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1. Introduction 
 

The task of learning useful models from available data is common in virtually all fields of 
science, engineering, and finance. The goal of the learning task is to estimate unknown 
(input, output) dependency (or model) from training data (consisting of a finite number of 
samples) with good prediction (generalization) capabilities for future (test) data 
(Cherkassky & Mulier, 2007; Hastie et al., 2003). One of the specific learning tasks is 
regression – estimating an unknown real-valued function. The process of regression model 
learning is also called regression modelling or regression model building. 
Many practical regression modelling methods use basis function representation – these are 
also called dictionary methods (Friedman, 1994; Cherkassky & Mulier, 2007; Hastie et al., 
2003), where a particular type of chosen basis functions constitutes a “dictionary”. Further 
distinction is then made between non-adaptive methods and adaptive (also called flexible) 
methods. 
The most widely used form of basis function expansions is polynomial of a fixed degree. If a 
model always includes a fixed (predetermined) set of basis functions (i.e. they are not 
adapted to training data), the modelling method is considered non-adaptive (Cherkassky & 
Mulier, 2007; Hastie et al., 2003). Using adaptive modelling methods however the basis 
functions themselves are adapted to data (by employing some kind of search mechanism). 
This includes methods where the restriction of fixed polynomial degree is removed and the 
model’s degree now becomes another parameter to fit. Adaptive methods use a very wide 
dictionary of candidate basis functions and can, in principle, approximate any continuous 
function with a pre-specified accuracy. This is also known as the universal approximation 
property (Kolmogorov & Fomin, 1975, Cherkassky & Mulier, 2007). 
However, in polynomial regression the increase in the model’s degree leads to exponential 
growth of the number of basis functions in the model (Cherkassky & Mulier, 2007; Hastie et 
al., 2003). With finite training data, the number of basis functions along with the number of 
model’s parameters (coefficients) quickly exceeds the number of data samples, making 
model’s parameter estimation impossible. Additionally the model should not be overly 
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complex even if the number of its basis functions is lower than the number of data samples, 
as too complex models will overfit the data and produce large prediction errors. 
To obtain a polynomial regression model that does not overfit (nor underfit) and describes 
the relations in data sufficiently well, typically the subset selection approach (Hastie et al., 
2003; Reunanen, 2006) is used where the goal is from a fixed full predetermined dictionary 
of basis functions to find a subset which corresponds to a model (a sparse polynomial) with 
the best predictive performance. This is done via combinatorial optimization. However, for 
the subset selection approach still the two issues remain – deficiency of adaptation as well as 
computational inefficiency. 
Searching through all the possible combinations of basis functions takes double-exponential 
runtime as the number of combinations grows exponentially in the number of basis 
functions of the predetermined dictionary while the number of the basis functions in the 
dictionary grows exponentially in the number of input variables and “full” model’s degree 
(Hastie et al., 2003). This makes the exhaustive search through all the combinations 
impractical. The heuristic greedy search algorithms, such as forward selection (Hastie et al., 
2003; Reunanen, 2006), substantially reduce the time and make it practical for not too large 
number of input variables and not too high degree. Nevertheless, the search time actually is 
still exponential, hindering their use in problems of larger dimensionality and hindering the 
removal of the restriction of a fixed degree. 
The approach of subset selection assumes that the chosen fixed finite dictionary of the 
predefined basis functions contains a subset that is sufficient to describe the target relation 
sufficiently well. However, in most practical situations the required dictionary (and “full” 
model’s degree) is not known beforehand and needs to be either guessed or found by an 
additional search loop over the whole model building process, since it will differ from one 
regression task to another. In many cases, especially when the studied data dependencies 
are complex and not well studied, this means either a non-trivial and long trial-and-error 
process or acceptance of a possibly inadequate model. 
This chapter presents a sparse polynomial regression model building approach which 
enables adaptive model building without restrictions on model’s degree and does it in 
polynomial time instead of exponential time (in the number of input variables, required 
degree, and target model’s complexity) as well as without the requirement to repeat the 
model building process. The required basis functions are automatically iteratively 
constructed using heuristic search specifically for the particular data at hand instead of 
choosing a subset from a very restricted finite user-defined dictionary (hence the approach 
is called Adaptive Basis Function Construction, ABFC). The basis function dictionary now 
becomes infinite and polynomials of arbitrary complexity can be generated bringing the 
desired flexibility to the model building process. 
The remainder of this chapter is organized as follows. The next two sections give brief 
overview of polynomial regression and the subset selection approach. In Section 4 the ABFC 
approach is described. Section 5 outlines the related work. The results of the empirical 
evaluations of the proposed methods and their comparison to other well-known regression 
modelling methods are presented in Section 6. Section 7 concludes this chapter. 

 
 
 
 

2. Polynomial regression 
 

In standard regression formulation (Vapnik, 1995; Cherkassky & Mulier, 2007; Hastie et al., 
2003) the goal is to estimate unknown real-valued function in the relationship 
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where   is independent and identically distributed random noise with zero mean, 

),...,,( 21 dxxxx   is d-dimensional input, and y is scalar output. The estimation is made based 
on a finite number of samples (training data) provided in form of matrix x of input values 
for each sample and vector y of output values for each corresponding sample. Using the 
finite number n of training samples ),( jj yx , nj ,...,2,1  one wants to build a model F that 
allows predicting the output values for yet unseen input values as closely as possible. 
Generally, a linear regression model may be defined as a linear expansion of basis functions: 
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in the model (equal to the number of model’s parameters), and )(xfi , ki ,...,2,1  are the 
included basis functions of the input x. As the model is linear in the parameters, the 
estimation of its parameters is typically done using the Ordinary Least-Squares (OLS) 
method (Hastie et al., 2003) minimizing the squared-error: 
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The basis function representation enables moving beyond pure linearity, by defining 
nonlinear transformations of x while still working with linear models (and employing OLS). 
For example, for d = 1 a polynomial model of fixed degree p can be defined as follows: 
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Generally for a given d and p the total number of basis functions in a “full” polynomial, i.e. 
the total number of basis functions in the dictionary, is 
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complex even if the number of its basis functions is lower than the number of data samples, 
as too complex models will overfit the data and produce large prediction errors. 
To obtain a polynomial regression model that does not overfit (nor underfit) and describes 
the relations in data sufficiently well, typically the subset selection approach (Hastie et al., 
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number of input variables and not too high degree. Nevertheless, the search time actually is 
still exponential, hindering their use in problems of larger dimensionality and hindering the 
removal of the restriction of a fixed degree. 
The approach of subset selection assumes that the chosen fixed finite dictionary of the 
predefined basis functions contains a subset that is sufficient to describe the target relation 
sufficiently well. However, in most practical situations the required dictionary (and “full” 
model’s degree) is not known beforehand and needs to be either guessed or found by an 
additional search loop over the whole model building process, since it will differ from one 
regression task to another. In many cases, especially when the studied data dependencies 
are complex and not well studied, this means either a non-trivial and long trial-and-error 
process or acceptance of a possibly inadequate model. 
This chapter presents a sparse polynomial regression model building approach which 
enables adaptive model building without restrictions on model’s degree and does it in 
polynomial time instead of exponential time (in the number of input variables, required 
degree, and target model’s complexity) as well as without the requirement to repeat the 
model building process. The required basis functions are automatically iteratively 
constructed using heuristic search specifically for the particular data at hand instead of 
choosing a subset from a very restricted finite user-defined dictionary (hence the approach 
is called Adaptive Basis Function Construction, ABFC). The basis function dictionary now 
becomes infinite and polynomials of arbitrary complexity can be generated bringing the 
desired flexibility to the model building process. 
The remainder of this chapter is organized as follows. The next two sections give brief 
overview of polynomial regression and the subset selection approach. In Section 4 the ABFC 
approach is described. Section 5 outlines the related work. The results of the empirical 
evaluations of the proposed methods and their comparison to other well-known regression 
modelling methods are presented in Section 6. Section 7 concludes this chapter. 
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3. Subset selection 
 

Models which are too complex (i.e. that fit the training data too well causing overfitting) or 
too simple (i.e. that fit the data poorly causing underfitting) provide poor predictive 
performance for the future data. The most popular approach of controlling model’s 
complexity is subset selection. The goal of subset selection is from a fixed full predetermined 
dictionary of basis functions to find a subset that provides the best predictive performance 
of the model (Hastie et al., 2003; Reunanen, 2006). Now in addition to the estimation of 
model’s parameters, the structure of the model itself needs to be found. 
The total number of possible subsets from a dictionary of size m is m2 . This means that 
searching through all the possible subsets is in most cases impractical. Hence in subset 
selection heuristic search algorithms are used. They efficiently traverse the space of subsets, 
by adding and deleting basis functions of the model, and use model evaluation measure to 
direct the search into areas of increased performance. The typical examples of heuristic 
search algorithms are the greedy hill-climbing algorithms – Forward Selection (also known 
as Sequential Forward Selection, SFS) and Backward Elimination (also known as Sequential 
Backward Selection, SBS) (Hastie et al., 2003; Reunanen, 2006). However, there exist also 
more recently developed search strategies, such as Beam Search, Floating Search, Simulated 
Annealing, Genetic Algorithms etc. (Reunanen, 2006; Pudil et al., 1994; Russel & Norvig, 
2002). 
Summarizing (Russel & Norvig, 2002; Molina et al., 2002; Kohavi & John, 1997), in order to 
characterize a heuristic search problem one must define the following: 1) initial state of the 
search; 2) available state-transition operators; 3) search strategy; 4) evaluation measure; 
5) termination condition. Note that in the context of model building the “initial state” is also 
called “initial model” and the “state-transition operators” are also called “model refinement 
operators”. 
In the subset selection approach for polynomial regression, typically the initial state is the 
model that corresponds to the empty subset, the subset with only the intercept term in it, 
full set of all the defined basis functions, or a randomly chosen subset. The typical basic 
state-transition operators are addition and deletion of a basis function. The typical search 
strategy is the hill-climbing (Russel & Norvig, 2002) which, in combination with the empty 
(or sufficiently small) subset as initial state and the addition operator, becomes SFS, but, in 
combination with the full subset as initial state and the deletion operator, becomes SBS. As 
the evaluation measures classically the statistical significance tests are used (Hastie et al., 2003; 
Dreyfus & Guyon, 2006). However, in model building currently two other strategies 
predominate (Cherkassky & Mulier, 2007; Dreyfus & Guyon, 2006): employment of 
complexity penalization criteria (also known as analytical criteria), e.g., the well-known 
Akaike’s Information Criterion, AIC (Akaike, 1974; Burnham & Anderson, 2002), and the 
resampling techniques, e.g., Hold-Out, Cross-Validation (CV), and Bootstrap (Kohavi, 1995; 
Hastie et al., 2003; Dreyfus & Guyon, 2006). The termination condition typically corresponds 
to finding of a state in that none of the state-transition operators can lead to a better state 
(i.e. a local minimum). 
In polynomial regression, increase in the model’s degree leads to exponential growth of the 
number of basis functions in the dictionary, i.e. )()( pdOmO   (Cherkassky & Mulier, 2007; 
Hastie et al., 2003) and to double-exponential growth of the number of all possible subsets 
(or the number of states in the state space): )2()2(

pdm OO  . When using one or both of the 

two basic state-transition operators, the order of the branching factor of a state in the state 
space in the very first iteration of the search is already equal to the number of basis 
functions in the dictionary, i.e. it also increases exponentially. 
Assuming that the “best” model found in the search process includes a total of k  basis 
functions and that in each iteration the number of basis functions of the current model is 
increased by 1, the total number of evaluated models (subsets) is of order 
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Hence for larger values of d and p (e.g., when m reaches thousands) subset selection is 
rendered impractical. Additionally, because of the branching factor’s direct dependence on 
the number of basis functions in the dictionary, the idea of unrestricted degree (i.e. 
dictionary of infinite size) is hardly applicable. 
The computational problem could be somewhat reduced by choosing a sufficiently small 
but useful value of p before the actual model building is performed. However, generally the 
required maximal degree is not known beforehand and needs to be either guessed or found 
by additional search loop over the whole model building process, since it will differ from 
one regression task to another, which means either a non-trivial and long trial-and-error 
process or acceptance of a possibly inadequate model. 

 
4. Adaptive Basis Function Construction 
 

This section introduces Adaptive Basis Function Construction – a possible alternative to the 
classical subset selection approach. The goal of the ABFC approach is to overcome some of 
the limitations associated with the subset selection, outlined in the previous section. The 
ABFC approach is developed for sparse polynomial regression model building without 
restrictions on model’s degree, enables model building in polynomial time, and does not 
require repetition of the building process (in contrast to the subset selection approach). The 
required basis functions are automatically adaptively constructed specifically for data at 
hand, without using a restricted fixed finite user-defined dictionary. The dictionary in the 
ABFC is infinite and polynomials of arbitrary complexity can be constructed. 

 
4.1 The models and the basis functions 
Generally, a basis function in a polynomial regression model can be defined as a product of 
original input variables each with an individual exponent: 
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where r is a dk   matrix of nonnegative integer exponents such that rij is the exponent of 
the jth variable in the ith basis function. Note that, when for a particular ith basis function 
rij = 0 for all j, the basis function is the intercept term. 
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Given a number of input variables d, matrix r, with a specified number of rows k and with 
specified values for each of its elements, completely defines the structure of a polynomial 
model with all its basis functions. The set of basis functions, included in a model, is then 
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For example, if d = 3 and k = 4, then the matrix 
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which in turn corresponds to the model 
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Formally, the problem of finding the best set of basis functions can be defined as finding the 
best matrix r with the best combination of nonnegative integer values of its elements: 
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where J(.) is an evaluation criterion that evaluates the predictive performance of the 
regression model which corresponds to the set of basis functions. 
As neither the upper bounds of r elements’ values nor the upper bound of k are defined, it is 
possible to generate sparse polynomials of arbitrary complexity, i.e. of arbitrary number of 
basis functions each with an arbitrary exponent for each input variable. This also means that 
the searchable state space is infinite. 

 
4.2 The search process 
Finding the “best” structure of matrix r requires search. In this section the five components 
(outlined in Section 3) of a heuristic search problem are analyzed in the context of the ABFC 
approach. 
Initial state. In ABFC, the state space is infinite therefore a natural initial state of the search is 
the state that corresponds to the simplest model located in the space. In the current study it 
is assumed that the simplest model is the one with a single basis function corresponding to 

the intercept term. However, also other models could be used as initial states, e.g., an empty 
model (without any basis functions), a first degree “full” polynomial, or a small randomly 
generated model. Note that in the current study the basis function corresponding to the 
intercept term stays in the model at all times and is not allowed to be modified or deleted. 
State-transition operators. Using efficient state-transition operators is vital for the search 
process to be efficient. The employed state-transition operators are the main methodological 
difference between the subset selection approach and the ABFC approach. Generally, there 
are two different basic types of modifications to an existing polynomial model: complication 
and simplification (Jekabsons & Lavendels, 2008a). In the subset selection approach, these 
are the addition and deletion operators. The addition operator makes the model more 
complex (by adding a new basis function) but the deletion operator makes it simpler (by 
deleting an existing basis function). 
In the ABFC, the two standard operators from subset selection are replaced with other 
operators that not only add or delete basis functions but also work on the level of individual 
exponents, modifying the existing basis functions and creating modified copies of them. The 
basic idea is to use an operator that adds only the simplest (i.e. linear) basis functions which 
serve as a basic material for further construction of more complex functions using other 
operators. In this manner there is no need for an operator that explicitly tries to add basis 
functions of each possible combination of exponent values (as the addition operator in the 
subset selection). Hence the branching factor of the state space stays not only finite but also 
relatively small while the state space itself is infinite. 
In this study, a set of the following four state-transition operators for the polynomial 
regression model building are proposed. Operator1: Addition of a new linear basis function 
with one of its exponents set to one and all the others set to zero. Operator2: Addition of an 
exact copy of an already existing (in the current model) basis function with one of its 
exponents increased by 1. Operator3: Decreasing of one of the exponents in one of the 
existing basis functions by 1. Operator4: Deleting of one of the existing basis functions. 
Figure 1 gives examples of the operators operating on a simple matrix. 
 

    
Fig. 1. Example of the four state-transition operators operating on a simple matrix: 
(a) Operator1; (b) Operator2; (c) Operator3; (d) Operator4 
 
The set of the four state-transition operators is sufficient to generate any polynomial model 
definable by the matrix r. Their use can also be viewed as a piece of application-domain 
knowledge. While starting the search from the simplest model, the complication operators 
(the first two) do the main job – they “grow” the model. The simplification operators (the 
last two), on the other hand, work as “purifiers” – they decrease the unnecessarily high 
exponents and delete the unnecessary basis functions. Without the use of simplification 
operators, a regression model may contain unnecessarily high exponents and include too 
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Given a number of input variables d, matrix r, with a specified number of rows k and with 
specified values for each of its elements, completely defines the structure of a polynomial 
model with all its basis functions. The set of basis functions, included in a model, is then 
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which in turn corresponds to the model 
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Formally, the problem of finding the best set of basis functions can be defined as finding the 
best matrix r with the best combination of nonnegative integer values of its elements: 
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where J(.) is an evaluation criterion that evaluates the predictive performance of the 
regression model which corresponds to the set of basis functions. 
As neither the upper bounds of r elements’ values nor the upper bound of k are defined, it is 
possible to generate sparse polynomials of arbitrary complexity, i.e. of arbitrary number of 
basis functions each with an arbitrary exponent for each input variable. This also means that 
the searchable state space is infinite. 

 
4.2 The search process 
Finding the “best” structure of matrix r requires search. In this section the five components 
(outlined in Section 3) of a heuristic search problem are analyzed in the context of the ABFC 
approach. 
Initial state. In ABFC, the state space is infinite therefore a natural initial state of the search is 
the state that corresponds to the simplest model located in the space. In the current study it 
is assumed that the simplest model is the one with a single basis function corresponding to 

the intercept term. However, also other models could be used as initial states, e.g., an empty 
model (without any basis functions), a first degree “full” polynomial, or a small randomly 
generated model. Note that in the current study the basis function corresponding to the 
intercept term stays in the model at all times and is not allowed to be modified or deleted. 
State-transition operators. Using efficient state-transition operators is vital for the search 
process to be efficient. The employed state-transition operators are the main methodological 
difference between the subset selection approach and the ABFC approach. Generally, there 
are two different basic types of modifications to an existing polynomial model: complication 
and simplification (Jekabsons & Lavendels, 2008a). In the subset selection approach, these 
are the addition and deletion operators. The addition operator makes the model more 
complex (by adding a new basis function) but the deletion operator makes it simpler (by 
deleting an existing basis function). 
In the ABFC, the two standard operators from subset selection are replaced with other 
operators that not only add or delete basis functions but also work on the level of individual 
exponents, modifying the existing basis functions and creating modified copies of them. The 
basic idea is to use an operator that adds only the simplest (i.e. linear) basis functions which 
serve as a basic material for further construction of more complex functions using other 
operators. In this manner there is no need for an operator that explicitly tries to add basis 
functions of each possible combination of exponent values (as the addition operator in the 
subset selection). Hence the branching factor of the state space stays not only finite but also 
relatively small while the state space itself is infinite. 
In this study, a set of the following four state-transition operators for the polynomial 
regression model building are proposed. Operator1: Addition of a new linear basis function 
with one of its exponents set to one and all the others set to zero. Operator2: Addition of an 
exact copy of an already existing (in the current model) basis function with one of its 
exponents increased by 1. Operator3: Decreasing of one of the exponents in one of the 
existing basis functions by 1. Operator4: Deleting of one of the existing basis functions. 
Figure 1 gives examples of the operators operating on a simple matrix. 
 

    
Fig. 1. Example of the four state-transition operators operating on a simple matrix: 
(a) Operator1; (b) Operator2; (c) Operator3; (d) Operator4 
 
The set of the four state-transition operators is sufficient to generate any polynomial model 
definable by the matrix r. Their use can also be viewed as a piece of application-domain 
knowledge. While starting the search from the simplest model, the complication operators 
(the first two) do the main job – they “grow” the model. The simplification operators (the 
last two), on the other hand, work as “purifiers” – they decrease the unnecessarily high 
exponents and delete the unnecessary basis functions. Without the use of simplification 
operators, a regression model may contain unnecessarily high exponents and include too 
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many unnecessary basis functions, at the same time preventing truly necessary 
modifications (this is also known as the nesting effect (Pudil et al., 1994)) and increasing 
overfitting. Additionally, for all the state-transition operators a special care is taken to 
prevent basis function duplicates in the resulting model as well as to preserve the intercept 
term. 
The initial state and the state-transition operators together form a state space. Figure 2 
shows a small example of a state space in ABFC when the number of input variables is three 
and all the four state-transition operators are used. Each state represents a set of basis 
functions included in the regression model. The ordering of the states in the space is such 
that the simplest models and the simplest basis functions are reached first and, as the search 
goes on, increasingly complex models and basis functions can be reached. 
 

 
Fig. 2. A small example of the first three layers of a state space in ABFC when d = 3 (the 
space is infinite in the direction of more complex models) 
 
In the Section 3, it is stated that in the subset selection approach the branching factor of a 
state in the state space increases exponentially with respect to the number of input variables 
d and pre-specified maximal degree p. In ABFC, the branching factor of the current state in 
the state space depends on d and on the number of basis functions k, already included in the 
current model. The upper bound of the number of possible modifications to a model using 
Operator1 is equal to d; using Operator2 and Operator3 it is equal to dk; and using 
Operator4 it is equal to k. So the upper bound of the branching factor is of order 

)()2( dkOkdkdO   that is linear in respect to both d and k. 
Search strategy. Most of the heuristic search algorithms of the hill-climbing type can be 
divided in two categories: those that assume the model state-transition operators to be of 
either or both the forward and the backward type (e.g., SFS, SBS, and Floating Search 
algorithms) and those that do not distinguish between the two types (e.g., Steepest Descent 
Hill-Climbing and Simulated Annealing). The four operators proposed in this study are 
naturally divided in forward (complication) and backward (simplification) operators; 
therefore in ABFC both categories of the search algorithms can be applied. 
On the other hand, non-hill-climbing search algorithms, e.g., Genetic Algorithms and the 
like, employ completely different kind of operators (i.e. Crossover and Mutation). While 
they could be adapted to work with the infinite dictionary of basis functions, their major 
disadvantage is that, in contrast to the simple hill-climbing algorithms, they are not 
generally biased towards simpler models. In large state spaces they often spend most of the 
time exploring too complex models while the “best” ones are in fact mostly the relatively 
simple ones. 

Evaluation measure. The proposed state-transition operators allow using the same methods 
for model evaluation and comparison as those used in subset selection. However, note that 
the model complexity penalization criteria, in contrast to the resampling techniques, usually 
require substantially lower computational resources as well as are less noisy creating less 
local minima in the state space. 
Termination condition. Many different termination conditions can be used to terminate the 
search process. Some of most widely used ones are the following: a) a user pre-specified 
number of iterations is reached; b) a user pre-specified size of the model is reached; c) using 
the available state-transition operators the model could not be improved any further 
(evaluated by the chosen evaluation measure). The first two termination conditions require 
the user to set a hyperparameter value. This is a non-trivial task as usually the required 
information is not available. Adjusting such a hyperparameter may also require too large 
amounts of computational resources. In this study, the termination condition listed here as 
the last (c) is employed. 

 
4.3 A concrete practical model building method 
This section proposes Floating Adaptive Basis Function Construction (F-ABFC) – a concrete 
practical polynomial regression model building method, which is a special case of the ABFC 
approach. 
The search procedure of the F-ABFC starts with the simplest model (with only the intercept 
term included) and uses the Floating Search strategy (hence the name of the method), in 
particular the Sequential Floating Forward Selection algorithm, SFFS (Pudil et al., 1994), 
together with the set of the four state-transition operators proposed in the previous section. 
In SFFS, the search process consists of two phases – the forward phase and the backward 
phase. In each iteration of the search, the forward phase is done only once but the number of 
times the backward phase is performed is determined dynamically. In the forward phase, all 
the models, which can be generated using the complication operators on the current best 
model, are evaluated and, if there is improvement over the current best model, the best of 
the new models is chosen as the new current best model and the search proceeds to the 
second phase. If there is no improvement, the whole search procedure is stopped. In the 
backward phase, on the other hand, all the models, which can be generated using the 
simplification operators on the current best model, are evaluated. In this phase ever simpler 
models are repeatedly generated and the phase is ended only when, using the available 
simplification operators, it is impossible to generate a model which is better than the current 
best one. After the second phase, the search process always proceeds to the next iteration 
(starting again with the first phase). 
According to the studies of many researchers, the Floating Search algorithms, including 
SFFS, are some of the most efficient heuristic search algorithms for deterministic 
combinatorial optimization in terms of both required computational resources and quality 
of the results (Ferri et al., 1994; Jain & Zongker, 1997; Jain et al., 2000; Zongker & Jain, 1996; 
Pudil et al., 1994; Kudo & Sklansky, 2000; Reunanen, 2006). SFFS also does not have any 
adjustable hyperparameters, has a tendency to generate simpler models than many other 
algorithms, and is very simple to implement. 
As in (Jekabsons & Lavendels, 2008a; Jekabsons, 2008), to evaluate the predictive 
performance of a newly generated model, to perform model comparisons, and to steer the 
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many unnecessary basis functions, at the same time preventing truly necessary 
modifications (this is also known as the nesting effect (Pudil et al., 1994)) and increasing 
overfitting. Additionally, for all the state-transition operators a special care is taken to 
prevent basis function duplicates in the resulting model as well as to preserve the intercept 
term. 
The initial state and the state-transition operators together form a state space. Figure 2 
shows a small example of a state space in ABFC when the number of input variables is three 
and all the four state-transition operators are used. Each state represents a set of basis 
functions included in the regression model. The ordering of the states in the space is such 
that the simplest models and the simplest basis functions are reached first and, as the search 
goes on, increasingly complex models and basis functions can be reached. 
 

 
Fig. 2. A small example of the first three layers of a state space in ABFC when d = 3 (the 
space is infinite in the direction of more complex models) 
 
In the Section 3, it is stated that in the subset selection approach the branching factor of a 
state in the state space increases exponentially with respect to the number of input variables 
d and pre-specified maximal degree p. In ABFC, the branching factor of the current state in 
the state space depends on d and on the number of basis functions k, already included in the 
current model. The upper bound of the number of possible modifications to a model using 
Operator1 is equal to d; using Operator2 and Operator3 it is equal to dk; and using 
Operator4 it is equal to k. So the upper bound of the branching factor is of order 

)()2( dkOkdkdO   that is linear in respect to both d and k. 
Search strategy. Most of the heuristic search algorithms of the hill-climbing type can be 
divided in two categories: those that assume the model state-transition operators to be of 
either or both the forward and the backward type (e.g., SFS, SBS, and Floating Search 
algorithms) and those that do not distinguish between the two types (e.g., Steepest Descent 
Hill-Climbing and Simulated Annealing). The four operators proposed in this study are 
naturally divided in forward (complication) and backward (simplification) operators; 
therefore in ABFC both categories of the search algorithms can be applied. 
On the other hand, non-hill-climbing search algorithms, e.g., Genetic Algorithms and the 
like, employ completely different kind of operators (i.e. Crossover and Mutation). While 
they could be adapted to work with the infinite dictionary of basis functions, their major 
disadvantage is that, in contrast to the simple hill-climbing algorithms, they are not 
generally biased towards simpler models. In large state spaces they often spend most of the 
time exploring too complex models while the “best” ones are in fact mostly the relatively 
simple ones. 

Evaluation measure. The proposed state-transition operators allow using the same methods 
for model evaluation and comparison as those used in subset selection. However, note that 
the model complexity penalization criteria, in contrast to the resampling techniques, usually 
require substantially lower computational resources as well as are less noisy creating less 
local minima in the state space. 
Termination condition. Many different termination conditions can be used to terminate the 
search process. Some of most widely used ones are the following: a) a user pre-specified 
number of iterations is reached; b) a user pre-specified size of the model is reached; c) using 
the available state-transition operators the model could not be improved any further 
(evaluated by the chosen evaluation measure). The first two termination conditions require 
the user to set a hyperparameter value. This is a non-trivial task as usually the required 
information is not available. Adjusting such a hyperparameter may also require too large 
amounts of computational resources. In this study, the termination condition listed here as 
the last (c) is employed. 

 
4.3 A concrete practical model building method 
This section proposes Floating Adaptive Basis Function Construction (F-ABFC) – a concrete 
practical polynomial regression model building method, which is a special case of the ABFC 
approach. 
The search procedure of the F-ABFC starts with the simplest model (with only the intercept 
term included) and uses the Floating Search strategy (hence the name of the method), in 
particular the Sequential Floating Forward Selection algorithm, SFFS (Pudil et al., 1994), 
together with the set of the four state-transition operators proposed in the previous section. 
In SFFS, the search process consists of two phases – the forward phase and the backward 
phase. In each iteration of the search, the forward phase is done only once but the number of 
times the backward phase is performed is determined dynamically. In the forward phase, all 
the models, which can be generated using the complication operators on the current best 
model, are evaluated and, if there is improvement over the current best model, the best of 
the new models is chosen as the new current best model and the search proceeds to the 
second phase. If there is no improvement, the whole search procedure is stopped. In the 
backward phase, on the other hand, all the models, which can be generated using the 
simplification operators on the current best model, are evaluated. In this phase ever simpler 
models are repeatedly generated and the phase is ended only when, using the available 
simplification operators, it is impossible to generate a model which is better than the current 
best one. After the second phase, the search process always proceeds to the next iteration 
(starting again with the first phase). 
According to the studies of many researchers, the Floating Search algorithms, including 
SFFS, are some of the most efficient heuristic search algorithms for deterministic 
combinatorial optimization in terms of both required computational resources and quality 
of the results (Ferri et al., 1994; Jain & Zongker, 1997; Jain et al., 2000; Zongker & Jain, 1996; 
Pudil et al., 1994; Kudo & Sklansky, 2000; Reunanen, 2006). SFFS also does not have any 
adjustable hyperparameters, has a tendency to generate simpler models than many other 
algorithms, and is very simple to implement. 
As in (Jekabsons & Lavendels, 2008a; Jekabsons, 2008), to evaluate the predictive 
performance of a newly generated model, to perform model comparisons, and to steer the 
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search in direction of the most promising models, in F-ABFC the Corrected Akaike’s 
Information Criterion, AICC (Hurvich & Tsai, 1989) is used. AICC is defined as follows: 
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where MSE is the Mean Squared Error of the model of interest in the training data. AICC 
evaluates model’s predictive performance as a trade-off between its accuracy in the training 
data (the first term of (13)) and its complexity (the last two terms of (13)). Calculation of the 
AICC for a single model requires a single estimation of model’s parameters using OLS and 
calculation of MSE in training data. The “best” model is that whose AICC value is the 
lowest. 
The AICC is an improvement over the classical AIC (Akaike, 1974) with the third term in 
(13) added as a correction term intended for working with small-sized data sets. For 
problems with relatively small n, AICC is suited better than AIC but converges to AIC as n 
becomes large (Hurvich & Tsai, 1989). AIC and AICC theoretical justification is based on the 
relationship between the Kullback-Leibner information and the maximum likelihood 
principle (Burnham & Anderson, 2002). Note that AIC as well as AICC does not assume that 
the “true model” (which was presumably used to generate the data) is one of the candidates 
(Burnham & Anderson, 2002). 
In (Jekabsons & Lavendels, 2008b), an issue of the F-ABFC is stated, that, because the 
branching factor of the ABFC’s state space increases very slowly together with d and k, in 
special cases when the data is of low dimensionality (e.g., 4d ) and/or the existing 
structure in the data is very complex (i.e. a very complex model is required) the search 
algorithm may get stuck in a local minimum too early in the search returning a too simple 
and underfitted model. 
As a remedy for this, here an additional recursion of the state-transition operators is 
proposed introducing one hyperparameter for the F-ABFC. The idea is to recursively create 
additional regression models from models already created from the current best model 
using the same state-transition operators with which they were initially created. This 
essentially means that if, for example, the recursion depth is set to 2, Operator1 will create 
not only linear basis functions but also basis functions of the second degree, Operator2 will 
create not only copies of basis functions with degree increased by 1 but also by 2, and 
Operator3 will not only try to decrease degrees by 1 but also by 2. However, as still none of 
the operators add more than one basis function to the model at a time, for the Operator4 the 
recursion is not used. 
The recursion of the operators reduces the number of local minima in the state space which 
is especially important near the starting-point of the search (the initial model) and enables 
the search algorithm to find a much better model. 
Presence of such a “recursion depth” hyperparameter is a disadvantage as now a user 
intervention might be required. However, for larger dimensionalities of the input space 
(when also the increased computational resources are required) it is reasonable to 
completely disable the recursion (by setting the hyperparameter equal to 1) as with large 
dimensionalities the branching factor increases sufficiently fast and the problem of too early 
local minima diminishes. 

Figure 3 shows pseudo-code of F-ABFC’s search procedure. Note that in practical 
implementations of F-ABFC maintaining the set of the newly generated models 
(“MODELS”) is not required as a single model can be created, evaluated, and, if it turns out 
not to be an improvement, immediately discarded. 
 

BestModel  the simplest model 
BestModel.PerformOLSandCalculateAICC
loop

//forward phase
MODELS  {all models created from BestModel using Operator1 and Operator2, 

with no basis function redundancy} 
if RecursionDepth > 1 then

for i  2 to RecursionDepth do
MODELS  MODELS  {all models created from MODELS using the same 

operator (with which they were initially created}, with no basis function 
redundancy}

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the main loop (exit the procedure)
//backward phase
loop

MODELS  {all models created from BestModel using Operator3 and Operator4, 
with no basis function redundancy} 

if RecursionDepth > 1 then
for i  2 to RecursionDepth do

MODELS  MODELS  {all models created from MODELS using Operator3 
(with which they were initially created}, with no basis function redundancy} 

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the sub-loop
end loop 

end loop 
return BestModel 

Fig. 3. Pseudo-code of F-ABFC’s search procedure 
 
In (Jekabsons & Lavendels, 2008a), a version of F-ABFC was developed that slightly differs 
from the one proposed here in that the method used one additional state-transition operator 
and the “recursion depth” hyperparameter was not introduced. The paper (Jekabsons & 
Lavendels, 2008a) empirically demonstrated the computational and predictive performance 
advantages of F-ABFC comparing to subset selection and a number of other popular 
regression modelling methods. F-ABFC advantages in real-world practical applications are 
demonstrated in (Kalnins et al., 2008a; Kalnins et al., 2009b) where it is applied for 
modelling bending and buckling behaviour of different composite material structures. 
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search in direction of the most promising models, in F-ABFC the Corrected Akaike’s 
Information Criterion, AICC (Hurvich & Tsai, 1989) is used. AICC is defined as follows: 
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where MSE is the Mean Squared Error of the model of interest in the training data. AICC 
evaluates model’s predictive performance as a trade-off between its accuracy in the training 
data (the first term of (13)) and its complexity (the last two terms of (13)). Calculation of the 
AICC for a single model requires a single estimation of model’s parameters using OLS and 
calculation of MSE in training data. The “best” model is that whose AICC value is the 
lowest. 
The AICC is an improvement over the classical AIC (Akaike, 1974) with the third term in 
(13) added as a correction term intended for working with small-sized data sets. For 
problems with relatively small n, AICC is suited better than AIC but converges to AIC as n 
becomes large (Hurvich & Tsai, 1989). AIC and AICC theoretical justification is based on the 
relationship between the Kullback-Leibner information and the maximum likelihood 
principle (Burnham & Anderson, 2002). Note that AIC as well as AICC does not assume that 
the “true model” (which was presumably used to generate the data) is one of the candidates 
(Burnham & Anderson, 2002). 
In (Jekabsons & Lavendels, 2008b), an issue of the F-ABFC is stated, that, because the 
branching factor of the ABFC’s state space increases very slowly together with d and k, in 
special cases when the data is of low dimensionality (e.g., 4d ) and/or the existing 
structure in the data is very complex (i.e. a very complex model is required) the search 
algorithm may get stuck in a local minimum too early in the search returning a too simple 
and underfitted model. 
As a remedy for this, here an additional recursion of the state-transition operators is 
proposed introducing one hyperparameter for the F-ABFC. The idea is to recursively create 
additional regression models from models already created from the current best model 
using the same state-transition operators with which they were initially created. This 
essentially means that if, for example, the recursion depth is set to 2, Operator1 will create 
not only linear basis functions but also basis functions of the second degree, Operator2 will 
create not only copies of basis functions with degree increased by 1 but also by 2, and 
Operator3 will not only try to decrease degrees by 1 but also by 2. However, as still none of 
the operators add more than one basis function to the model at a time, for the Operator4 the 
recursion is not used. 
The recursion of the operators reduces the number of local minima in the state space which 
is especially important near the starting-point of the search (the initial model) and enables 
the search algorithm to find a much better model. 
Presence of such a “recursion depth” hyperparameter is a disadvantage as now a user 
intervention might be required. However, for larger dimensionalities of the input space 
(when also the increased computational resources are required) it is reasonable to 
completely disable the recursion (by setting the hyperparameter equal to 1) as with large 
dimensionalities the branching factor increases sufficiently fast and the problem of too early 
local minima diminishes. 

Figure 3 shows pseudo-code of F-ABFC’s search procedure. Note that in practical 
implementations of F-ABFC maintaining the set of the newly generated models 
(“MODELS”) is not required as a single model can be created, evaluated, and, if it turns out 
not to be an improvement, immediately discarded. 
 

BestModel  the simplest model 
BestModel.PerformOLSandCalculateAICC
loop

//forward phase
MODELS  {all models created from BestModel using Operator1 and Operator2, 

with no basis function redundancy} 
if RecursionDepth > 1 then

for i  2 to RecursionDepth do
MODELS  MODELS  {all models created from MODELS using the same 

operator (with which they were initially created}, with no basis function 
redundancy}

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the main loop (exit the procedure)
//backward phase
loop

MODELS  {all models created from BestModel using Operator3 and Operator4, 
with no basis function redundancy} 

if RecursionDepth > 1 then
for i  2 to RecursionDepth do

MODELS  MODELS  {all models created from MODELS using Operator3 
(with which they were initially created}, with no basis function redundancy} 

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the sub-loop
end loop 

end loop 
return BestModel 

Fig. 3. Pseudo-code of F-ABFC’s search procedure 
 
In (Jekabsons & Lavendels, 2008a), a version of F-ABFC was developed that slightly differs 
from the one proposed here in that the method used one additional state-transition operator 
and the “recursion depth” hyperparameter was not introduced. The paper (Jekabsons & 
Lavendels, 2008a) empirically demonstrated the computational and predictive performance 
advantages of F-ABFC comparing to subset selection and a number of other popular 
regression modelling methods. F-ABFC advantages in real-world practical applications are 
demonstrated in (Kalnins et al., 2008a; Kalnins et al., 2009b) where it is applied for 
modelling bending and buckling behaviour of different composite material structures. 
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4.4 Computational considerations 
Assuming that the “best” model found by the F-ABFC search procedure includes a total of 
k  basis functions and in each iteration the number of basis functions in the current model is 

increased by 1, the total number of evaluated models is of order 
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Consequently, relatively to the typical subset selection methods, the efficiency of the 
F-ABFC increases together with the increase in the number of input variables and in the 
required nonlinearity of the model (the value of p) but decreases together with the increase 
in the complexity k  of the “best” found model. Moreover, the relative efficiency of the 
subset selection additionally substantially decreases in the common case when the required 
value of p is unknown and needs to be found by trying different values. 
Using F-ABFC together with OLS, the associated linear least-squares fitting, required for a 
single model to be evaluated, demand computations of order )( 32 knkO  , where 2nk  
operations are required for filling a kk   matrix and 3k  operations are required for solving 
a linear equation system (Hastie et al., 2003). However, none of the proposed state-transition 
operators operate on more than one basis function of a model at a time meaning that, each 
time the parameters of a newly created model are calculated, only one row and one column 
of the kk   matrix will change. Recalculating only the elements of the corresponding row 
and column, reduces the order of the computations to )( 3knkO  . Moreover, as the 
Operator4 does not modify any basis function (only deletes one), the order of the 
computations for this particular operator reduces further to )( 3kO . 
Yet it must be noted that the F-ABFC can still become computationally rather demanding, 
especially when the number of input variables and/or the number of samples in the training 
data gets very large. This is the price to pay for the high flexibility of the method. 

 
4.5 Convergence of the search process 
The F-ABFC’s search algorithm is cycle-free because a new model is allocated to 
“BestModel” (Figure 3) only if it is better than the old one (according to AICC). Moreover, as 
the AICC criterion tries to estimate model’s true predictive performance, the algorithm will 
seek for the best trade-off between too simple and too complex models and will stop 
somewhere in-between them. Additionally there is also a hard bound – the number of basis 
functions in a model will never exceed the number of samples in the training data as 
otherwise the OLS cannot estimate model’s parameters. 
It should also be noted that, although the state space of F-ABFC is infinite, in practice the 
models of the best predictive performance are normally located in the part of the space that 
is relatively near to the initial state where all the models (and their basis functions) are 
relatively simple and do not yet neither overfit the data nor have basis functions more than 
samples in the training data. This also means that really only a small finite fraction of the 
whole infinite state space must be explored. 

 

4.6 Selection bias, selection instability, and model averaging 
There are two issues that to some extent plague all the methods of model building 
(including subset selection and ABFC), especially when working with relatively little data – 
selection bias and selection instability (also called selection variance). While the issues are 
attributable to virtually any model building method, they are commonly ignored frequently 
resulting in models of lower predictive performance. 
Selection bias occurs when in the search procedure one uses the same data to compute 
model’s parameters, to perform model building (i.e. evaluation of candidate models, 
selection of the best one, and steering the search in direction of the most promising models), 
and to select the final “best” model which will be returned as the result of the model 
building process (Reunanen, 2003; Reunanen, 2006, Loughrey & Cunningham, 2004; 
Jekabsons, 2008). The problem is that the more candidates are visited during the search, the 
greater the likelihood of finding a model that has high accuracy in the training set while 
having a very low predictive performance (accuracy in the test set) (Reunanen, 2003; 
Reunanen, 2006; Kohavi & John, 1997; Loughrey & Cunningham, 2004). The random 
fluctuations in the data will improve the evaluations of some models more than others. 
The problem is relevant regardless of the model evaluation measure used – statistical 
significance tests, complexity penalization criteria, or resampling techniques. In addition, 
the selection bias occurs even when performing model evaluation using completely 
independent validation data set (Kohavi & John, 1997; Reunanen, 2006). In any case, the 
more intensive (relative to the number of samples) is the search process, the larger is the 
selection bias, and, the larger is the noise in the data, the potentially larger is the harm (in 
terms of overfitting) done by the selection bias. 
While the deterministic search algorithms of the hill-climbing type (including the SFFS 
algorithm of the F-ABFC) are usually less intensive and consequently more robust against 
overfitting than, for example, Simulated Annealing or Genetic Algorithms (Loughrey & 
Cunningham, 2004; Guyon & Elisseeff, 2003), the problem of selection bias remains relevant. 
The second issue, selection instability, is related to the fact that small perturbations of the 
data (deleting or adding samples, adding noise, rescaling the values) can lead the model 
building process to vastly different models. This is because the large variability of estimates 
of the evaluation methods can lead to different local minima (Breiman, 1996; Kotsiantis & 
Pintelas, 2004; Guyon & Elisseeff, 2003; Cherkassky & Mulier, 2007). This variance is 
undesirable because variance is often the symptom of a “bad” model that does not 
generalize well and because the model may be failing to capture the “whole picture” 
(Guyon & Elisseeff, 2003). 
One of the ways to reduce both the selection bias and the selection instability, is to employ 
model combining (also called model ensembling or averaging) techniques (Breiman, 1996; 
Opitz & Maclin, 1999; Cherkassky & Mulier, 2007; Jekabsons, 2008). While a typical model 
building process usually consists in choosing only one best description for the data 
discarding the remainder, combining a number of models in some reasonable manner 
appears more reliably accurate as this can have the effect of smoothing out erratic models 
that overfit the data and gain more stability in the modelling process. 
A typical model combination procedure consists of a two-stage process (Cherkassky & 
Mulier, 2007). In the first stage, a number of different models are constructed. The 
parameters of these models are then held fixed. In the second stage, these individual models 
are linearly combined to produce the final model. 
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4.4 Computational considerations 
Assuming that the “best” model found by the F-ABFC search procedure includes a total of 
k  basis functions and in each iteration the number of basis functions in the current model is 

increased by 1, the total number of evaluated models is of order 
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Consequently, relatively to the typical subset selection methods, the efficiency of the 
F-ABFC increases together with the increase in the number of input variables and in the 
required nonlinearity of the model (the value of p) but decreases together with the increase 
in the complexity k  of the “best” found model. Moreover, the relative efficiency of the 
subset selection additionally substantially decreases in the common case when the required 
value of p is unknown and needs to be found by trying different values. 
Using F-ABFC together with OLS, the associated linear least-squares fitting, required for a 
single model to be evaluated, demand computations of order )( 32 knkO  , where 2nk  
operations are required for filling a kk   matrix and 3k  operations are required for solving 
a linear equation system (Hastie et al., 2003). However, none of the proposed state-transition 
operators operate on more than one basis function of a model at a time meaning that, each 
time the parameters of a newly created model are calculated, only one row and one column 
of the kk   matrix will change. Recalculating only the elements of the corresponding row 
and column, reduces the order of the computations to )( 3knkO  . Moreover, as the 
Operator4 does not modify any basis function (only deletes one), the order of the 
computations for this particular operator reduces further to )( 3kO . 
Yet it must be noted that the F-ABFC can still become computationally rather demanding, 
especially when the number of input variables and/or the number of samples in the training 
data gets very large. This is the price to pay for the high flexibility of the method. 

 
4.5 Convergence of the search process 
The F-ABFC’s search algorithm is cycle-free because a new model is allocated to 
“BestModel” (Figure 3) only if it is better than the old one (according to AICC). Moreover, as 
the AICC criterion tries to estimate model’s true predictive performance, the algorithm will 
seek for the best trade-off between too simple and too complex models and will stop 
somewhere in-between them. Additionally there is also a hard bound – the number of basis 
functions in a model will never exceed the number of samples in the training data as 
otherwise the OLS cannot estimate model’s parameters. 
It should also be noted that, although the state space of F-ABFC is infinite, in practice the 
models of the best predictive performance are normally located in the part of the space that 
is relatively near to the initial state where all the models (and their basis functions) are 
relatively simple and do not yet neither overfit the data nor have basis functions more than 
samples in the training data. This also means that really only a small finite fraction of the 
whole infinite state space must be explored. 

 

4.6 Selection bias, selection instability, and model averaging 
There are two issues that to some extent plague all the methods of model building 
(including subset selection and ABFC), especially when working with relatively little data – 
selection bias and selection instability (also called selection variance). While the issues are 
attributable to virtually any model building method, they are commonly ignored frequently 
resulting in models of lower predictive performance. 
Selection bias occurs when in the search procedure one uses the same data to compute 
model’s parameters, to perform model building (i.e. evaluation of candidate models, 
selection of the best one, and steering the search in direction of the most promising models), 
and to select the final “best” model which will be returned as the result of the model 
building process (Reunanen, 2003; Reunanen, 2006, Loughrey & Cunningham, 2004; 
Jekabsons, 2008). The problem is that the more candidates are visited during the search, the 
greater the likelihood of finding a model that has high accuracy in the training set while 
having a very low predictive performance (accuracy in the test set) (Reunanen, 2003; 
Reunanen, 2006; Kohavi & John, 1997; Loughrey & Cunningham, 2004). The random 
fluctuations in the data will improve the evaluations of some models more than others. 
The problem is relevant regardless of the model evaluation measure used – statistical 
significance tests, complexity penalization criteria, or resampling techniques. In addition, 
the selection bias occurs even when performing model evaluation using completely 
independent validation data set (Kohavi & John, 1997; Reunanen, 2006). In any case, the 
more intensive (relative to the number of samples) is the search process, the larger is the 
selection bias, and, the larger is the noise in the data, the potentially larger is the harm (in 
terms of overfitting) done by the selection bias. 
While the deterministic search algorithms of the hill-climbing type (including the SFFS 
algorithm of the F-ABFC) are usually less intensive and consequently more robust against 
overfitting than, for example, Simulated Annealing or Genetic Algorithms (Loughrey & 
Cunningham, 2004; Guyon & Elisseeff, 2003), the problem of selection bias remains relevant. 
The second issue, selection instability, is related to the fact that small perturbations of the 
data (deleting or adding samples, adding noise, rescaling the values) can lead the model 
building process to vastly different models. This is because the large variability of estimates 
of the evaluation methods can lead to different local minima (Breiman, 1996; Kotsiantis & 
Pintelas, 2004; Guyon & Elisseeff, 2003; Cherkassky & Mulier, 2007). This variance is 
undesirable because variance is often the symptom of a “bad” model that does not 
generalize well and because the model may be failing to capture the “whole picture” 
(Guyon & Elisseeff, 2003). 
One of the ways to reduce both the selection bias and the selection instability, is to employ 
model combining (also called model ensembling or averaging) techniques (Breiman, 1996; 
Opitz & Maclin, 1999; Cherkassky & Mulier, 2007; Jekabsons, 2008). While a typical model 
building process usually consists in choosing only one best description for the data 
discarding the remainder, combining a number of models in some reasonable manner 
appears more reliably accurate as this can have the effect of smoothing out erratic models 
that overfit the data and gain more stability in the modelling process. 
A typical model combination procedure consists of a two-stage process (Cherkassky & 
Mulier, 2007). In the first stage, a number of different models are constructed. The 
parameters of these models are then held fixed. In the second stage, these individual models 
are linearly combined to produce the final model. 
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Both stages can be done in different ways. In this study, to increase the predictive 
performance of models built by the F-ABFC, a CV-type resampling of the training data 
together with unweighted model averaging (Opitz & Maclin, 1999; Duin, 2002) is employed. 
As this resampling and model averaging works on top of the F-ABFC, the method is called 
Ensemble of Floating Adaptive Basis Function Construction (EF-ABFC). During resampling, 
the whole training data is randomly divided into v disjoint subsets (v typically being equal 
to 10). Then v overlapping training data sets are constructed by dropping out a different one 
of these v subsets. Such procedure is also employed to construct training sets for v-fold CV, 
so model ensembles constructed in this way are also called cross-validated committees 
(Parmanto et al., 1996). 
Combining models via simple unweighted averaging requires them to be not too 
underfitted as well as not too overfitted (Duin, 2002). To lower the overfitting, in each CV 
iteration the unused 10th data subset is used as a validation data set for “re-evaluation” 
(using MSE) of the best models of each F-ABFC iteration and for selection of the one “final 
best” model from any iteration. Note that this validation set is never used for model 
evaluation during the search. Instead it is used strictly only for the “re-evaluation” and 
“re-selection” after the F-ABFC search process has already ended. Also note that as an 
evaluation measure in the search algorithm still the AICC is applied. This “re-evaluation” 
using the validation data set can detect whether the search process at some iteration may 
have started to generate overfitted models and select a model of some earlier iteration that is 
(hopefully) not (or at least less) overfitted (see Figure 4). 
 

 
Fig. 4. An example of how a less overfitted model is selected using “re-evaluation” in 
validation set. Note that here starting from the 35th iteration the AICC values also start to 
increase (in contrast to the training error which always decreases) however this might be too 
late due to selection bias 
 
The so far described process produces v models built by v independent F-ABFC runs each 
using a different combination of CV-partitioned data subsets. Next, the v models from the v 
CV iterations are combined using the unweighted model averaging. Note that prior to 
combining, all the models are re-fitted to the whole training data set (without the CV 
partitioning). This is done to compensate for the smaller training sets used during the 
individual model building. 
Model combining by unweighted model averaging consists in taking an unweighted 
average of predictions of all the models: 
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where Fi is ith individual model fro the ith CV iteration and Fcomb is the combined model. For 
polynomial regression this simply means summation of all the polynomials and then a 
division of all the parameters of Fcomb (that is also a polynomial) by v. Note that the 
parameter values of Fcomb will not necessarily be optimal in the sense of the least-squares loss 
(in fact they will be optimal only in special cases, e.g., when all Fi’s are identical). 
The employed model combining method is similar to Bagging (bootstrap aggregating 
(Breiman, 1996)) where the training set is bootstrapped (usually to build varied decision 
trees), and the unweighted average of the resulting models is taken. 
Figure 5 gives an outline of the EF-ABFC model building process when the number of CV 
folds v is three. Note however that for all the practical applications of this study v = 10 is 
used. This is because too small number of models in ensemble will yield too little diversity 
hindering the models to correct each others errors, but, on the other hand, using too many 
models will yield no further improvement (Breiman, 1996; Opitz & Maclin, 1999; Kotsiantis 
& Pintelas, 2004; Parmanto et al., 1996). Moreover, too large number of CV folds can yield 
unreliable validation MSE estimates for the selection of the individual final best models, as 
then the individual validation sets may be too small. 
 

 
Fig. 5. An outline of the EF-ABFC modelling process when v = 3: (a) search for the best 
model according to AICC using F-ABFC; (b) select the one final best model according to 
MSE in validation data set; (c) ret-fit the model (recalculate its parameters) using the whole 
training data; (d) combine the models 
 
In recent literature, there is ever growing confidence that model ensembles often perform 
better than individual models and consistently reduce prediction error (Breiman, 1996; 
Opitz & Maclin, 1999; Kotsiantis & Pintelas, 2004; Jekabsons, 2008). However, model 
ensembles are not always the best solutions (Kotsiantis & Pintelas, 2004): if there is too little 
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Both stages can be done in different ways. In this study, to increase the predictive 
performance of models built by the F-ABFC, a CV-type resampling of the training data 
together with unweighted model averaging (Opitz & Maclin, 1999; Duin, 2002) is employed. 
As this resampling and model averaging works on top of the F-ABFC, the method is called 
Ensemble of Floating Adaptive Basis Function Construction (EF-ABFC). During resampling, 
the whole training data is randomly divided into v disjoint subsets (v typically being equal 
to 10). Then v overlapping training data sets are constructed by dropping out a different one 
of these v subsets. Such procedure is also employed to construct training sets for v-fold CV, 
so model ensembles constructed in this way are also called cross-validated committees 
(Parmanto et al., 1996). 
Combining models via simple unweighted averaging requires them to be not too 
underfitted as well as not too overfitted (Duin, 2002). To lower the overfitting, in each CV 
iteration the unused 10th data subset is used as a validation data set for “re-evaluation” 
(using MSE) of the best models of each F-ABFC iteration and for selection of the one “final 
best” model from any iteration. Note that this validation set is never used for model 
evaluation during the search. Instead it is used strictly only for the “re-evaluation” and 
“re-selection” after the F-ABFC search process has already ended. Also note that as an 
evaluation measure in the search algorithm still the AICC is applied. This “re-evaluation” 
using the validation data set can detect whether the search process at some iteration may 
have started to generate overfitted models and select a model of some earlier iteration that is 
(hopefully) not (or at least less) overfitted (see Figure 4). 
 

 
Fig. 4. An example of how a less overfitted model is selected using “re-evaluation” in 
validation set. Note that here starting from the 35th iteration the AICC values also start to 
increase (in contrast to the training error which always decreases) however this might be too 
late due to selection bias 
 
The so far described process produces v models built by v independent F-ABFC runs each 
using a different combination of CV-partitioned data subsets. Next, the v models from the v 
CV iterations are combined using the unweighted model averaging. Note that prior to 
combining, all the models are re-fitted to the whole training data set (without the CV 
partitioning). This is done to compensate for the smaller training sets used during the 
individual model building. 
Model combining by unweighted model averaging consists in taking an unweighted 
average of predictions of all the models: 
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where Fi is ith individual model fro the ith CV iteration and Fcomb is the combined model. For 
polynomial regression this simply means summation of all the polynomials and then a 
division of all the parameters of Fcomb (that is also a polynomial) by v. Note that the 
parameter values of Fcomb will not necessarily be optimal in the sense of the least-squares loss 
(in fact they will be optimal only in special cases, e.g., when all Fi’s are identical). 
The employed model combining method is similar to Bagging (bootstrap aggregating 
(Breiman, 1996)) where the training set is bootstrapped (usually to build varied decision 
trees), and the unweighted average of the resulting models is taken. 
Figure 5 gives an outline of the EF-ABFC model building process when the number of CV 
folds v is three. Note however that for all the practical applications of this study v = 10 is 
used. This is because too small number of models in ensemble will yield too little diversity 
hindering the models to correct each others errors, but, on the other hand, using too many 
models will yield no further improvement (Breiman, 1996; Opitz & Maclin, 1999; Kotsiantis 
& Pintelas, 2004; Parmanto et al., 1996). Moreover, too large number of CV folds can yield 
unreliable validation MSE estimates for the selection of the individual final best models, as 
then the individual validation sets may be too small. 
 

 
Fig. 5. An outline of the EF-ABFC modelling process when v = 3: (a) search for the best 
model according to AICC using F-ABFC; (b) select the one final best model according to 
MSE in validation data set; (c) ret-fit the model (recalculate its parameters) using the whole 
training data; (d) combine the models 
 
In recent literature, there is ever growing confidence that model ensembles often perform 
better than individual models and consistently reduce prediction error (Breiman, 1996; 
Opitz & Maclin, 1999; Kotsiantis & Pintelas, 2004; Jekabsons, 2008). However, model 
ensembles are not always the best solutions (Kotsiantis & Pintelas, 2004): if there is too little 
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data, the gains achieved via an ensemble may not compensate for the decrease in accuracy 
of individual models, each of which now sees an even smaller training set. On the other end, 
if the data set is sufficiently large, even a single flexible model can be quite adequate. Using 
large data sets also substantially decreases potential selection bias, so superiority of 
EF-ABFC over F-ABFC in such situations is expected to diminish. 
The most significant disadvantage of the EF-ABFC compared to F-ABFC is that it requires 
larger computational resources. However, the fact, that before the model combining the v 
models are built completely separately, allows for an easy parallelization of the process 
dividing the execution time by v. In this study however the parallelization is not done. 
The paper (Jekabsons, 2008) empirically demonstrated the computational and predictive 
performance advantages of EF-ABFC comparing to subset selection and a number of other 
popular regression modelling methods. EF-ABFC advantages in real-world practical 
applications are demonstrated in (Kalnins et al., 2008b; Kalnins et al., 2009a) where it is 
applied for modelling bending and buckling behaviour of different composite material 
structures. 

 
4.7 Remarks 
This section covers various aspects (extensions, limitations, etc.) of the ABFC not discussed 
in the previous sections. 

 
4.7.1 Incorporating domain knowledge 
The ABFC methods attempt to model arbitrary dependencies in data with little or no 
knowledge of the system under study. In problems of moderate and large dimensionality 
the user usually is not required to tune any hyperparameters. However, if there is sufficient 
additional domain knowledge outside the specific data at hand, it may be appropriate to 
place some constraints on the final model. If the knowledge is fairly accurate, such 
constraints can improve the accuracy while saving computational resources. 
For example, the constraints might be one or more of the following: 1) limiting the maximal 

degree of all the basis functions (similarly as in the subset selection), i.e. pr
d

j ij  1
0  for 

all i; 2) limiting the maximal value of exponents for each particular input variable in all the 
basis functions, i.e. jij pr 0 for all i, where pj is maximal exponent of the jth variable; 
3) restricting contributions of specific input variables that are not likely to interact with 
others so that those variables can enter the model in basis functions only solely – with 
exponents of all other variables fixed to zero. These constraints, as well as far more 
sophisticated ones, can be easily incorporated in the ABFC. However, note that in all the 
experiments described in this chapter no constraints are used. 

 
4.7.2 Robustness 
The ABFC methods described in this study estimate model parameters via minimization of 
the squared-error loss, i.e. using OLS. However, while the squared-error loss is the most 
commonly used, it is known that it looses its robustness against grossly outlying samples as 
well as in very sparse high-dimensional data sets (Cherkassky & Ma, 2002). 
One solution of this problem is to use a more robust loss function. The squared-error loss in 
ABFC is not fundamental. Any other loss function can be used to estimate the parameters 

and to evaluate the models by simply replacing the routine “PerformOLSandCalculate 
AICC” of the search procedure (Figure 3) with a more robust one. Note that while this 
would make the methods more robust, the computational advantage of OLS would be lost. 
In any case, gross outliers (in output variable as well as input variables) that can be detected 
through a preliminary data analysis should be considered for removal before applying 
ABFC. 

 
4.7.3 Other types of basis functions 
The ABFC methods described in this study can generate regression models with basis 
functions of only nonnegative integer exponents. However, in principle the exponents can 
also be allowed to take negative or even fractional values. Appropriate adaptation of the 
state-transition operators can enable generating such models. Keeping the same initial 
model as before, the search now could go in direction of both positive and negative 
exponents. 

 
4.7.4 Integrating ABFC into other modelling methods 
The result of running an ABFC procedure is a simple polynomial regression model. Such 
models are also utilized as “sub-models” in a number of other regression modelling 
methods. For example, the ABFC methods can be used in Polynomial Neural Networks 
(usually induced by Group Method of Data Handling) (Nikolaev & Iba, 2006) for adaptation 
of each individual neuron’s functional form and degree. The methods also can serve for 
generation of local regression models in Locally-Weighted Regression (also called Moving 
Least Squares) (Cleveland & Devlin, 1988; Kalnins et al., 2008b; Kalnins et al., 2005) 
adaptively generating a model each time a query is received. ABFC can also induce 
piecewise polynomial models for appropriately partitioned data sets. 
The polynomial basis functions can also be viewed as nonlinear transformations (or 
features) of the original input variables. In this manner the ABFC methods can also be 
viewed as methods for automatic adaptive feature construction. For example, the 
constructed features can further serve as inputs for Support Vector Machines (Vapnik, 1995; 
Smola & Scholkopf, 2004) similarly to the features constructed using genetic algorithm in 
(Ritthoff et al., 2002). 
All these applications of ABFC can make the original methods more flexible and therefore, if 
treated appropriately, produce models of higher predictive performance. 

 
4.7.5 Using ABFC for solving classification problems 
The ABFC methods can also be used for solving binary classification problems where the 
output variable y can take value of only either 0 or 1. This can be done, for example, by 
constructing basis functions for logistic regression (also called maximum entropy classifier) 
models. Logistic regression (Hastie et al., 2003; Witten & Frank, 2005) represents log odds of 
y being equal to 1 as a linear model: 
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data, the gains achieved via an ensemble may not compensate for the decrease in accuracy 
of individual models, each of which now sees an even smaller training set. On the other end, 
if the data set is sufficiently large, even a single flexible model can be quite adequate. Using 
large data sets also substantially decreases potential selection bias, so superiority of 
EF-ABFC over F-ABFC in such situations is expected to diminish. 
The most significant disadvantage of the EF-ABFC compared to F-ABFC is that it requires 
larger computational resources. However, the fact, that before the model combining the v 
models are built completely separately, allows for an easy parallelization of the process 
dividing the execution time by v. In this study however the parallelization is not done. 
The paper (Jekabsons, 2008) empirically demonstrated the computational and predictive 
performance advantages of EF-ABFC comparing to subset selection and a number of other 
popular regression modelling methods. EF-ABFC advantages in real-world practical 
applications are demonstrated in (Kalnins et al., 2008b; Kalnins et al., 2009a) where it is 
applied for modelling bending and buckling behaviour of different composite material 
structures. 

 
4.7 Remarks 
This section covers various aspects (extensions, limitations, etc.) of the ABFC not discussed 
in the previous sections. 

 
4.7.1 Incorporating domain knowledge 
The ABFC methods attempt to model arbitrary dependencies in data with little or no 
knowledge of the system under study. In problems of moderate and large dimensionality 
the user usually is not required to tune any hyperparameters. However, if there is sufficient 
additional domain knowledge outside the specific data at hand, it may be appropriate to 
place some constraints on the final model. If the knowledge is fairly accurate, such 
constraints can improve the accuracy while saving computational resources. 
For example, the constraints might be one or more of the following: 1) limiting the maximal 

degree of all the basis functions (similarly as in the subset selection), i.e. pr
d

j ij  1
0  for 

all i; 2) limiting the maximal value of exponents for each particular input variable in all the 
basis functions, i.e. jij pr 0 for all i, where pj is maximal exponent of the jth variable; 
3) restricting contributions of specific input variables that are not likely to interact with 
others so that those variables can enter the model in basis functions only solely – with 
exponents of all other variables fixed to zero. These constraints, as well as far more 
sophisticated ones, can be easily incorporated in the ABFC. However, note that in all the 
experiments described in this chapter no constraints are used. 

 
4.7.2 Robustness 
The ABFC methods described in this study estimate model parameters via minimization of 
the squared-error loss, i.e. using OLS. However, while the squared-error loss is the most 
commonly used, it is known that it looses its robustness against grossly outlying samples as 
well as in very sparse high-dimensional data sets (Cherkassky & Ma, 2002). 
One solution of this problem is to use a more robust loss function. The squared-error loss in 
ABFC is not fundamental. Any other loss function can be used to estimate the parameters 

and to evaluate the models by simply replacing the routine “PerformOLSandCalculate 
AICC” of the search procedure (Figure 3) with a more robust one. Note that while this 
would make the methods more robust, the computational advantage of OLS would be lost. 
In any case, gross outliers (in output variable as well as input variables) that can be detected 
through a preliminary data analysis should be considered for removal before applying 
ABFC. 

 
4.7.3 Other types of basis functions 
The ABFC methods described in this study can generate regression models with basis 
functions of only nonnegative integer exponents. However, in principle the exponents can 
also be allowed to take negative or even fractional values. Appropriate adaptation of the 
state-transition operators can enable generating such models. Keeping the same initial 
model as before, the search now could go in direction of both positive and negative 
exponents. 

 
4.7.4 Integrating ABFC into other modelling methods 
The result of running an ABFC procedure is a simple polynomial regression model. Such 
models are also utilized as “sub-models” in a number of other regression modelling 
methods. For example, the ABFC methods can be used in Polynomial Neural Networks 
(usually induced by Group Method of Data Handling) (Nikolaev & Iba, 2006) for adaptation 
of each individual neuron’s functional form and degree. The methods also can serve for 
generation of local regression models in Locally-Weighted Regression (also called Moving 
Least Squares) (Cleveland & Devlin, 1988; Kalnins et al., 2008b; Kalnins et al., 2005) 
adaptively generating a model each time a query is received. ABFC can also induce 
piecewise polynomial models for appropriately partitioned data sets. 
The polynomial basis functions can also be viewed as nonlinear transformations (or 
features) of the original input variables. In this manner the ABFC methods can also be 
viewed as methods for automatic adaptive feature construction. For example, the 
constructed features can further serve as inputs for Support Vector Machines (Vapnik, 1995; 
Smola & Scholkopf, 2004) similarly to the features constructed using genetic algorithm in 
(Ritthoff et al., 2002). 
All these applications of ABFC can make the original methods more flexible and therefore, if 
treated appropriately, produce models of higher predictive performance. 

 
4.7.5 Using ABFC for solving classification problems 
The ABFC methods can also be used for solving binary classification problems where the 
output variable y can take value of only either 0 or 1. This can be done, for example, by 
constructing basis functions for logistic regression (also called maximum entropy classifier) 
models. Logistic regression (Hastie et al., 2003; Witten & Frank, 2005) represents log odds of 
y being equal to 1 as a linear model: 
 

    k

i
ii xfaxFPP

1

)()()1(ln , (16) 
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