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1. Introduction    
 

Adaptive control of highly uncertain nonlinear dynamic systems has been an important 
research area in the past decades, and in the meantime neural networks control has found 
extensive application for a wide variety of areas and has attracted the attention of many 
control researches due to its strong approximation capability. Many significant results on 
these topics have been published in the literatures (Lewis et al., 1996 ; Yu & Li 2002; 
Yesidirek & Lewis 1995). It is proved to be successful that neural networks are used in 
adaptive control. However, most of these works are applicable for a kind of affine systems 
which can be linearly parameterized. Little has been found for the design of specific 
controllers for the nonlinear systems, which are implicit functions with respect to control 
input. We can find in literatures available there are mainly the results of Calise et al. (Calise 
& Hovakimyan 2001) and Ge et al. (Ge et al. 1997). Calise et al. removed the affine in control 
restriction by developing a dynamic inversion based control architecture with linearly 
parameterized neural networks in the feedback path to compensate for the inversion error 
introduced by an approximate inverse. However, the proposed scheme does not relate to the 
properties of the functions, therefore, the special properties are not used in design. Ge, S.S. 
et al., proposed the control schemes for a class of non-affine dynamic systems, using mean 
value theorem, separate control signals from controlled plant functions, and apply neural 
networks to approximate the control signal, therefore, obtain an adaptive control scheme. 
Furthermore, when controlling large-scale and highly nonlinear systems, the presupposition 
of centrality is violated due to either due to problems in data gathering when is spread out 
or due to the lack of accurate mathematical models. To avoid the difficulties, the 
decentralized control architecture has been tried in controller design. Decentralized control 
systems often also arise from various complex situations where there exist physical 
limitations on information exchange among several subsystems for which there is 
insufficient capability to have a single central controller. Moreover, difficulty and 
uncertainty in, measuring parameter values within a large-scale system may call for 
adaptive techniques. Since these restrictions encompass a large group of applications, a 
variety of decentralized adaptive techniques have been developed (Ioannou 1986).  

www.intechopen.com



Adaptive Control 

 

338 

Earlier literature on the decentralized control methods were focused on control of large-
scale linear systems. The pioneer work by Siljak (Siljak 1991) presents stability theorems of 
interconnected linear systems based on the structure information only. Many works 
consider subsystems which are linear in a set of unknown parameters (Ioannou 1986 ; Fu 
1992 ; Sheikholeslam & Desor 1993 ; Wen 1994 ; Tang et al. 2000), and these results were 
focused on systems with first order interconnections. When the subsystems has nonlinear 
dynamics or the interconnected is entered in a nonlinear fashion, the analysis and design 
problem becomes even challenging.  
The use of neural networks’ learning ability avoids complex mathematical analysis in 
solving control problems when plant dynamics are complex and highly nonlinear, which is 
a distinct advantage over traditional control methods. As an alternative, intensive research 
has been carried out on neural networks control of unknown nonlinear systems. This 
motivates some researches on combining neural networks with adaptive control techniques 
to develop decentralized control approaches for uncertain nonlinear systems with 
restrictions on interconnections. For example, in (Spooner & Passino 1999), two 
decentralized adaptive control schemes for uncertain nonlinear systems with radial basis 
neural networks are proposed, which a direct adaptive approach approximates unknown 
control laws required to stabilize each subsystem, while an indirect approach is provided 
which identifies the isolated subsystem dynamics to produce a stabilizing controller. For a 
class of large scale affine nonlinear systems with strong interconnections, two neural 
networks are used to approximate the unknown subsystems and strong interconnections, 
respectively (Huang & Tan 2003), and Huang & Tan (Huang & Tan 2006) introduce a 
decomposition structure to obtain the solution to the problem of decentralized adaptive 
tracking control a class of affine nonlinear systems with strong interconnections. Apparently, 
most of these results are likewise applicable for affine systems described as above. For the 
decentralized control research of non-affine nonlinear systems, many results can be found 
from available literatures. Nardi et al. (Nardi & Hovakimyan 2006) extend the results in 
Calise et al. (Calise & Hovakimyan 2001) to non-affine nonlinear dynamical systems with 
first order interconnections. Huang (Huang & Tan 2005) apply the results in (Ge & Huang 
1999) to a class of non-affine nonlinear systems with strong interconnections. 
Inspired by the above researches, in this chapter, we propose a novel adaptive control 
scheme for non-affine nonlinear dynamic systems. Although the class of nonlinear plant is 
the same as that of Ge et al. (Ge et al. 1997), utilizing their nice reversibility, and invoking 
the concept of pseudo-control and inverse function theorem, we find the equitation of error 
dynamics to design adaptation laws. Using the property of approximation of two-layer 
neural networks (NN), the control algorithm is gained. Then, the controlled plants are 
extended to large-scale decentralized nonlinear systems, which the subsystems are 
composed of the class of non-affine nonlinear functions. Two schemes are proposed, 
respectively. The first scheme designs a RBFN-based (radial basis function neural networks) 
adaptive control scheme with the assumption which the interconnections between 
subsystems in entire system are bounded linearly by the norms of the tracking filtered error. 
In the scheme, unlike most of other approaches in available literatures, the weight of BBFN 
and center and width of Gaussian function are tuned adaptively. In another scheme, the 
interconnection is assumed as stronger nonlinear function. Moreover, in the former, in every 
subsystem, a RBFN is adopted which is used to approximate unknown function, and in the 
latter, in every subsystem, two RBFNs are respectively utilized to approximate unknown 
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function and uncertain strong interconnection function. For those complicated large-scale 
decentralized dynamic systems, in order to decrease discontinuous factors and make 
systems run smooth, unlike most of control schemes, the hyperbolic tangent functions are 
quoted in the design of robust control terms, instead of sign function. Otherwise, the citation 
of the smooth function is necessary to satisfy the condition of those theorems. 
The rest of the paper is organized as follows. Section 2 gives the normal form of a class of 
non-affine nonlinear systems. Section 3 proposes a novel adaptive control algorithm, which 
is strictly derived from some mathematical and Lyapunov stability theories, and the 
effectiveness of the scheme is validated through simulation. Extending the above-mentioned 
result, Section 4 discusses two schemes of decentralized adaptive neural network control for 
the class of large-scale nonlinear systems with linear function interconnections and 
nonlinear function interconnections, respectively.  Finally, the Section 5 is concluding 
remarks.  

 
2. Problem Statement 
 

We consider a general analytic system  
 

( , ), ,

( ), .

nu R u R

y h y R

⎧ = ∈ ∈⎨ = ∈⎩
ζ g ζ ζ

ζ

&
                                                             (1) 

 
where ( , )⋅ ⋅g is a smooth vector fields and ( )h ⋅ is a scalar function. In practice, many 

physical systems such as chemical reactions, PH neutralization and distillation columns are 
inherently nonlinear, whose input variables may enter in the systems nonlinearly as 
described by the above general form (Ge et al. 1998). Then, the Lie derivative (Tsinias & 

Kalouptsidis 1983) of ( )h ζ  with respect to ( , )ug ζ  is a scalar function defined 

by [ ( ) ] ( , )L h h u= ∂ ∂
g

ζ ζ g ζ . Repeated Lie derivatives can be defined recursively 

as 1( ), 1,2i iL h L L h for i−= =g g g L . The system (1) is said to have relative degree α  

at
0( , )u

0
ζ , if there exists a smallest positive integer α such 

that 0iL h u∂ ∂ =g
, 1, , 10, iL h uα α= −∂ ∂ ≠

g
L . 

 

Let 
nRΩ ⊂ζ and u RΩ ⊂ be compact subsets containing 

0
ζ and 0u , respectively. System 

(1) is said to have a strong relative degree α in a compact set
uD = Ω ×Ωζ , if it has relative 

degree α  at every point
0( , )u D∈0ζ . Therefore, system (1) is feedback linearizable and the 

mapping
1 2( ) [ ( ), ( ), ( )]nφ φ φΦ =ζ ζ ζ ζL , with 1( ) , 1, 2,j

j L h jφ α−= =gζ L  has a Jacobian 

matrix which is nonsingular for all ( )∈Φx ζ , system (1) can be transformed into a normal 

form  
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                                                                        (2) 

 

 where ( , ) nf x u L h= g
 and 

1( )x −= Φ ζ  with 1 2[ , , , ]T

nx x x x= L . Define the domain of 

normal system (2) as { }( , ) ( ); uD x u x u∈Φ Ω ∈Ωζ .  

 
3. Adaptive Control for a Class of Non-affine Nonlinear Systems via Two-
Layer Neural Networks 
 

Now we consider the n th− order nonlinear systems of the described form as (2). For the 

considered systems in the chapter, we may make the following assumptions. 

Assumption 1. ( , ) / 0f x u u∂ ∂ ≠  for all ( , )x u R∈Ω× . 

Assumption 2. 1( ) : nf R R+⋅ → , is an unknown continuous function and ( , )f x u  a smooth 

function with respect to control input u .  

The control objective is: determine a control law, force the output, y  , to follow a given 

desired output, dx  with an acceptable accuracy, while all signals involved must be 

bounded. 

Assumption 3. The desired signals (1) ( 1)( ) [ , , , ],n

d d d dx t y y y −= L and 
( )[ , ]T n T

d d dX x y= are 

bounded, with
dX X≤

d
, 

dX a known positive constant. 

Define the tracking error vector as 
 

de x x= − ,                                                                             (3) 

 
and a filtered tracking error as 
 

[ 1]T eτ = Λ ,                                                                          (4) 

 

with Λ a gain parameter vector selected so that ( ) 0e t → as 0.τ → Differentiating (4), the 

filtered tracking error can be written as 
 

( ) [0 ] .n T

n dx xτ = − + Λ e& &                                                            (5) 

 
Define a continuous function 
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( ) [0 ] .n T

dk xδ τ= − + − Λ e                                                          (6) 

 

where k is a positive constant. We know ( , ) 0f x u u∂ ∂ ≠  (Assumption 1), thus, 

[ ( , ) ] 0f x u uδ∂ − ∂ ≠ . Considering the fact that 0uδ∂ ∂ = , we invoke the implicit 

function theorem (Lang 1983), there exists a continuous ideal control input u∗
in a 

neighborhood of ( , )x u R∈Ω× , such that ( , ) 0f x u δ∗ − = , i.e. ( , )f x uδ ∗= holds. 

( , )f x uδ ∗= may represent ideal control inverse. 

Adding and subtracting δ to the right-hand side of ( , )nx f x u=&  of (2), one obtains 

 
( )( , ) [0 ]n T

n dx f x u k x eδ τ= − − + − Λ& ,                                      (7) 

 
and yields  
 

( , ) .k f x uτ τ δ= − + −&                                                            (8) 

 

Considering the following state dependent transformation nxψ = & , where ψ is commonly 

referred to as the pseudo-control (Calise & Hovakimyan 2001). Apparently, the pseudo-
control is not a function of the control u  but rather a state dependent operator. 

Then, 0uψ∂ ∂ =  , from Assumption 1, ( , ) 0f x u u∂ ∂ ≠ thus [ ( , )] 0f x u uψ − ∂ ≠ . 

With the implicit function theorem, for every ( , )x u R∈Ω× , there exists a implicit 

function such that ( , ) 0f x uψ − =  holds, i.e. ( , )f x uψ = . Therefore, we have 

 

( , )f x uψ = .                                                                     (9) 

 

Furthermore, using inverse function theorem, with the fact that [ ( , )] 0f x u uψ − ∂ ≠  

and ( , )f x u  is a smooth with respect to control input, u  , then, ( , )f x u  defines a local 

diffeomorphism (Slotine & Li 1991), such that, for a neighborhood of u , there exists a 

smooth inverse function and 
1( , )u f x ψ−= holds. If the inverse is available, the control 

problem is easy. But this inverse is not known, we can generally use some techniques, such 
as neural networks, to approximate it. Hence, we can obtain an estimated function, 

1 ˆˆ ( , )u f x ψ−= . This result in the following equation holding: 

 

ˆ ˆ( , )f x uψ = ,                                                                (10) 

 

where ψ̂  may be referred to as approximation pseudo-control input which represents 

actual dynamic approximation inverse. 
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Remark 1.  According to the above-mentioned conditions, when one designs the pseudo-

control signal, ψ̂ , must be a smooth function. Therefore, in order to satisfy the condition, 

we adopt hyperbolic tangent function, instead of sign function in design of input. This also 
makes control signal tend smooth and system run easier. The hyperbolic tangent function 
has a good property as follows (Polycarpou 1996) : 
 

0 tanh( )
ηη η ςαα< − ≤ ,                                                    (11) 

 

with 0.2785ς = , α any positive constant. Moreover, theoretically, ψ̂ is approximation 

inverse, generally a nonlinear function, but it must be bounded and play a dynamic 
approximation role and make system stable. Hence, it represents actual dynamic 
approximation inverse. 
Based on the above conditions, in order to control the system and make it be stable, we 

design the approximation pseudo-control input ψ̂  as follows: 

 

ˆ ( , ) ad rf x u u vψ ∗= + + ,                                                 (12) 

 

where adu  is output of a neural network controller, which adopts a two-layer neural 

network, rv is robustifying control term designed in stability analysis. 

Adding and subtracting ψ̂ to the right-hand side of (8), with ( , )f x uδ ∗= , we have 

 

ˆ( , ) ( , )

ˆ( , , ) ,

ad r

ad r

k f x u f x u u v

k x u u u v

τ τ ψ δ
τ ψ δ

∗
∗

= − + + − − − −
= − + Δ + − − −

&

%
                              (13) 

 

where ( , , ) ( , ) ( , )x u u f x u f x u∗ ∗Δ = −% is error between nonlinear function and its ideal 

control function, we can use the neural network to approximate it. 

 
3.1 Neural network-based approximation 

A two-layer NN consists of two layers of tunable weights, a hidden layer and an output 

layer. Given a 0ε > , there exists a set of bounded weights M and N such that the 

nonlinear error ( )CΔ∈ Ω% , with Ω  compact subset of
nR , can be approximated by a two-

layer neural network, i.e. 
 

        ( ) ( )T T

nn nnM N x xσ εΔ = +% ,                                                     (14) 

 

with ˆ[1, , , ]T T

nn dx x e ψ= input vector of NN.   
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Assumption 4.  The approximation error ε  is bounded as follows: 

 

Nε ε≤ ,                                                                         (15) 

 

where 0Nε > is an unknown constant.  

Let M̂ and N̂ be the estimates respectively of M and N . Based on these estimates, let 

adu be the output of the NN 

 

ˆ ˆ( ).T T

ad nnu M N xσ=                                                           (16) 

 

Define ˆM M M= −% and ˆN N N= −% , where we use notations: [ , ]Z diag M N= , 

[ , ]Z diag M N=% % % , ˆ ˆ ˆ[ , ]Z diag M N= for convenience. Then, the following inequality 

holds: 
 

2
ˆ( )T

FF F
tr Z Z Z Z Z≤ −% % % .                                                  (17) 

 

The Taylor series expansion of ( )T

nnN xσ  for a given nnx can be written as: 

 
2ˆ ˆ( ) ( ) ( ) ( )T T T T T

nn nn nn nn nnN x N x N x N x O N xσ σ σ ′= + +% % ,                (18) 

 

with ˆˆ : ( )T

nnN xσ σ= and σ̂ ′ denoting its Jacobian, 
2( )T

nnO N x% the term of order two. In 

the following, we use notations: : ( )T

nnN xσ σ= , : ( )T

nnN xσ σ= %% . 

With the procedure as Appendix A, the approximation error of function can be written as 
 

ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )T T T T T T T T

nn nn nn nnM N x M N x M N x M N xσ σ σ σ σ ω′ ′− = − + +% % ,         (19) 

 
and the disturbance term ω can be bounded as 

 

1
ˆ ˆˆ ˆT T

nn nnF F
N x M M N x Mω σ σ′ ′≤ + + ,                                (20) 

 
where the subscript “F” denotes Frobenius norm, and the subscript “1” the 1-norm. 
Redefine this bound as 
 

ˆ ˆ( , , )nnM N xω ωω ρ ϑ≤ ,                                                        (21) 
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where 
1

max{ , , }
F

M N Mωρ = and ˆ ˆˆ ˆ 1T T

nn nn
F

x M N xωϑ σ σ′ ′= + + . Notice that 

ωρ is an unknown coefficient, whereas ωϑ is a known function.  

 
3.2 Parameters update law and stability analysis 

Substituting (14) and (16) into (13), we have 
 

ˆ ˆ ˆ( ) ( ) ( ).T T T T

nn nn r nnk M N x M N x v xτ τ σ σ ψ δ ε= − + − + − − +&                  (22) 

 
Using(19), the above equation can become 
 

ˆ ˆ ˆˆ ˆ ˆ( ) .T T T T

nn nn rk M N x M N x vτ τ σ σ σ ψ δ ω ε′ ′= − + − + + − − + +% %&                (23) 

 
Theorem 1. Consider the nonlinear system represented by Eq. (2) and let Assumption 1-4 

hold. If choose the approximation pseudo-control input ψ̂  as Eq.(12), use the following 

adaptation laws and robust control law 
 

 

1

1

ˆ ˆˆ ˆ( ) ,

ˆ ˆ ˆˆ ,

( 1)ˆ ˆ( 1) tanh

( 1)ˆ( 1) tanh

nn

T

nn

r

M F Nx k M

N R x M k N

v

ωω

ωω

σ σ τ τ
σ τ τ

τ ϑφ γ τ ϑ λφα
τ ϑφ ϑ α

⎡ ⎤′= − −⎣ ⎦
⎡ ⎤′= −⎣ ⎦
⎧ + ⎫⎡ ⎤= + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

+⎡ ⎤= − + ⎢ ⎥⎣ ⎦

&

&

&
                                            (24) 

 

where 0, 0T TF F R R= > = >  are any constant matrices, 1 0k > and 0γ > are scalar 

design parameters, φ̂ is the estimated value of the uncertain disturbance term 

max( , )Nωφ ρ ε= , defining ˆφ φ φ= −%  with φ%  error ofφ , then, guarantee that all signals 

in the system are uniformly bounded and that the tracking error converges to a 
neighborhood of the origin. 
Proof.  Consider the following positive define Lyapunov function candidate as 
 

2 1 1 1 21 1 1 1
( ) ( )

2 2 2 2

T TL tr M F M tr N R Nτ γ φ− − −= + + + %% % % %                               (25) 

 
The time derivative of the above equation is given by 
 

1 1 1( ) ( )T TL tr M F M tr N R Nττ γ φφ− − −= + + + && & % %& % % % %&                                          (26) 
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Substituting (23) and the anterior two terms of (24) into (26), after some straightforward 
manipulations, we obtain 
 

2

1 1 1

2 1

1

2 1

1

ˆ ˆ ˆˆ ˆ ˆ[ ( ) ( ) ]

( ) ( )

ˆˆ( ) ( ) ( ).

ˆˆ( ) ( 1) ( ).

T T T T

nn nn r

T T

T

r

T

r

L k M N x M N x v

tr M F M tr N R N

k v k tr Z Z

k v k tr Z Zω

τ τ σ σ σ ψ δ ω ε
γ φφ

τ τ ψ δ τ τ ω ε γ φφ τ
τ τ ψ δ τ τ φ ϑ γ φφ τ

− − −

−

−

′ ′= − + − + + − − + +
+ + +

= − + − − + + + +
≤ − + − − + + + +

& % %

&& & % %% % % %

&% % %

&% % %

             (27) 

 
With (4),(6),(12),(16) and the last two equations of (24), the approximation error between 
actual approximation inverse and ideal control inverse is bounded by 
 

1 2 3
ˆ ,

F
c c c Zψ δ τ− ≤ + + %                                                (28) 

 

where 1 2 3, ,c c c are positive constants. 

 
Using (11) and the last two terms of  (24), we obtain 
 

2

1

2

1

( 1)ˆˆ( ) ( 1) tanh

( 1) ˆ ˆ( 1) ( 1) tanh ( )

ˆ ˆˆ( ) ( )

T

T

L k

k tr Z Z

k k tr Z Z

ωω

ωω ω

τ ϑτ τ ψ δ τφ ϑ α
τ ϑτ φ ϑ φ τ ϑ λφ τα

τ τ ψ δ ςφα λφφ τ

+⎡ ⎤≤ − + − − + ⎢ ⎥⎣ ⎦
⎧ + ⎫⎡ ⎤+ + − + − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

≤ − + − + + +

&

% %

% %

       (29) 

 

Applying (17),(28) , and
2

ˆφφ φ φ φ≤ −% % % , after completing square, we have the following 

inequality 
 

2

2 1 2( )L k c D Dτ τ≤ − − + +&                                             (30) 

 

where 2 231
1 1 2

1

1
( ) ,

4 4
M

ck
D c Z D

k
λφ ςφα= + + = + . 

Let
2

3 1 2 2 14 ( )D D D k c D= + − + , thus, as long as
3 2[2( )]D k cτ ≥ − , and 2k c> , 

then 0L ≤& holds. 

 
Now define 
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 { } 1 3 3

1 2

1 1
, ( ) , .

2( )
Z M

F
Z Z k Z c D

k k c
φ τφ φ φ τ τ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪Ω = ≤ Ω = ≤ + Ω = ≤⎨ ⎬ ⎨ ⎬−⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

% % % %     (31) 

 

Since 1 1 2 3 2 3, , , , , , ,MZ k k D D D c c  are positive constants, as long as k  is chosen to be big 

enough, such that 2k c>  holds, we conclude that , ZφΩ Ω and τΩ are compact sets. 

Hence L&  is negative outside these compacts set. According to a standard Lyapunov 

theorem, this demonstrates that , Zφ% %  and τ are bounded and will converge 

to , ZφΩ Ω and τΩ , respectively. Furthermore, this implies e  is bounded and will converge 

to a neighborhood of the origin and all signals in the system are uniformly bounded. 

 
3.3 Simulation Study 

In order to validate the performance of the proposed neural network-based adaptive control 
scheme, we consider a nonlinear plant, which described by the differential equation 
 

1 2

2 2 3 2 2

2 1 1 2 1 20.02( ) ( ) ( ) tanh(0.2 )

x x

x x x x u x x u u dω ω σ
=
= − − + + + + + +

&

&
        (32) 

 

where 0.4ω π= , ( ) (1 ) (1 )u uu e eσ − −= − +  and 0.2d = . The desired trajectory 

0.1 [sin(2 ) cos( )]dx t tπ= − .  

To show the effectiveness of the proposed method, two controllers are studied for 
comparison. A fixed-gain PD control law is first used as Polycarpou, (Polycarpou 1996). 
Then, the adaptive controller based on NN proposed is applied to the system. 

Input vector of neural network is ˆ[1, , , ]T T

nn dx x e ψ= , and number of hidden layer nodes 25. 

The initial weight of neural network is ˆ ˆ(0) (0), (0) (0)M N= = . The initial condition of 

controlled plant is (0) [0.1,0.2]Tx = . The other parameters are chosen as follows: 

1 0.01, 0.1, 0.01, 10k γ λ α= = = =  , 2, 8 MF IΛ = =  , 5 NR I=  ,  with ,M NI I  corresponding 

identity matrices. 
Fig.1, 2, and 3 show the results of comparisons, the PD controller and the adaptive controller 
based on NN proposed, of tracking errors, output tracking and control input, respectively. 
These results indicate that the adaptive controller based on NN proposed presents better 
control performance than that of the PD controller. Fig.4 depicts the results of output of NN, 

norm values of ˆ ˆ,M N , respectively, to illustrate the boundedness of the estimates of 

ˆ ˆ,M N and the control role of NN. From the results as figures, it can be seen that the 

learning rate of neural network is rapid, and tracks objective in less than 2 seconds. 
Moreover, as desired, all signals in system, including control signal, tend to be smooth. 
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Fig. 1. Tracking errors: PD(dot) and NN(solid). 
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Fig. 2. Output tracking: desired (dash), NN(solid) and PD(dot). 
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Fig. 3. Control input: PD (dash), NN(solid) 
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4. Decentralized Adaptive Neural Network Control of a Class of Large-Scale 
Nonlinear Systems with linear function interconnections 
 

In the section, the above proposed scheme is extended to large-scale decentralized nonlinear 
systems, which the subsystems are composed of the class of the above-mentioned non-affine 
nonlinear functions. Two schemes are proposed, respectively. The first scheme designs a 
RBFN-based adaptive control scheme with the assumption which the interconnections 
between subsystems in entire system are bounded linearly by the norms of the tracking 
filtered error. In another scheme, the interconnection is assumed as stronger nonlinear 
function.  
We consider the differential equations in the following form described, and assume the 
large-scale system is composed of the nonlinear subsystems: 
 

          

1 2

2 3

1 2 1 2

1

( , , , , ) ( , , , )

1, 2, ,

i i

i i

il i i i ili i i n

i i

i

x x

x x

x f x x x u g x x x

y x

i n

⎧ =⎪ =⎪⎪⎨⎪ = +⎪⎪ =⎩
=

&

&

M

& L L

L

                           (33) 

 

where il

ix R∈ is the state vector, 1 2[ , , , ]
i

T

i i i ilx x x x= L , iu R∈ is the input and 

iy R∈ is the output of the i th− subsystem. 

1( , ) : li

i i if x u R R+ →  is an unknown continuous function and  implicit and smooth 

function with respect to control input iu .  

Assumption  5. ( , ) / 0i i i if x u u∂ ∂ ≠ for all ( , )i i ix u R∈Ω × . 

1 2( , , , )i ng x x xL is the interconnection term. In according to the distinctness of the 

interconnection term, two schemes are respectively designed in the following. 

 
4.1 RBFN-based decentralized adaptive control for the class of large-scale nonlinear 
systems with linear function interconnections 
 

Assumption 6. The interconnection effect is bounded by the following function: 
 

1 2

1

( , , , )
n

i n ij j

j

g x x x γ τ
=

≤∑L ,                                                    (34) 

 

where ijγ  are unknown coefficients, jτ is a filtered tracking error to be defined shortly . 
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The control objective is: determine a control law, force the output, iy  , to follow a given 

desired output, dix  , with an acceptable accuracy, while all signals involved must be 

bounded. 

Define the desired trajectory vector 1
[ , , , ]il T

di di di dix y y y
−= & L and ( )

, , , i
T

l

di di di diX y y y⎡ ⎤= ⎣ ⎦& L , 

tracking error 1 2[ , , , ]
i

T

i i di i i ile x x e e e= − = L , thus, the filter tracking error can be 

written as 
 

( 2) ( 1)

,1 ,2 , 1[ 1] i i

i

l lT

i i i i i i i i l i ik e k e k e eτ − −−= Λ = + + + +& Le ,                         (35) 

 

where the coefficients are chosen such that the polynomial 
( 2)

,1 ,2 , 1
i

i

l

i i i lk k s k s
−−+ + +L  

( 1)ils
−+ is Hurwitz.  

Assumption 7. The desired signal ( )dix t is bounded, so that di diX X≤ , where diX is a 

known constant. 
For an isolated subsystem, without interconnection function, by differentiating (35), the 
filtered tracking error can be rewritten as 
 

( )
[0 ] ( , )i

l

l T

i il di i i i i i dix x e f x u Yτ = − + Λ = +& &                                 (36) 

 

with 
( )

[0 ]il T

di di i iY x e= − + Λ . 

Define a continuous function 
 

i i i dik Yδ τ= − −                                                          (37) 

 

where ik is a positive constant. With Assumption 5, we know ( , ) 0i i if x u u∂ ∂ ≠ , 

thus, [ ( , ) ] 0i i i i
f x u uδ∂ − ∂ ≠ . Considering the fact that 0i i

uδ∂ ∂ = , we invoke the 

implicit function theorem, there exists a continuous ideal control input iu∗
in a 

neighborhood of ( , )i i ix u R∈Ω × , such that ( , ) 0i i if x u δ∗ − = , i.e. ( , )i i i if x uδ ∗= holds. 

( , )i i i if x uδ ∗=  represents ideal control inverse. 

Adding and subtracting iδ to the right-hand side of ( , )il i i i ii
x f x u g= +&  of (33), one 

obtains 
 

( , )
iil i i i i i i i dix f x u g k Yδ τ= + − − −& ,                                     (38) 

 
and yields  
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( , )i i i i i i i ik f x u gτ τ δ= − + + −&  .                                         (39) 

 
In the same the above-discussed manner as equations (9)-(10) ,  we can obtain the following 
equation: 
 

ˆ ˆ( , )i i i if x uψ = .                                                         (40) 

 
Based on the above conditions, in order to control the system and make it be stable, we 

design the approximation pseudo-control input ˆ
iψ  as follows: 

 

ˆ
i i i di ci rik Y u vψ τ= − − + + ,                                                 (41) 

 

where ciu  is output of a neural network controller, which adopts a RBFN, riv is 

robustifying control term designed in stability analysis. 

Adding and subtracting ˆ
iψ to the right-hand side of (39), with ( , )i i i di i i ik Y f x uδ τ ∗= − − = , 

we have 
 

ˆ( , , )i i i i i i i ci i i ri ik x u u u v gτ τ ψ δ∗= − + Δ − + − − +%& ,                           (42) 

 

where ( , , ) ( , ) ( , )i i i i i i i i i ix u u f x u f x u∗ ∗Δ = −% is error between nonlinear function and its 

ideal control function, we can use the RBFN to approximate it. 

 
4.1.1 Neural network-based approximation 

Given a multi-input-single-output RBFN, let 1in and 1im be node number of input layer and 

hidden layer, respectively. The active function used in the RBFN is Gaussian 

function,
2 2

( ) exp[ 0.5( ) / ]
l lk kiS z μ σ= − −x  , 

11, , il n= ⋅ ⋅ ⋅ , 11, , ik m= ⋅ ⋅ ⋅ where 1 1in

i Rz
×∈  is input 

vector of the RBFN, 1 1i in m

i Rμ ×∈ and 1 1im

i Rσ ×∈ are the center matrix and the width vector.  

Based on the approximation property of RBFN, ( , , )i i i ix u u ∗Δ% can be written as 

 

( , , ) ( , , ) ( )T

i i i i i i i i i i iSx u u W z zμ σ ε∗Δ = +% ,                                     (43) 

 

where ( )i izε is approximation error of RBFN, 1 1im

iW R
×∈ . 

Assumption 8. The approximation error ( )nnxε  is bounded by i Niε ε≤ , with 0Niε > is 

an unknown constant. 

The input of RBFN is chosen as ˆ[ , , ]T T

i i i iz x τ ψ= . Moreover, output of RBFN is designed as  
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ˆ ˆ ˆ( , , ).T

ci i i i i iSu W z μ σ=                                               (44) 

 

Define ˆ ˆ ˆ, ,i i iW μ σ  as estimates of ideal , ,i i iW μ σ , which are given by the RBFN tuning 

algorithms. 

Assumption 9. The ideal values of , ,i i iW μ σ  satisfy 

 

, ,i iM i iM i iMF
W W μ μ σ σ≤ ≤ ≤ ,                                (45) 

 

where , ,iM iM iMW μ σ are positive constants. 
F

⋅ and ⋅  denote Frobenius norm and 2-

norm, respectively. Define their estimation errors as  
 

ˆ ˆ ˆ, , .i i i i i i i i iW W W μ μ μ σ σ σ= − = − = −% % %                              (46) 

 

Using the notations: ˆ ˆ ˆ ˆ[ , , ], [ , , ], [ , , ]i i i i i i i i i i i iZ diag W Z diag W Z diag Wμ σ μ σ μ σ= = =% % % %  for 

convenience. 

The Taylor series expansion for a given iμ and iσ is  

 
2ˆ ˆˆ ˆ( , , ) ( , , ) ( , )i i i i i i i i i i i i i iS S S Sz z Oμ σμ σ μ σ μ σ μ σ′ ′= + + +% % % %                   (47) 

 

where ˆ ˆˆ ˆ ˆ ˆ( , , ) , ( , , )i k i i i i i k i i i iS SS z S zμ σμ σ μ μ σ σ′ ′∂ ∂ ∂ ∂   evaluated at ˆ
i iμ μ= , 

ˆ
i iσ σ= ,

2( , )i iO μ σ% %  denotes the terms of order two. We use notations: ˆ ˆ ˆ: ( , , ),i i i i iSS z μ σ=  

: ( , , )i i i i iS S z μ σ=% % % , : ( , , )i i i i iS S z μ σ= .  

Following the procedure in Appendix B, it can be shown that the following operation. The 
function approximation error can be written as 
 

ˆ ˆ ˆ ˆˆ ˆˆ ˆˆ ˆ( ) ( ) ( ),T T T T

i i i i i i i i i i i i i i i iS S S SW S W S W S W tμ σ μ σμ σ μ σ ω′ ′ ′ ′− = − − + + +% % %             (48) 

 

The disturbance term ( )i tω is given by 

 

ˆ ˆ ˆ ˆˆ ˆˆ ˆ( ) ( ) ( ) ( )T T T

i i i i i i i i i i i i i iS S S St W S S W Wμ σ μ σω μ σ μ σ′ ′ ′ ′= − + + − +                                (49) 

 

Then, the upper bound of ( )i tω  can be written as 

1
ˆ ˆ ˆ ˆˆ ˆˆ ˆ( ) ( ) 2T T

i i i i i i i i i i i i i i iFF F F F
S S S St W W W Wμ σ μ σ ω ωω μ σ μ σ ρ ϑ′ ′ ′ ′≤ + + + + ≤      (50) 
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where
1

max( , , , 2 )i i i i iF
W Wωρ μ σ= , ˆ ˆ ˆ ˆˆ ˆˆ ˆ 1T T

i i i i i i i i iF F F F
S S S SW Wω μ σ μ σϑ μ σ′ ′ ′ ′= + + + +  , 

with 
1
⋅  1 norm. Notice that 

iωρ is an unknown coefficient, whereas 
iωϑ is a known 

function. 

 
4.1.2 Controller design and stability analysis 

Substituting (43) and (44) into (42), we have 
 

ˆˆ ˆ ( )T T

i i i i i i i i i ri i i ik W S W S v g zτ τ ψ δ ε= − + − + − − + +& ,                        (51) 

 
using (48), the above equation can become 
 

ˆ ˆ ˆ ˆˆ ˆˆ ˆ( ) ( )

ˆ ( ) ( ).

T T

i i i i i i i i i i i i i i

i i ri i i i i

S S S Sk W S W

v g z t

μ σ μ στ τ μ σ μ σ
ψ δ ε ω

′ ′ ′ ′= − + − − + +
+ − − + + +

%& % %
                      (52) 

 
Theorem 2. Consider the nonlinear subsystems represented by Eq. (33) and let assumptions 

hold. If choose the pseudo-control input ˆ
iψ  as Eq.(41), and use the following adaptation 

laws and robust control law 
 

ˆ ˆˆˆ ˆˆ ˆ( )i i i i i i i i Wi i iS SW F S Wμ σμ σ τ γ τ′ ′⎡ ⎤= − − −⎣ ⎦&
,                                  (53) 

 

ˆ ˆˆ ˆT

i i i i i Wi i iSG Wμμ τ γ μ τ′⎡ ⎤= −⎣ ⎦& ,                                                    (54) 

 

ˆ ˆˆ ˆT

i i i i i Wi i iSH Wσσ τ γ σ τ′⎡ ⎤= −⎣ ⎦& ,                                                   (55) 

 

*
*ˆ ˆtanh( )i i

i i i i i i i

i

ωφ ω φ
τ ϑφ γ τ ϑ λ φ τα

⎡ ⎤= −⎢ ⎥⎣ ⎦
&

,                                         (56) 

 

2ˆ ˆ( )i di i di i id dγ τ λ τ= −&
,                                                              (57) 

 
*

* ˆˆ tanh( )i i
ri i i i i

i

v dωω
τ ϑφϑ τα= + ,                                                      (58) 
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where
* 1i iω ωϑ ϑ= + , 0, 0, 0T T T

i i i i i iF F G G H H= > = > = >  are any constant 

matrices, , , , ,Wi i di i diφ φγ γ γ λ λ and iα are positive design parameters, ˆ
iφ is the estimated 

value of the uncertain disturbance term max( , )i i Niωφ ρ ε= , defining ˆ
i i iφ φ φ= −%  with 

iφ%  error, 0id > is used to estimate unknown positive number to shield interconnection 

effect, ˆ
id  is its estimated value, with ˆ

i i id d d= −%  estimated error, then, guarantee that all 

signals in the system are bounded and the tracking error ie will converge to a neighborhood 

of the origin. 
Proof.  Consider the following positive define Lyapunov function candidate as 
 

2 1 1 1 1 2 1 21 1
( ) ( ) ( )

2 2

T T T

i i i i i i i i i i i i i di iL tr W F W tr G tr H dφτ μ μ σ σ γ φ γ− − − − −⎡ ⎤= + + + + +⎣ ⎦%%% % % % % %  (59) 

 
The time derivative of the above equation is given by 
 

1 1 1 1 1( ) ( ) ( )T T T

i i i i i i i i i i i i i i i di i iL tr W F W tr G tr H d dφτ τ μ μ σ σ γ φφ γ− − − − −= + + + + + &&& % %& & % %& % %& % % % %      (60) 

 
Applying(52) to (60), we have 
 

1 1 1 1 1

ˆ ˆ ˆ ˆˆ ˆˆ ˆ( ) ( )

ˆ

( ) ( ) ( )

T T

i i i i i i i i i i i i i

i i

i i ri i i i

T T T

i i i i i i i i i i i i di i i

S S S Sk W S W
L

v g

tr W F W tr G tr H d d

μ σ μ σ

φ

τ μ σ μ στ ψ δ ε ω
μ μ σ σ γ φφ γ− − − − −

′ ′ ′ ′⎡ ⎤− + − − + += ⎢ ⎥+ − − + + +⎢ ⎥⎣ ⎦
+ + + + +

% % %&

&&& % %& & % %% % % % % %

    (61) 

 

Substituting the adaptive laws (53), (54) and (55) into (61), and ( ) ( )ˆ⋅ = − ⋅&&% ,yields 

 [ ] 1 1

2

1 1

2 *

ˆˆ ( )

ˆ( ) ( )

ˆ( )

ˆ( )

T

i i i i i i ri i i i Wi i i i i i i di i i

i i i i i ri i i i i i i Ni

T

Wi i i i i i i di i i

i i i i i ri i i i i i i

L k v g tr Z Z d d

k v g

tr Z Z d d

k v g

φ
ω ω

φ
ω

τ τ ψ δ ε ω γ τ γ φφ γ
τ τ ψ δ τ τ τ ρ ϑ ε

γ τ γ φφ γ
τ τ ψ δ τ τ τ φϑ

− −

− −

= − + − − + + + + + +
≤ − + − − + + +
+ + +
≤ − + − − + +
+

&& % %% %& %

&& % %% %%

1 1ˆ( )T

Wi i i i i i i di i itr Z Z d dφγ τ γ φφ γ− −+ + && % %% %%

 (62) 
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