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1. Introduction

Since the first fuzzy controller was presented by Mamdani in 1974, different studies devoted
to the theory of fuzzy control have shown that the area of development of fuzzy control
algorithms has been the most active area of research in the field of fuzzy logic in the last
years. From 80°s, fuzzy logic has performed a vital function in the advance of practical and
simple solutions for a great diversity of applications in engineering and science. Due to its
great importance in navigation systems, flight control, satellite control, speed control of
missiles and so on, the area of fuzzy logic has become an important integral part of
industrial and manufacturing processes.

Some fuzzy control applications to industrial processes have produced results superior to its
equivalent obtained by classical control systems. The domain of these applications has
experienced serious limitations when expanding it to more complex systems, because a
complete theory does not yet exist for determining the performance of the systems when
there is a change in its parameters or variables.

When some of these applications are designed for more complex systems, the number of
fuzzy rules controlling the process is exponentially increased with the number of variables
related to the system. For example, if there are n variables and m possible linguistic labels
for each variable, m" fuzzy rules would be needed to construct a complete fuzzy controller.
As the number of variables n increases, the rule base quickly overloads the memory of any
computing device, causing difficulties in the implementation and application of the fuzzy
controller.

Sensory fusion and hierarchical methods are studied in an attempt to reduce the size of the
inference engine for large-scale systems. The combination of these methods reduces more
considerably the number of rules than these methods separately. However, the adequate
fusion-hierarchical parameters should be estimated. In traditional techniques much reliance
has to be put on the experience of the system designer in order to find a good set of
parameters (Jamshidi, 1997).

Genetic algorithms (GA) are an appropriate technique to find parameters in a large search
space. They have shown efficient and reliable results in solving optimization problems. For
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these reasons, in this work we present a method that has proved to estimate parameters for
the rule base reduction method using GAs.

The chapter is organized as follows. Section 2 summarizes the principles of rule base
reduction methods. In Section 3, the sensory-fusion method, the hierarchical method and the
combination of these methods are described. Section 4 proposes the GA which allows us to
automatically find the parameters in order to improve the complex fuzzy control system
performance. Inverted pendulum and beam-and-ball complex control systems are described
and results are presented in Section 5. Finally, Section 6 concludes this chapter.

2. Complex Fuzzy Control Systems

A system may be called large-scale or complex, if its order is too high and its model is
nonlinear, interconnected with uncertain information flow such that classical techniques of
control theory cannot easily handle the system (Jamshidi, 1997). As the complexity of a
system increases, it becomes more difficult and eventually impossible to make a precise
statement about its behavior. Fuzzy logic is used in system control and analysis design,
because it shortens the time for engineering development and sometimes, in the case of
highly complex systems, is the only way to solve the problem.

Principle components of a fuzzy controller are: a process of coding numerical values to
fuzzy linguistic labels (fuzzification), inference engine where the fuzzy rules (expert
operator’s experience) are implemented and decoding as the output fuzzy decision variables
(defuzzification). Fuzzy control can be implemented by putting the above three stages on a
computer device (chip, personal computer, etc.).

From a control theoretical point of view, fuzzy logic has been intermixed with all the
important aspects of systems theory - modeling, identification, analysis, stability, synthesis,
filtering, and estimation. One of the first complex system in which fuzzy control has been
successfully applied is cement kilns, which began in Denmark. Today, most of the world’s
cement kilns are using a fuzzy expert system. However, the application of fuzzy control to
large-scale complex systems is not, by no means, trouble-free. For such systems the number
of the fuzzy IF-THEN rules as the number of sensory variables increases very quickly to an
unmanageable level.

When a fuzzy controller is designed for a complex system, often several measurable output
and actuating input variables are involved. In addition, each variable is represented by a
finite number m of linguistic labels which would indicate that the total number of rules is
equal to m", where 1 is the number of system variables. As an example, consider n = 4 and
m =5 than the total number of fuzzy rules will be k = mm = 5¢ = 625. If there were five
variables, then we would have k = 3125. From the above simple example, it is clear that the
application of fuzzy control to any system of significant size would result in a
dimensionality explosion.

3. Rule Base Reduction Methods

One of the most important applications of fuzzy set theory has been in the area of fuzzy rule
based system. Rule base reduction is an important issue in fuzzy system design, especially
for real time Fuzzy Logic Controller (FLC) design. Rule base size can be easily controlled in
most fuzzy modeling and identification techniques.
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The size of the rule base of complex fuzzy control systems grows exponentially with the
number of input variables. Due to that fact, the reduction of the rule base is a very important
issue for the design of this kind of controllers. Several rule base reduction methods have
been developed to reduce the rule base size. For instance, fuzzy clustering is considered to
be one of the important techniques for automatic generation of fuzzy rules from numerical
examples. This algorithm maps data points into a given number of clusters (Klawonn, 2003).
The number of cluster centers is the number of rules in the fuzzy system. The rule base size
can be easily controlled through the control of the number of cluster centers. However, for
control applications, often there is not enough data for a designer to extract a complete rule
base for the controller. A designer has to build a generic rule base. A generic rule base
includes all possible combinations of fuzzy input values. The size of the rule base grows
exponentially as the number of controller input variables grows. As the complexity of a
system increases, it becomes more difficult and eventually impossible to make a precise
statement about its behavior.

A simple and probably most effective way to reduce the rule base size is to use Sliding
Mode Control. The motivation of combining Sliding Mode Control and Fuzzy Logic Control
is to reduce the chattering in Sliding Mode Control and enhance robustness in Fuzzy Logic
Control. The combination also results in rule base size reduction. However, this approach
has its disadvantages as the parameters for the switch function have to be selected by an
expert or designed through classical control theory (Hung, 1993).

Anwer (Anwer, 2005) proposed a technique for generation and minimization of the number
of such rules in case of limited data sets. Initial rules for each data pairs are generated and
conflicting rules are merged on the basis of their degree of soundness. The minimization
technique for membership functions differs from other techniques in the sense that two or
more membership functions are not merged but replaced by a new membership function
whose minimum and maximum ranges are the minimum value of the first and maximum of
the last membership function and bisection point of the two or more will be the peak of the
new membership function. This technique can be used as an alternative to develop a model
when available data may not be sufficient to train the model.

A neuro-fuzzy system (Ajith, 2001; Kasabov, 1998; Juang, 1998; Jang, 1993; Halgamuge,
1994 ) is a fuzzy system that uses a learning algorithm derived from, or inspired by, neural
network theory to determine its parameters (fuzzy sets and fuzzy rules) by processing data
samples. Modern neuro-fuzzy systems are usually represented as special multilayer
feedforward neural networks (for example, models like ANFIS (Jang, 1993), FuNe
(Halgamuge, 1994), Fuzzy RuleNet (Tschichold-German, 1994), GARIC (Berenji, 1992),
HyFis (Kim, 1999) or NEFCON (Nauck, 1994) and NEFCLASS (Nauck, 1995)). A
disadvantage of these approaches is that the determination of the number of processing
nodes, the number of layers, and the interconnections among these nodes and layers are still
an art and lack systematic procedures.

Jamshidi (Jamshidi, 1997) proposed to use sensory fusion to reduce a rule base size. Sensor
fusion combines several inputs into one single input. The rule base size is reduced since the
number of inputs is reduced. Also, Jamshidi (Jamshidi, 1997) proposed to use the
combination of hierarchical and sensory fusion methods. The disadvantage of the design of
hierarchical and sensory fused fuzzy controllers is that much reliance has to be put on the
experience of the system designer to establish the needed parameters. To solve this problem,
we automatically estimate the parameters for the hierarchical method using GAs.

www.intechopen.com



478 New Developments in Robotics, Automation and Control

3.1 Sensory Fusion Method

This method consists in combining variables before providing them to input of the fuzzy
controller (Ledeneva, 2006b). These variables are often fused linearly. For example, we want
to fuse two input variables y; and v, (see Figure 1). The fused variable Y will be calculated as
Y = ay; + byo. Here, it is considered that the input variables of the fuzzy controller are
represented by m =5 linguistic labels. Therefore, in this case, the number of rules will be
thus reduced from 25 to 5. As we can observe, more variables has the fuzzy controller, more
reduction can be obtained (see Figure 4).

y1 y1
LN I N O NN
L[| oL >
y2 C y2 A C
o IEC
Number of rules = 25 Number of rules =5

Fig. 1. Rule base reduction of sensory fusion fuzzy controller (when two variables are fused).

As another example, consider that a fuzzy controller has three inputs variables y; , 1> and ys.
The total number of rules will be 125. In this case, we look into combining three variables in
one of these four possible ways:

1. Variables y; and y; are fused in the new variables Y7 and Y>:

Y1 = ay1 + by
Y2=y3

2. Variables y; and ysare fused in the new variables Y; and Y:

Y1 =ay1 + bys
Y2=y»2

3. Variables y; and y;3 are fused in the new variables Y;and Y»:

Y1=ayz + bys
Y>=y1

4. Variables y1, y2 and y3 are fused in the new variable Y:
Y = ay1 + byz +cys

The number of rules will be thus reduced by 125 to 25 if two variables are fused or from 125
to 5 if the three variables are combined.

The reduction of the number of rules is optimal if one can fuse all the input variables in only
one variable associated. In this case, the number of rules is equal to the definite number of
linguistic labels for this variable. But it is obvious that all these variables cannot be fused
arbitrarily, any combination of variables has to be reasoned and explained. In practice only
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two variables are fused: generally the error and the change of error. The fusion can be done
through the following rule

E = ae + bAe (1)

where e and Ae are error and its rate of change, E is the fused variable, and 2 and b found
manually (Jamshidi, 1997).

We want to point out that the manually selection of the parameters a and b convert into
fastidious routine. Below, we describe a new method (Ledeneva, 2006a), which permits to
estimate these parameters automatically.

3.2 Hierarchical Method

In the hierarchical fuzzy control structure from (Ledeneva, 2007a), the first-level rules are
those related to the most important variables and are gathered to form the first-level
hierarchy. The second most important variables, along with the outputs of the first-level, are
chosen as inputs to the second level hierarchy, and so on. Figure 2 shows this hierarchical
rule structure.

IF y1is Ajjand ... and y; is Aj; THEN u; is By
IFy2is Agiand ... and y2 is Ay THEN uz is B> 2)

IF yni+1is Anit and ... and yni+nj is Aning THEN u; is B;

where i, j =1, ..., n; y; are output variables of the system, u; are control variables of the
system, A;; and B; are linguistic labels; = = z i n,<n and nj is the number of j-th level
i j=1

system variables used as inputs.

y1
—>| Level | wifyry2}
1 >

y2 S

______ Setofrules1” |~ """ "°°°°°7°

Level | U2

V3 2 %I

_________________________ UL _____.

Set of rules 2
Level | UL+1
yL L+1 +—>
Set of rules L+1

Fig. 2. Schematic representation of a hierarchical fuzzy controller.

The goal of this hierarchical structure is minimize the number of fuzzy rules from
exponential to linear function. Such rule base reduction implies that each system variable
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provides one parameter to the hierarchical scheme. Currently, the selection of such
parameters is manually done.

3.3 Combination of Methods

The more number of input variables of the fuzzy controller we have, the more it is
interesting to combine the methods presented above with a goal to reduce more number of
rules. We want to quote, as an example, the combination of the sensory fusion method
(section 3.1) and the hierarchical method (section 3.2) for five variables as in Figure 3.
Initially, the variables are fused linearly, as in Figure 1, and then are organized
hierarchically according to a structure similar to that of Figure 2.

V1
ﬁ@\_\ Y;
y2 /C
@ FLC
yi—>| g
= [ ENG
C
;z C \—\ Y,
ys —> Y4 FLC | s
o z
Y (D

e

Number of rules = 3125 Number of rules = 50

Fig. 3. Rule base reduction for the combination of sensory fusion and hierarchical methods
(for n =5and m = 5).

The number of rules and the comparison of the sensory fusion method, the hierarchical
method and the combination of these rule base reduction methods are presented in Table 1
and Figure 4 correspondingly. Take into account that the variables are fused here per pair
and that on each level of the hierarchy one and only one variable is added. The most
significant reduction can be obtained when the sensory fusion and hierarchical methods are
combined (Ledeneva, 2007b).

Method used to reduce
the number of rules The number of variables n > 1
Even Odd
Sensory Fusion
mn/2 m@n+1)/2
Hierarchical
(n-1)-m?
Combination of methods
((n/2)-1)-m2 ((n+1)/2)-1

Table 1. - The number of rules for the different reduction methods.
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4. Genetic Optimization of the Parameters

Firstly, we give some basic definitions of GAs, than we present the proposed method to
estimate the parameters of the sensory fusion method, the hierarchical method, and the
combination of these rule base reduction methods.

600 /G S
§ 500
2 400 / —o—fusion
5 300 / —m— hier
3
c / —e—comb
5 200
< 100
0
3 4 5 6 7 8

Number of variables

Fig. 4. Comparison of various rule base reduction methods with m = 5.

4.1 Step Response Characteristics

A fuzzy control system can be evaluated with the step response characteristics. We consider
the following step response characteristics (see Figure 5):

Overshoot (%) is the amount by which the response signal can exceed the final value. This
amount is specified as a percentage of the range of steps. The range of steps is the difference
between the final value and initial values.

Undershoot (%) is the amount by which the response signal can undershoot the initial
value. This amount is specified as a percentage of the range of steps. The range of steps is
the difference between the final value and initial values.

Settling time is time taken until the response signal settles within a specified region around
the final value. This settling region is defined as the step value plus or minus the specified
percentage of the final value.

Settling (%) is the percentage used in the settling time.

Rising time is time taken for the response signal to reach a specified percentage of the range
of steps. The range of steps is the difference between the final value and initial value.

Rise (%) is the percentage used in the rising time.

4.2 Genetic Algorithms

GA uses the principles of evolution, natural selection, and genetics from natural biological
systems in a computer algorithm to simulate evolution (Goldberg, 1989). Essentially, the
genetic algorithm is an optimization technique that performs a parallel, stochastic, but
directed search to evolve the fittest population. GAs encode a potential solution to a specific
problem on a simple chromosome-like data structure and apply recombination operators to
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these structures so as to preserve critical information. GAs are often viewed as function
optimizers, although the range of problems to which genetic algorithms have been applied
is quite broad. The more common applications of GAs are the solution of optimization
problems, where efficient and reliable results have been shown. That is the reason why we
will use these algorithms to find parameters for the rule base reduction methods.

% Owvershoot
|_- - % Seltling

Final WValue -I
@
=
=
a
E
<L

% Undershoot
Initial Value t'

Rise Time Settling Time Time
Fig. 5. Step response characteristics.

In the early 1970s, John Holland introduced the concept of genetic algorithms. His aim was
to make computers do what nature does. Holland was concerned with algorithms that
manipulate strings of binary digits. Each artificial “chromosome” consists of a number of
“genes” and each gene is represented by 0 or 1:

Nature has an ability to adapt and learn without being told what to do. In other words,
nature finds good chromosomes blindly. GAs do the same. Two mechanisms link a GA to
the problem it is solving: encoding and evaluation. The GA uses a measure of fitness of
individual chromosomes to carry out reproduction. As reproduction takes place, the
crossover operator exchanges parts of two single chromosomes, and the mutation operator
changes the gene value in some randomly chosen location of the chromosome.

4.2 Method for the Estimation of Parameters

The scheme of the proposed method is shown in Figure 5. We have three modules: System
Module, Fuzzy Controller Module, and Genetic Algorithm Module. These three modules
interconnect in two loops: an internal loop to control a system and an external loop to
modify the fusion-hierarchical parameters. The internal loop comprises the fuzzy controller
module and the system module. In other words, this loop represents a closed-loop control
scheme. The external loop is composed of the genetic algorithm module, the fuzzy controller
module, and the system module. The objective of the genetic algorithm module is to
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estimate the fusion-hierarchical parameters of the fuzzy controller through the minimization
of the error between the design specifications and the output of the process.
Below we discuss each module of the proposed method.

Genetic Algorithm
Module
Population 5 ESIg;l
Parameters pectil-
Parameters for cations
estimation <
Fuzzy @
Controlle
Module |

7 System
EN & Module

Fig. 5. Scheme of the proposed method.

4.2.1 Control System Module
The control system is defined as a complex system with p inputs and g outputs:

u=[uy, ... up] ®)
y=1Iyy ..., yal

4.2.2 Fuzzy Controller Module

The fuzzy controller module is represented by the fuzzy controller of reduced complexity
which results after the application of the sensory fusion method, the hierarchical method,
and the combination of these rule base reduction methods correspondingly such that it uses
the combination of the fusion-hierarchical parameters.

Generally, the fuzzy controller is composed of one or several fuzzy controllers (depending
on the number of variables). These controllers are of the Takagi-Sugeno type and each has a
two inputs. The variation of these inputs results from the design of the sensory fusion
method, the hierarchical method, and the combination of these methods; or the output
variables of another fuzzy controller.

For example, let us describe general fuzzy controller with two input variables (see Figure 6)
which are the vector of error ¢=y,; -y and variation of error Ag, where y, is the desirable
system output. Ke=[Kg, ..., ] and KAs=[KAsg, ..., Ag] are the gain input vectors. The
output gain vector is noted as Ku =[Kuy, ..., Kug]. The vector containing the resulting
variables from the fusion module is noted as X =[xy, ..., x4]. So, for this example we have the
output

X; = Kg-& + KAgAg 4)
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wherei=1, ..., 4.
Yd

&

Fuzification
Error l: Method X Inference ;‘E U 5
y Calculation | Ag¢ . Block Defuzification

Fig. 6. General fuzzy controller structure.

4.2.3 Genetic Algorithm Module
Genetic Algorithm Module represents a genetic algorithm that maintains a population of
chromosomes where each chromosome represents a combination of candidate parameters.
This genetic algorithm uses data from the system to evaluate the fitness of each parameter in
the population. The evaluation is done at each time step by simulating out with each
combination of the parameters and forming a fitness function based on the design
specifications which characterize the desired performance of the system. Using this fitness
evaluation, the genetic algorithm propagates parameters into the next generation via the
combination of the genetic operations proposed below. The combination of the parameters
that is the fittest one in the population is used in the sensory fusion fuzzy controller.
This allows the proposed method to evolve automatically the combination of parameters
from generation to generation (i.e., from one time step to the next, but of course multiple
generations could occur between time steps), and hence to tune the combination of the
parameters in response to changes in the system or due to user changes of the specifications
in the fitness function of the GA.
The proposed procedure of estimating the combination of parameters by GA is summarized
as follows:

1. Determine the rule base reduction method and the number of parameters it is

necessary to find.

2. Construct an initial population.

3. Encode each chromosome in the population.

4. Evaluate the fitness value for each chromosome.

5. Reproduce chromosomes according to the fitness value calculated in Step 4.

6. Create offspring and replace parent chromosomes by the offspring through crossover

and mutation.
7. Go to 3 until the maximum number of iterations is reached.

4.2.3.1 Representation

To encode the combination of parameters, chromosomes of length N - B are used, where N is
the number of parameters and B the number of bits which we use to encode the parameters.
To decide how many bits to use for each parameter, we should consider the range of all
possible values for each of them. For example, suppose that the parameters we want to
obtain are positive with one decimal after the dot. To encode all possible values of each
parameter we will use 8 bits. In Figure 7, there is one chromosome, representing the
combination of parameters, which has N =4 parameters with B =8 bits each. So, the total
range of the parameters will be in the interval [0, 256]. To obtain the required precision (one
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decimal after the dot), we multiply the output values of the parameters by 0.1. As a result,
the searching parameters will be in the interval [0, 25.6].

4.2.3.2 Population
The initial population is randomly generated. Its size is fixed and equal to 50 individuals.

N B

a |=15 0[O0 ]O0O]JO]|1T (|1 |1]1

b (=47 JOf[O0Of1T]O0]1T |1 (1]1

c =203 1|1f(0f[O0]1]0(|1]{|1

d |=3 ojojof1y1]11(1]0

Fig. 7. Example of representation of one chromosome (or one combination of parameters)
which has N = 4 parameters with B = 8 bits each.

4.2.3.3 Fitness Function

The genetic algorithm maintains a population of chromosomes. Each chromosome
represents a different combination of parameters. It also uses a fitness measure that
characterizes the closed-loop specifications. Suppose, for instance, that the closed-loop
specifications indicate that the user want, for a step input, a (stable) response with a rise-
time of #, a percent overshoot of s*, and a settling time of t*.. We propose the fitness
function so that it measures how close each individual in the population at time ¢ (i.e., each
parameter candidate) is to meet these specifications. Suppose that f,, s,, and t; denote the
rise-time, the overshoot, and the settling time, respectively, for a given chromosome (we
compute them for a chromosome in the population by performing a simulation of the
closed-loop system with the candidate combination of the parameters and a model of the
system). Given these values, we propose (for each chromosome and every time step)

J = Wi (b = )2+ Wa (S~ )2 + W (6 - €32 @

where w; > 0, i =1, 2, 3, are positive weighting factors. The function | characterizes how well
the candidate combination of the parameters meets the closed-loop specifications; if | =0 it
meets the specifications perfectly. The weighting factors can be used to prioritize the
importance of meeting the different specifications (e.g., a high value of w relative to the
other values indicates that the percent overshoot specification is more important to meet
than the others).

Now, we would like to minimize ], but the genetic algorithm is a maximization routine. To
minimize | with the genetic algorithm, we propose the fitness function

Jres = 1/ J (5)
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Then, after knowing the design specifications of the system, and once we can obtain the step
response characteristics for each chromosome in the population (rise-time, overshoot, and
settling time), the fitness function is calculated in 2 steps:

1. We ask if the results coming from the GA is in the range of the design specifications of
the system. If they are, we go to step 2. Else, the fitness value of this chromosome is set to
1000.

2. The fitness function is defined as described above (equations 4, 5).

4.2.3.4 Genetic Operators

In this section, we determine some genetic operators that we will use below (in Table 4).
Crossover: is a genetic operator that combines two chromosomes (parents) to produce one o
two chromosomes (offspring). The idea behind crossover is that the new chromosome may
be better than both of the parents if it takes the best characteristics from each of the parents.
First, the crossover operator randomly chooses a crossover point where two parent
chromosomes “break”, and then exchanges the chromosome parts after that point with a
user-definable crossover probability. As a result, two new offspring are created (Melanie,
1999). The most common forms of crossover are one-point and two-point.

Mutation: represents a change in the gene. Its role is to provide and guarantee that the
search algorithm is not trapped on a local optimum. The mutation operator uses a mutation
probability denoted as p,, previously set by the user, which is quite small in nature, and it is
kept low for GAs, typically in the range 0.001 and 0.01. According with this probability, the
bit value is changed from 0 to 1 or vice versa (Melanie, 1999).

Elitism: copies the best individual (% of most fit individual) from the actual population to a
new population and the rest of the new population is constructed according to the genetic
algorithm.

Half Uniform Crossover (HUX): In this operator, bits are randomly and independently
exchanged, but exactly half of the bits that differ between parents are swapped (see
Figure 8). The HUX operator (Eshelman, 1991 ; Gwiazda, 2006) ensures that the offspring are
equidistant between the two parents. This serves as a diversity preserving mechanism.
Truncation selection: implies that duplicate individuals are removed from population
(Melanie, 1999).

In roulette selection: parents are selected according to their fitness. The better is the fitness,
the bigger chance to be selected.

Parent A 1101 ]1T]0|1]1
Parent B 010 111 1]0(1T{|O0
* Different Allels * * * 11110} 1]*
x Allels to Interchange x| * ! xl1l11lo0o)1]~*
Offspring A oj1{1111]j]o0}|1]1
Offspring B 1T)1]0{0J11]0}|11]0

Fig. 8. Example of Half Uniform Crossover.
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5. Simulation Results

5.1 Inverted Pendulum System
The inverted pendulum control system (Messner, 1998; Aguilar, 2005; Aguilar, 2007) is used
to test the proposed methods. The objective of this control system is, on one hand, to
maintain the stem of the pendulum in high driving position, on the other hand, to bring the
cart towards a given position x,. The scheme in Figure 9 shows the main components of the
system.
The basic variables are:

— the angular position of the stem 6;

— the angular velocity of the stem Af;

— the horizontal position of cart x;

— the velocity of the cart Ax.
The design specifications of the inverted pendulum system are:

— the objective position of the cart is 30 cm;

— the overshoot of no more than 5 ;

— the settling time of no more than 5 sec.

Fig. 9. Inverted pendulum, where M =1kg - mass of the cart, m =0.1kg - mass of the
pendulum, I =1kg - length to pendulum, F - force applied to the cart, x - cart position
coordinate, 0 - pendulum angle with vertical.

5.1.1 Design of the Sensory Fusion Method
The design of sensory fusion on a fuzzy controller is described in this section. First the
sensory fusion of the input variables is done as follows:

X, =ce+dAe

where a, b, ¢, and d are positive.
So, if X, is null, that means that the cart reached its position of reference (e = 0 and Ae = 0), or
that it moves towards this one (ce = -dAe). Reasonably it is identical for X, If X,is null, the
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angular position of the pendulum is stabilized to zero. Consequently, the stabilization of X,
and X, makes it possible to bring the pendulum towards a position of reference and ensure
the maintenance of the stem of the pendulum in high driving position. The more absolute
value of X, more the horizontal position of the pendulum is critical. And the more absolute
value of X,, more the angular position of the pendulum is critical. The variables X, and X,
represent respectively the critical angular position and the critical horizontal position of the
pendulum.

—|

Fig. 10. Scheme of the sensory fusion fuzzy controller.

This control problem is far from being commonplace because two variables are to be
controlled but only one has an action of control. The dynamics of 6 being much faster than
that of r, the adopted strategy is as follows: we initially seek to balance the pendulum (high
driving position) then to gradually bring it towards its position of reference by unbalancing
it on the "good side".

We can then write the five following rules in order to control the pendulum at the same time
horizontally and vertically:

R1: IF X,is Negative THEN u is Negative,

R2: IF X,is Positive THEN u is Positive,

R3: IF Xyis Zero y X, is Negative THEN u is Negative, (7)
R4: IF Xyis Zero y X, is Zero THEN u is Zero,

R5: IF Xyis Zero y X, is Positive THEN u is Positive,

These five rules interpret well the priority objective which is the vertical stabilization of the
pendulum: X, is considered only when X, is null. Now let us examine the third rule (R3):
"IF Xy is Zero and X, is Negative THEN u is Negative". This negative control involves X,
positive. The second rule R2 is then activated: u; = ku becomes positive in order to balance
the pendulum and the position of the cart increases as wished. The reasoning is similar for
the fifth rule.

The five rules (7) can be written in a more compact way in the form of table (Table 2):
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Xo N Z P
N N

Xe Z N Z P
P P

Table 2. Rule base of the sensory fusion fuzzy controller.

5.1.2 Design of the Hierarchical Method
The design of the hierarchical fuzzy controller is described in this section. The structure of
the hierarchical fuzzy controller is represented in Figure 11.

r [T |
N E i
Ar > :
System i o >?1< ! 1(:j i

Fig. 11. - Hierarchical fuzzy controller.

The hierarchical fuzzy controller is composed of three fuzzy controller series connected.
The corresponding rule bases are represented in Tables 3, 4 and 5. The total number of rules
is9+5+9=23rules.

The objective of the first fuzzy controller (FC1) is to bring the cart towards its position of
reference r.. The first action u; consists in unbalancing the pendulum in the "good direction".
This imbalance must have as a consequence the displacement of the cart in the desired
direction.

dAe

ce

N|Z|Z|Z

JIN|Z|N
N

N2

Table 3. Rule base of the FC1.

The objective of second fuzzy controller (FC2) is to balance the pendulum if this one is not
so yet. The first decision of an action u is preserved if the angular position of the pendulum
is zero, but if the pendulum is not balanced, the new action u; is such as the pendulum
converges towards a high driving position.

As for the third fuzzy controller (FC3) it aims to refine the preceding control by considering
an additional variable Ag, the angular velocity of the pendulum.

If A@is zero, it does not have a reason there to modify the preceding control u». In the same
way, if A is negative (respectively positive) and u» is negative (respectively positive) then

www.intechopen.com



490 New Developments in Robotics, Automation and Control

the preceding control does not have to be revised since it balances the pendulum. On the
other hand, if the control u; is zero and the pendulum tends to be unbalanced then it is
necessary to choose a control consequently.

5.1.3 Design of the Fusion-Hierarchical Method

The objective position where we must to bring a cart is x,. The variables to fuse are 0 and A0,
e and Ae, where e is the error in position given by e = x - x, and Ae = Ax. The sensory fusion
of the error in position and its variation X, =ce+ dAe combined with the hierarchical
method led to the fuzzy controller represented in Figure 12. The first fuzzy controller (FC1)
calculates the first control action according to X, and the angular position 6. In the second
fuzzy controller (FC2), it refines the value of preceding control by considering an additional
variable A0. The fuzzy controller based on fusion-hierarchical combination is represented in
the Figure 12. The rule bases of FC1 and FC2 are represented in Tables 6-7.

a6 N Z P
N N
U1 7 N 7 V4
P
Table 4. Rule base of the FC2.
dAod N Z P
N N N Z
w |z N Z P
P V4 P P
Table 5. Rule base of the FC3.
Xo ,r _____________________________ :
1AX F I '
1 1
PRI
- System 1 O u !
—>(a 1 ot
A O/ 2 |
o) E

Fig. 12. Fuzzy controller based on the combination of the sensory fusion and hierarchical
methods.
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af N Z P

N N
Xe | 7 N V4 P

P P

Table 6. Rule bases of the fuzzy controllers FC1.

bo N zZ P
N N N V4
Ui Y4 N Y4 P
P Y4 P P

Table 7. Rule bases of the fuzzy controllers FC2.

The simulation of the inverted pendulum is performed in Simulink, Matlab (Figure 13)
starting from the nonlinear equations (Messner, 1998). The fuzzy controller is implemented
in Matlab’s FIS Editor. The input fuzzy sets are represented by triangular functions (N, Z and
P) regularly distributed on the universe of discourse [-1, 1]. The output fuzzy sets are
singletons regularly distributed on [-1, 1].

Pendulum System

Posicion Deseada
m)

0.3
e

Signal Te
Wotkspace

Clodk Time Points

Fig. 13. Inverted pendulum control problem for the combination of methods implemented in
Simulink.

5.1.4 Results

We apply the proposed method in order to find the parameters a, b, ¢, and d. The
experiments were realized with the combination of some genetic operators in Table 8. The
results of obtained parameters for each combination of genetic operators are presented in
Tables 9-11. The best result is highlighted (Tables 9-11). The time response graphics are
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