figure 1.1. Some assumptions about it will be made
in order to model it as a simple discrete time Markov process, without any pretension of modeling
a particular real life system. Each stage has a single buffer. Normalize time so that in one unit
of time a packet can make a single transition. Call the time interval between k and k + 1 the kth
“time slot,” and assume that the pipeline evolves in the following way during a given slot.

If at the beginning of the slot, there are no packets in stage one, then a new packet arrives to stage
one with probability a, independently of the past history of the pipeline and of the outcome
at state two.

If at the beginning of the slot, there is a packet in stage one and no packet in stage two, then the
packet is transfered to stage two with probability d1.

If at the beginning of the slot, there is a packet in stage two, then the packet departs from the
stage and leaves the system with probability d2, independently of the state or outcome of
stage one.

These assumptions lead us to model the pipeline as a discrete-time Markov process with the
state space S = {00, 01, 10, 11}, transition probability diagram shown in Figure 1.2 (using the
notation x̄ = 1− x) and one-step transition probability matrix P given by

P =


ā 0 a 0

ād2 ād̄2 ad2 ad̄2

0 d1 d̄1 0
0 0 d2 d̄2



a dd1 2

Figure 1.1: A two-stage pipeline
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Figure 1.2: One-step transition probability diagram for example.

The rows of P are probability vectors. (In these notes, probability vectors are always taken to
be row vectors, and more often than not, they are referred to as probability distributions.). For
example, the first row is the probability distribution of the state at the end of a slot, given that
the state is 00 at the beginning of a slot. Now that the model is specified, let us determine the
throughput rate of the pipeline.

The equilibrium probability distribution π = (π00, π01, π10, π11) is the probability vector satis-
fying the linear equation π = πP . Once π is found, the throughput rate η can be computed as
follows. It is defined to be the rate (averaged over a long time) that packets transit the pipeline.
Since at most two packets can be in the pipeline at a time, the following three quantities are all
clearly the same, and can be taken to be the throughput rate.

The rate of arrivals to stage one

The rate of departures from stage one (or rate of arrivals to stage two)

The rate of departures from stage two

Focus on the first of these three quantities. Equating long term averages with statistical averages
yields

η = P [an arrival at stage 1]
= P [an arrival at stage 1|stage 1 empty at slot beginning]P [stage 1 empty at slot beginning]
= a(π00 + π01).

Similarly, by focusing on departures from stage 1, obtain η = d1π10. Finally, by focusing on
departures from stage 2, obtain η = d2(π01 + π11). These three expressions for η must agree.

Consider the numerical example a = d1 = d2 = 0.5. The equation π = πP yields that π is
proportional to the vector (1, 2, 3, 1). Applying the fact that π is a probability distribution yields
that π = (1/7, 2/7, 3/7, 1/7). Therefore η = 3/14 = 0.214 . . ..

By way of comparison, consider another system with only a single stage, containing a single
buffer. In each slot, if the buffer is empty at the beginning of a slot an arrival occurs with probability
a, and if the buffer has a packet at the beginning of a slot it departs with probability d. Simultaneous
arrival and departure is not allowed. Then S = {0, 1}, π = (d/(a+d), a/(a+d)) and the throughput
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rate is ad/(a+d). The two-stage pipeline with d2 = 1 is essentially the same as the one-stage system.
In case a = d = 0.5, the throughput rate of the single stage system is 0.25, which as expected is
somewhat greater than that of the two-stage pipeline.

1.2 Definition, Notation and Properties

Having given an example of a discrete state Markov process, we now digress and give the formal
definitions and some of the properties of Markov processes. Let T be a subset of the real numbers
R and let S be a finite or countably infinite set. A collection of S–valued random variables (X(t) :
t ∈ T) is a discrete-state Markov process with state space S if

P [X(tn+1) = in+1|X(tn) = in, . . . , X(t1) = i1] = P [X(tn+1) = in+1|X(tn) = in] (1.1)

whenever 
t1 < t2 < . . . < tn+1 are in T,
ii, i2, ..., in+1 are in S, and
P [X(tn) = in, . . . , X(t1) = i1] > 0.

(1.2)

Set pij(s, t) = P [X(t) = j|X(s) = i] and πi(t) = P [X(t) = i]. The probability distribution
π(t) = (πi(t) : i ∈ S) should be thought of as a row vector, and can be written as one once S
is ordered. Similarly, H(s, t) defined by H(s, t) = (pij(s, t) : i, j ∈ S) should be thought of as a
matrix. Let e denote the column vector with all ones, indexed by S. Since π(t) and the rows of
H(s, t) are probability vectors for s, t ∈ T and s ≤ t, it follows that π(t)e = 1 and, H(s, t)e = e.

Next observe that the marginal distributions π(t) and the transition probabilities pij(s, t) de-
termine all the finite dimensional distributions of the Markov process. Indeed, given{

t1 < t2 < . . . < tn in T,
ii, i2, ..., in ∈ S (1.3)

one writes

P [X(t1) = i1, . . . , X(tn) = in] =
P [X(t1) = i1, . . . , X(tn−1) = in−1]P [X(tn) = in|X(t1) = i1, . . . , X(tn−1) = in−1]

= P [X(t1) = i1, . . . , X(tn−1) = in−1]pin−1in(tn−1, tn)

Application of this operation n− 2 more times yields that

P [X(t1) = i1, X(t2) = i2, . . . , X(tn) = in] = πi1(t1)pi1i2(t1, t2) . . . pin−1in(tn−1, tn), (1.4)

which shows that the finite dimensional distributions of X are indeed determined by (π(t)) and
(pij(s, t)). From this and the definition of conditional probabilities it follows by straight substitution
that

P [X(tj) = ij , for 1 ≤ j ≤ n + l|X(tn) = in] = (1.5)
P [X(tj) = ij , for 1 ≤ j ≤ n|X(tn) = in]P [X(tj) = ij , for n ≤ j ≤ n + l|X(tn) = in]

whenever P [X(tn) = in] > 0. Property (1.5) is equivalent to the Markov property. Note in addition
that it has no preferred direction of time, simply stating that the past and future are conditionally
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independent given the present. It follows that if X is a Markov process, the time reversal of X
defined by X̃(t) = X(−t) is also a Markov process.

A Markov process is time homogeneous if pij(s, t) depends on s and t only through t − s. In
that case we write pij(t− s) instead of pij(s, t), and Hij(t− s) instead of Hij(s, t).

Recall that a random process is stationary if its finite dimensional distributions are invariant
with respect to translation in time. Referring to (1.4), we see that a time-homogeneous Markov
process is stationary if and only if its one dimensional distributions π(t) do not depend on t. If, in
our example of a two-stage pipeline, it is assumed that the pipeline is empty at time zero and that
a 6= 0, then the process is not stationary (since π(0) = (1, 0, 0, 0) 6= π(1) = (1 − a, 0, a, 0)), even
though it is time homogeneous. On the other hand, a Markov random process that is stationary is
time homogeneous.

Computing the distribution of X(t) by conditioning on the value of X(s) yields that πj(t) =∑
i P [X(s) = i,X(t) = j] =

∑
i πi(s)pij(s, t), which in matrix form yields that π(t) = π(s)H(s, t)

for s, t ∈ T, s ≤ t. Similarly, given s < τ < t, computing the conditional distribution of X(t) given
X(s) by conditioning on the value of X(τ) yields

H(s, t) = H(s, τ)H(τ, t) s, τ, t ∈ T, s < τ < t. (1.6)

The relations (1.6) are known as the Chapman-Kolmogorov equations.
If the Markov process is time-homogeneous, then π(s + τ) = π(s)H(τ) for s, s + τ ∈ T and

τ ≥ 0. A probability distribution π is called an equilibrium (or invariant) distribution if πH(τ) = π
for all τ ≥ 0.

Repeated application of the Chapman-Kolmogorov equations yields that pij(s, t) can be ex-
pressed in terms of transition probabilities for s and t close together. For example, consider
Markov processes with index set the integers. Then H(n, k + 1) = H(n, k)P (k) for n ≤ k, where
P (k) = H(k, k + 1) is the one-step transition probability matrix. Fixing n and using forward re-
cursion starting with H(n, n) = I, H(n, n + 1) = P (n), H(n, n + 2) = P (n)P (n + 1), and so forth
yields

H(n, l) = P (n)P (n + 1) · · ·P (l − 1)

In particular, if the process is time-homogeneous then H(k) = P k for all k for some matrix P , and
π(l) = P l−kπ(k) for l ≥ k. In this case a probability distribution π is an equilibrium distribution
if and only if πP = π.

In the next section, processes indexed by the real line are considered. Such a process can be
described in terms of p(s, t) with t− s arbitrarily small. By saving only a linearization, the concept
of generator matrix arises naturally.

1.3 Pure-Jump, Time-Homogeneous Markov Processes

Let S be a finite or countably infinite set, and let 4 6∈ S. A pure-jump function is a function
x : R+ → S ∪ {4} such that there is a sequence of times, 0 = τ0 < τ1 < . . . , and a sequence of
states, s0, s1, . . . with si ∈ S, and si 6= si+1, i ≥ 0, so that

x(t) =
{

si if τi ≤ t < τi+1 i ≥ 0
4 if t ≥ τ∗

(1.7)

where τ∗ = limi→∞ τi. If τ∗ is finite it is said to be the explosion time of the function x. The
example corresponding to S = {0, 1, . . .}, τi = i/(i + 1) and si = i is pictured in Fig. 1.3. Note
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Figure 1.3: Sample pure-jump function with an explosion time
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Figure 1.4: Transition rate diagram for a continuous time Markov process

that τ∗ = 1 for this example. A pure-jump Markov process (Xt : t ≥ 0) is a Markov process such
that, with probability one, its sample paths are pure-jump functions.

Let Q = (qij : i, j ∈ S) be such that

qij ≥ 0 i, j ∈ S, i 6= j
qii = −

∑
j∈S,j 6=i qij i ∈ S.

(1.8)

An example for state space S = {1, 2, 3} is

Q =

 −1 0.5 0.5
1 −2 1
0 1 −1

 ,

which can be represented by the transition rate diagram shown in Figure 1.4. A pure-jump, time-
homogeneous Markov process X has generator matrix Q if

lim
h↘0

(pij(h)− I{i=j})/h = qij i, j ∈ S (1.9)

or equivalently
pij(h) = I{i=j} + hqij + o(h) i, j ∈ S (1.10)

where o(h) represents a quantity such that limh→0 o(h)/h = 0.

7



For the example this means that the transition probability matrix for a time interval of duration
h is given by  1− h 0.5h 0.5h

h 1− 2h h
0 h 1− h

+

 o(h) o(h) o(h)
o(h) o(h) o(h)
o(h) o(h) o(h)


The first term is a stochastic matrix, owing to the assumptions on the generator matrix Q.

Proposition 1.3.1 Given a matrix Q satisfying (1.8), and a probability distribution π(0) = (πi(0) :
i ∈ S), there is a pure-jump, time-homogeneous Markov process with generator matrix Q and initial
distribution π(0). The finite-dimensional distributions of the process are uniquely determined by
π(0) and Q.

The proposition can be proved by appealing to the space-time properties in the next section. In
some cases it can also be proved by considering the forward-differential evolution equations for π(t),
which are derived next. Fix t > 0 and let h be a small positive number. The Chapman-Kolmogorov
equations imply that

πj(t + h)− πj(t)
h

=
∑
i∈S

πi(t)
(

pij(h)− I{i=j}

h

)
. (1.11)

Consider letting h tend to zero. If the limit in (1.9) is uniform in i for j fixed, then the limit and
summation on the right side of (1.11) can be interchanged to yield the forward-differential evolution
equation:

∂πj(t)
∂t

=
∑
i∈S

πi(t)qij (1.12)

or ∂π(t)
∂t = π(t)Q. This equation, known as the Kolmogorov forward equation, can be rewritten as

∂πj(t)
∂t

=
∑

i∈S,i6=j

πi(t)qij −
∑

i∈S,i6=j

πj(t)qji, (1.13)

which states that the rate change of the probability of being at state j is the rate of “probability
flow” into state j minus the rate of probability flow out of state j.

1.4 Space-Time Structure

Let (Xk : k ∈ Z+) be a time-homogeneous Markov process with one-step transition probability
matrix P . Let Tk denote the time that elapses between the kth and k + 1th jumps of X, and let
XJ(k) denote the state after k jumps. See Fig. 1.5 for illustration. More precisely, the holding
times are defined by

T0 = min{t ≥ 0 : X(t) 6= X(0)} (1.14)
Tk = min{t ≥ 0 : X(T0 + . . . + Tk−1 + t) 6= X(T0 + . . . + Tk−1)} (1.15)

and the jump process XJ = (XJ(k) : k ≥ 0) is defined by

XJ(0) = X(0) and XJ(k) = X(T0 + . . . + Tk−1) (1.16)

8



! !
0 1 2!

X  (3)  

X(k)

J

k

X  (1)  
X  (2)  J

J
s
s
s1
2
3

Figure 1.5: Illustration of jump process and holding times.

Clearly the holding times and jump process contain all the information needed to construct X, and
vice versa. Thus, the following description of the joint distribution of the holding times and the
jump process characterizes the distribution of X.

Proposition 1.4.1 Let X = (X(k) : k ∈ Z+) be a time-homogeneous Markov process with one-step
transition probability matrix P .

(a) The jump process XJ is itself a time-homogeneous Markov process, and its one-step transition
probabilities are given by pJ

ij = pij/(1− pii) for i 6= j, and pJ
ii = 0, i, j ∈ S.

(b) Given X(0), XJ(1) is conditionally independent of T0.

(c) Given (XJ(0), . . . , XJ(n)) = (j0, . . . , jn), the variables T0, . . . , Tn are conditionally indepen-
dent, and the conditional distribution of Tl is geometric with parameter pjljl

:

P [Tl = k|XJ(0) = j0, . . . , XJ(n) = jn] = pk−1
jljl

(1− pjljl
) 0 ≤ l ≤ n, k ≥ 1.

Proof. Observe that if X(0) = i, then

{T0 = k, XJ(1) = j} = {X(1) = i, X(2) = i, . . . , X(k − 1) = i, X(k) = j},

so
P [T0 = k, XJ(1) = j|X(0) = i] = pk−1

ii pij = [(1− pii)pk−1
ii ]pJ

ij (1.17)

Because for i fixed the last expression in (1.17) displays the product of two probability distributions,
conclude that given X(0) = i,

T0 has distribution ((1− pii)pk−1
ii : k ≥ 1), the geometric distribution of mean 1/(1− pii)

XJ(1) has distribution (pJ
ij : j ∈ S) (i fixed)

T0 and XJ(1) are independent

More generally, check that

P [XJ(1) = j1, . . . , X
J(n) = jn, To = k0, . . . , Tn = kn|XJ(0) = i] =

pJ
ij1p

J
j1j2 . . . pJ

jn−1jn

n∏
l=0

(pkl−1
jljl

(1− pjljl
))
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Figure 1.6: Illustration of sampling of a pure-jump function

This establishes the proposition.

Next we consider the space-time structure of time-homogeneous continuous-time pure-jump
Markov processes. Essentially the only difference between the discrete- and continuous-time Markov
processes is that the holding times for the continuous-time processes are exponentially distributed
rather than geometrically distributed. Indeed, define the holding times Tk, k ≥ 0 and the jump
process XJ using (1.14)-(1.16) as before.

Proposition 1.4.2 Let X = (X(t) : t ∈ R+) be a time-homogeneous, pure-jump Markov process
with generator matrix Q. Then

(a) The jump process XJ is a discrete-time, time-homogeneous Markov process, and its one-step
transition probabilities are given by

pJ
ij =

{
−qij/qii for i 6= j
0 for i = j

(1.18)

(b) Given X(0), XJ(1) is conditionally independent of T0.

(c) Given XJ(0) = j0, . . . , XJ(n) = jn, the variables T0, . . . , Tn are conditionally independent,
and the conditional distribution of Tl is exponential with parameter −qjljl

:

P [Tl ≥ c|XJ(0) = j0, . . . , XJ(n) = jn] = exp(cqjljl
) 0 ≤ l ≤ n.

Proof. Fix h > 0 and define the “sampled” process X(h) by X(h)(k) = X(hk) for k ≥ 0. See
Fig. 1.6. Then X(h) is a discrete time Markov process with one-step transition probabilities pij(h)
(the transition probabilities for the original process for an interval of length h). Let (T (h)

k : k ≥ 0)
denote the sequence of holding times and (XJ,h(k) : k ≥ 0) the jump process for the process X(h).

The assumption that with probability one the sample paths of X are pure-jump functions,
implies that with probability one:

lim
h→0

(XJ,h(0), XJ,h(1), . . . , XJ,h(n), hT
(h)
0 , hT

(h)
1 , . . . , hT (h)

n ) =

(XJ(0), XJ(1), . . . , XJ(n), T0, T1, . . . , Tn) (1.19)

10
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Figure 1.7: Transition rate diagram of a birth-death process

Since convergence with probability one implies convergence in distribution, the goal of identifying
the distribution of the random vector on the righthand side of (1.19) can be accomplished by
identifying the limit of the distribution of the vector on the left.

First, the limiting distribution of the process XJ,h is identified. Since X(h) has one-step transi-
tion probabilities pij(h), the formula for the jump process probabilities for discrete-time processes
(see Proposition 1.4.1, part a) yields that the one step transition probabilities pJ,h

ij for X(J,h) are
given by

pJ,h
ij =

pij(h)
1− pii(h)

=
pij(h)/h

(1− pii(h))/h
→ qij

−qii
as h → 0 (1.20)

for i 6= j, where the limit indicated in (1.20) follows from the definition (1.9) of the generator matrix
Q. Thus, the limiting distribution of XJ,h is that of a Markov process with one-step transition
probabilities given by (1.18), establishing part (a) of the proposition. The conditional independence
properties stated in (b) and (c) of the proposition follow in the limit from the corresponding
properties for the jump process XJ,h guaranteed by Proposition 1.4.1. Finally, since log(1 + θ) =
θ + o(θ) by Taylor’s formula, we have for all c ≥ 0 that

P [hT
(h)
l > c|XJ,h(0) = j0, . . . , X

J,h = jn] = (pjljl
(h))bc/hc

= exp(bc/hc log(pjljl
(h)))

= exp(bc/hc(qjljl
h + o(h)))

→ exp(qjljl
c) as h → 0

which establishes the remaining part of (c), and the proposition is proved.

Birth-Death Processes A useful class of countable state Markov processes is the set of
birth-death processes. A (continuous time) birth-death process with parameters (λ0, λ2, . . .) and
(µ1, µ2, . . .) (also set λ−1 = µ0 = 0) is a pure-jump Markov process with state space S = Z+ and
generator matrix Q defined by qkk+1 = λk, qkk = −(µk +λk), and qkk−1 = µk for k ≥ 0, and qij = 0
if |i− j| ≥ 2. The transition rate diagram is shown in Fig. (1.7). The space-time structure of such
a process is as follows. Given the process is in state k at time t, the next state visited is k + 1 with
probability λk/(λk + µk) and k − 1 with probability µk/(λk + µk). The holding time of state k is
exponential with parameter λk + µk.

11



The space-time structure just described can be used to show that the limit in (1.9) is uniform
in i for j fixed, so that the Kolmogorov forward equations are satisfied. These equations are:

∂πk(t)
∂t

= λk−1πk−1(t)− (λ + µ)πk(t) + µk+1πk+1(t) (1.21)

1.5 Poisson Processes

A Poisson process with rate λ is a birth-death process N = (N(t) : t ≥ 0) with initial distribution
P [N(0) = 0] = 1, birth rates λk = λ for all k and death rates µk = 0 for all k. The space-time
structure is particularly simple. The jump process NJ is deterministic and is given by NJ(k) = k.
Therefore the holding times are not only conditionally independent given NJ , they are independent
and each is exponentially distributed with parameter λ.

Let us calculate πj(t) = P [N(t) = j]. The Kolmogorov forward equation for k = 0 is ∂π0/∂t =
−λπ0, from which we deduce that π0(t) = exp(−λt). Next the equation for π1 is ∂π1/∂t =
λ exp(−λt)−λπ1(t) which can be solved to yield π1(t) = (λt) exp(−λt). Continuing by induction on
k, verify that πk(t) = (λt)k exp(−λt)/k!, so that N(t) is a Poisson random variable with parameter
k.

It is instructive to solve the Kolmogorov equations by another method, namely the z-transform
method, since it works for some more complex Markov processes as well. For convenience, set
π−1(t) = 0 for all t. Then the Kolmogorov equations for π become ∂πk

∂t = λπk−1−λπk. Multiplying
each side of this equation by zk, summing over k, and interchanging the order of summation
and differentiation, yields that the z transform P ∗(z, t) of π(t) satisfies ∂P ∗(z,t)

∂t = (λz − λ)P ∗(z, t).
Solving this with the initial condition P ∗(z, 0) = 1 yields that P ∗(z, t) = exp((λz−λ)t). Expanding
exp(λzt) into powers of z identifies (λt)k exp(−λt)/k! as the coefficient of zn in P ∗(z, t).

In general, for i fixed, pij(t) is determined by the same equations but with the initial distribution
pij(0) = I{i=j}. The resulting solution is pij(t) = πj−i(t) for j ≥ i and pij(t) = 0 otherwise. Thus
for t0 < t1 < . . . < td = s < t,

P [N(t)−N(s) = l|N(t0) = i0, . . . , N(td−1) = id−1, N(s) = i]
= P [N(t) = i + l|N(s) = i]
= [λ(t− s)]l exp(−λ(t− s))/l!

Conclude that N(t)−N(s) is a Poisson random variable with mean λ(t− s). Furthermore, N(t)−
N(s) is independent of (N(u) : u ≤ s), which implies that the increments N(t1) −N(t0), N(t2) −
N(t1), N(t3)−N(t2), . . . are mutually independent whenever 0 ≤ t0 < t1 < . . ..

Turning to another characterization, fix T > 0 and λ > 0, let U1, U2, . . . be uniformly distributed
on the interval [0, T ], and let K be a Poisson random variable with mean λT . Finally, define the
random process (Ñ(t) : 0 ≤ t ≤ T ) by

Ñ(t) =
K∑

i=1

I{t≥Ui}. (1.22)

That is, for 0 ≤ t ≤ T , Ñ(t) is the number of the first K uniform random variables located in
[0, t]. We claim that Ñ has the same distribution as a Poisson random process N with parameter λ,
restricted to the interval [0, T ]. To verify this claim, it suffices to check that the increments of the two
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