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Preface

I intend this book to be, firstly, a introduction to calculus based on the hy-
perreal number system. In other words, I will use infinitesimal and infinite
numbers freely. Just as most beginning calculus books provide no logical jus-
tification for the real number system, I will provide none for the hyperreals.
The reader interested in questions of foundations should consult books such as
Abraham Robinson’s Non-standard Analysis or Robert Goldblatt’s Lectures on
the Hyperreals.

Secondly, I have aimed the text primarily at readers who already have some
familiarity with calculus. Although the book does not explicitly assume any
prerequisites beyond basic algebra and trigonometry, in practice the pace is
too fast for most of those without some acquaintance with the basic notions of
calculus.
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Chapter 1

Derivatives

1.1 The arrow paradox

In his famous arrow paradox, Zeno contends that an arrow cannot move since
at every instant of time it is at rest. There are at least two logical problems
hidden in this claim.

1.1.1 Zero divided by zero

In one interpretation, Zeno seems to be saying that, since at every instant of
time the arrow has a definite position, and hence does not travel any distance
during that instant of time, the velocity of the arrow is 0. The question is, if an
object travels a distance 0 in time of duration 0, is the velocity of the object 0?
That is, is

0
0

= 0? (1.1.1)

To answer this question, we need to examine the meaning of dividing one
number by another. If a and b are real numbers, with b 6= 0, then

a

b
= c (1.1.2)

means that
a = b× c. (1.1.3)

In particular, for any real number b 6= 0,

0
b

= 0 (1.1.4)

since b× 0 = 0. Note that if a 6= 0, then

a

0
(1.1.5)

1
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is undefined since there does not exist a real number c for which 0× c is equal
to a. We say that division of a non-zero number by zero is meaningless. On the
other hand,

0
0

(1.1.6)

is undefined because 0 × c = 0 for all real numbers c. For this reason, we say
that division of zero by zero is indeterminate.

The first logical problem exposed by Zeno’s arrow paradox is the problem
of giving determinate meaning to ratios of quantities with zero magnitude. We
shall see that infinitesimals give us one way of giving definite meanings to ratios
of quantities with zero magnitudes, and these ratios will provide the basis for
what we call the differential calculus.

1.1.2 Adding up zeroes

Another possible interpretation of the arrow paradox is that if at every instant
of time the arrow moves no distance, then the total distance traveled by the
arrow is equal to 0 added to itself a large, or even infinite, number of times.
Now if n is any positive integer, then, of course,

n× 0 = 0. (1.1.7)

That is, zero added to itself a finite number of times is zero. However, if an
interval of time is composed of an infinite number of instants, then we are asking
for the product of infinity and zero, that is,

∞× 0. (1.1.8)

One might at first think this result should also be zero; however, more careful
reasoning is needed.

Note that an interval of time, say the interval [0, 1], is composed of an infinity
of instants of no duration. Hence, in this case, the product of infinity and 0
must be 1, the length of the interval. However, the same reasoning applied to
the interval [0, 2] would lead us to think that infinity times 0 is 2. Indeed, as
with the problem of zero divided by 0, infinity times 0 is indeterminate.

Thus the second logical problem exposed by Zeno’s arrow paradox is the
problem of giving determinate meaning to infinite sums of zero magnitudes, or,
in the simplest cases, to products of infinitesimal and infinite numbers.

Since division is the inverse operation of multiplication we should expect a
close connection between these questions. This is in fact the case, as we shall
see when we discuss the fundamental theorem of calculus.

1.2 Rates of change

Suppose x(t) gives the position, at some time t, of an object (such as Zeno’s
arrow) moving along a straight line. The problem we face is that of giving a
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determinate meaning to the idea of the velocity of the object at a specific instant
of time. We first note that we face no logical difficulties in defining an average
velocity over an interval of time of non-zero length. That is, if a < b, then the
object travels a distance

∆x = x(b)− x(a) (1.2.1)

from time t = a to time t = b, an interval of time of length ∆t = b − a, and,
consequently, the average velocity of the object over this interval of time is

v[a,b] =
x(b)− x(a)

b− a
=

∆x

∆t
. (1.2.2)

Example 1.2.1. Suppose an object, such as a lead ball, is dropped from a
height of 100 meters. Ignoring air resistance, the height of the ball above the
earth after t seconds is given by

x(t) = 100− 4.9t2 meters,

a result first discovered by Galileo. Hence, for example, from time t = 0 to time
t = 2 we have

∆x = x(2)− x(0) = (100− (4.9)(4))− 100 = −19.6 meters,

∆t = 2− 0 = 2 seconds,

and so
v[0,2] = −19.6

2
= −9.8 meters/second.

For another example, from time t = 1 to time t = 4 we have

∆x = x(4)− x(1) = 21.6− 95.1 = −73.5,

∆t = 4− 1 = 3 seconds,

and so
v[1,4] = −73.5

3
= −24.5 meters/second.

Note that both of these average velocities are negative because we have taken
the positive direction to be upward from the surface of the earth.

Exercise 1.2.1. Suppose a lead ball is dropped into a well. Ignoring air resis-
tance, the ball will have fallen a distance x(t) = 16t2 feet after t seconds. Find
the average velocity of the ball over the intervals (a) [0, 2], (b) [1, 3], and (c)
[1, 1.5].

Letting ∆t = b− a, we may rewrite (1.2.2) in the form

v[a,a+∆t] =
x(a + ∆t)− x(a)

∆t
. (1.2.3)
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Using (1.2.3), there are two approaches to generalizing the notion of average
velocity over an interval to that of velocity at an instant. The most common
approach, at least since the middle of the 19th century, is to consider the effect
on v[a,a+∆t] as ∆t diminishes in magnitude and defining the velocity at time
t = a to be the limiting value of these average velocities. The approach we
will take in this text is to consider what happens when we take a and b to be,
although not equal, immeasurably close to one another.

Example 1.2.2. If we have, as in the previous example,

x(t) = 100− 4.9t2 meters,

then from time t = 1 to time t = 1 + ∆t we would have

∆x = x(1 + ∆t)− x(1)

= (100− 4.9(1 + ∆t)2)− 95.1

= 4.9− 4.9(1 + 2∆t + (∆t)2)

= −9.8∆t− 4.9(∆t)2 meters.

Hence the average velocity over the interval [1, 1 + ∆t] is

v[1,1+∆t] =
∆x

∆t

=
−9.8∆t− 4.9(∆t)2

∆t
= −9.8− 4.9∆t meters/second.

Note that if, for example, ∆t = 3, then we find

v[1,4] = −9.8− (4.9)(3) = −9.8− 14.7 = −24.5 meters/second,

in agreement with our previous calculations.
Now suppose that the starting time a = 1 and the ending time b are different,

but the difference is so small that it cannot be measured by any real number.
In this case, we call dt = b − a an infinitesimal . Similar to our computations
above, we have

dx = x(1 + dt)− x(1) = −9.8dt− 4.9(dt)2 meters,

the distance traveled by the object from time t = 1 to time t = 1 + dt, and

v[1,1+dt] =
dx

dt
= −9.8− 4.9dt meters/second,

the average velocity of the object over the interval [1, 1 + dt]. However, since dt
is infinitesimal, so is 4.9dt. Hence v[1,1+dt] is immeasurably close to −9.8 meters
per second. Moreover, this is true no matter what the particular value of dt.
Hence we should take the instantaneous velocity of the object at time t = 1 to
be

v(1) = −9.8 meters/second.
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Exercise 1.2.2. As in the previous exercise, suppose a lead ball has fallen
x(t) = 16t2 feet in t seconds. Find the average velocity of the ball over the
interval [1, 1+∆t] and use this result to obtain the answers to parts (b) and (c)
of the previous exercise.

Exercise 1.2.3. Find the average velocity of the ball in the previous exercise
over the interval [1, 1 + dt], where dt is infinitesimal, and use the result to find
the instantaneous velocity of the ball at time t = 1.

Example 1.2.3. To find the velocity of the object of the previous examples at
time t = 3, we compute

dx = x(3 + dt)− x(3)

= (100− 4.9(3 + dt)2 − 55.9

= 44.1− 4.9(9 + 6dt + (dt2))

= −29.4dt− 4.9(dt)2 meters,

from which we obtain

dx

dt
= −29.4− 4.9dt meters/second.

As above, we disregard the immeasurable −4.9dt to obtain the velocity of the
object at time t = 3:

v(3) = −29.4meters/second.

Exercise 1.2.4. Find the velocity of the ball in the previous exercise at time
t = 2.

In general, if x(t) gives the position, at time t, of an object moving along a
straight line, then we define the velocity of the object at a time t to be the real
number which is infinitesimally close to

x(t + dt)− x(t)
dt

, (1.2.4)

provided there is exactly one such number for any value of the nonzero infinites-
imal dt.

Example 1.2.4. For our previous example, we find

dx = x(t + dt)− x(t)

= (100− 4.9(t + dt)2)− (100− 4.9t2)

= −4.9(t + 2tdt + (dt)2)− 4.9t2

= −9.8tdt− 4.9(dt)2 meters
= (−9.8t− 4.9dt)dt.
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Hence
dx

dt
= −9.8t− 4.9dt meters/second,

and so the velocity of the object at time t is

v(t) = −9.8t meters/second.

In particular,
v(1) = −9.8 meters/second

and
v(3) = −9.8(3) = −29.4 meters/second,

as previously computed.

Exercise 1.2.5. Find the velocity of the ball in the previous exercise at time
t. Use your result to verify your previous answers for v(1) and v(2).

Even more generally, we should recognize that velocity is but a particular
example of a rate of change, namely, the rate of change of the position of an
object with respect to time. In general, given any quantity y as a function of
another quantity x, say y = f(x) for some function f , we may ask about the
rate of change of y with respect to x. If x changes from x = a to x = b and we
let

∆x = b− a (1.2.5)

and
∆y = f(b)− f(a) = f(a + ∆x)− f(x), (1.2.6)

then
∆y

∆x
=

f(b)− f(a)
b− a

(1.2.7)

is the average rate of change of y with respect to x; if dx is a nonzero infinites-
imal, then the real number which is infinitesimally close to

dy

dx
=

f(x + dx)− f(x)
dx

(1.2.8)

is the instantaneous rate of change, or, simply, rate of change, of y with respect
to x at x = a. In subsequent sections we will look at this quantity in more
detail, but will consider one more example before delving into technicalities.

Example 1.2.5. Suppose a spherical shaped balloon is being filled with water.
If r is the radius of the balloon in centimeters and V is the volume of the balloon,
then

V =
4
3
πr3 centimeters3.

Since a cubic centimeter of water has a mass of 1 gram, the mass of the water
in the balloon is

M =
4
3
πr3 grams.
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To find the rate of change of the mass of the balloon with respect to the radius
of the balloon, we first compute

dM =
4
3
π(r + dr)3 − 4

3
πr3

=
4
3
π((r3 + 3r2dr + 3r(dr)2 + (dr)3)− r3)

=
4
3
π(3r2 + 3rdr + (dr)2)dr grams,

from which it follows that

dM

dr
=

4
3
π(3r2 + 3rdr + (dr)2) grams/centimeter.

Since both 3rdr and (dr)2 are infinitesimal, the rate of change of mass of the
balloon with respect to the radius of the balloon is

4
3
π(3r2) = 4πr2 gams/centimeer.

For example, when the balloon has a radius of 10 centimeters, the mass of the
water in the balloon is increasing at a rate of

4π(10)2 = 400π grams/centimeter.

It may not be surprising that this is also the surface area of the balloon at that
instant.

Exercise 1.2.6. Show that if A is the area of a circle with radius r, then
dA
dr = 2πr.

1.3 The hyperreals

We will let R denote the set of all real numbers. Intuitively, and historically, we
think of these as the numbers sufficient to measure geometric quantities. For
example, the set of all rational numbers, that is, numbers expressible as the
ratios of integers, is not sufficient for this purpose since, for example, the length
of the diagonal of a square with sides of length 1 is the irrational number

√
2.

There are numerous technical methods for defining and constructing the real
numbers, but, for the purposes of this text, it is sufficient to think of them as
the set of all numbers expressible as infinite decimals, repeating if the number
is rational and non-repeating otherwise.

A positive infinitesimal is any number ε with the property that ε > 0 and
ε < r for any positive real number r. The set of infinitesimals consists of the
positive infinitesimals along with their additive inverses and zero. Intuitively,
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these are the numbers which, except for 0, correspond to quantities which are
too small to measure even theoretically. Again, there are technical ways to make
the definition and constrution of infinitesimals explicit, but they lie beyond the
scope of this text.

The multiplicative inverse of a nonzero infinitesimal is an infinite number.
That is, for any infinitesimal ε 6= 0, the number

N =
1
ε

is an infinite number.
The finite hyperreal numbers are numbers of the form r + ε, where r is a real

number and ε is an infinitesimal. The hyperreal numbers, which we denote ∗R,
consist of the finite hyperreal numbers along with all infinite numbers.

For any finite hyperreal number a, there exists a unique real number r for
which a = r + ε for some infinitesimal ε. In this case, we call r the shadow of a
and write

r = sh(a). (1.3.1)

Alternatively, we may call sh(a) the standard part of a.
We will write a ' b to indicate that a− b is an infinitesimal, that is, that a

and b are infinitesimally close. In particular, for any finite hyperreal number a,
a ' sh(a).

It is important to note that

• if ε and δ are infinitesimals, then so is ε + δ,

• if ε is an infinitesimal and a is a finite hyperreal number, then aε is an
infinitesimal, and

• if ε is a nonzero infinitesimal and a is a hyperreal number with sh(a) 6= 0
(that is, a is not an infinitesimal), then a

ε is infinite.

These are in agreement with our intuition that a finite sum of infinitely small
numbers is still infinitely small and that an infinitely small nonzero number will
divide into any noninfinitesimal quantity an infinite number of times.

Exercise 1.3.1. Show that sh(a + b) = sh(a) + sh(b) and sh(ab) = sh(a)sh(b),
where a and b are any hyperreal numbers.

Exercise 1.3.2. Suppose a is a hyperreal number with sh(a) 6= 0. Show that
sh
(

1
a

)
= 1

sh(a) .

1.4 Continuous functions

As (1.2.8) indicates, we would like to define the rate of change of a function
y = f(x) with respect to x as the shadow of the ratio of two quantities, dy =
f(x + dx) − f(x) and dx, with the latter being a nonzero infinitesimal. From
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the discussion of the previous section, it follows that we can do this if and only
if the numerator dy is also an infinitesimal.

Definition 1.4.1. We say a function f is continuous at a real number c if for
every infinitesimal ε,

f(c + ε) ' f(c) (1.4.1)

Note that f(c + ε) ' f(c) is equivalent to f(c + ε) − f(c) ' 0, that is,
f(c + ε) − f(c) is an infinitesimal. In other words, a function f is continuous
at a real number c if an infinitesimal change in the value of c results in an
infinitesimal change in the value of f .

Example 1.4.1. If f(x) = x2, then, for example, for any infinitesimal ε,

f(3 + ε) = (3 + ε)2 = 9 + 6ε + ε2 ' 9 = f(3).

Hence f is continuous at x = 3. More generally, for any real number x,

f(x + ε) = (x + ε)2 = x2 + 2xε + ε2 ' x2 = f(x),

from which it follows that f is continuous at every real number x.

Exercise 1.4.1. Verify that f(x) = 3x + 4 is continuous at x = 5.

Exercise 1.4.2. Verify that g(t) = t3 is continuous at t = 2.

Given real numbers a and b, we let

(a, b) = {x | x is a real number and a < x < b}, (1.4.2)

(a,∞) = {x | x is a real number and x > a}, (1.4.3)

(−∞, b) = {x | x is a real number and x < b}, (1.4.4)

and
(−∞,∞) = R. (1.4.5)

An open interval is any set of one of these forms.

Definition 1.4.2. We say a function f is continuous on an open interval I if
f is continuous at every real number in I.

Example 1.4.2. From our example above, it follows that f(x) = x2 is contin-
uous on (−∞,∞).

Exercise 1.4.3. Verify that f(x) = 3x + 4 is continuous on (−∞,∞).

Exercise 1.4.4. Verify that g(t) = t3 is continuous on (−∞,∞).
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Figure 1.4.1: Graph of the Heaviside function

Example 1.4.3. We call the function

H(t) =

{
0, if t < 0,

1, if t ≥ 0,

the Heaviside function (see Figure 1.4.1). If ε is a positive infinitesimal, then

H(0 + ε) = H(ε) = 1 = H(0),

whereas
H(0− ε) = H(−ε) = 0.

Since 0 is not infinitesimally close to 1, it follows that H is not continuous at
0. However, for any positive real number a and any infinitesimal ε (positive or
negative),

H(a + ε) = 1 = H(a),

since a + ε > 0, and for any negative real number a and any infinitesimal ε,

H(a + ε) = 0 = H(a),

since a + ε < 0. Thus H is continuous on both (0,∞) and (−∞, 0).

Note that, in the previous example, the Heaviside function satisfies the con-
dition for continuity at 0 for positive infinitesimals but not for negative infinites-
imals. The following definition addresses this situation.

Definition 1.4.3. We say a function f is continuous from the right at a real
number c if for every infinitesimal ε > 0,

f(c + ε) ' f(c). (1.4.6)
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Similarly, we say a function f is continuous from the left at a real number c if
for every infinitesimal ε > 0,

f(c− ε) ' f(c). (1.4.7)

Example 1.4.4. In the previous example, H is continuous from the right at
t = 0, but not from the left.

Of course, if f is continuous both from the left and the right at c, then f is
continuous at c.

Example 1.4.5. Suppose

f(x) =

{
3x + 5, if x ≤ 1,

10− 2x, if x > 1.

If ε is a positive infinitesimal, then

f(1 + ε) = 3(1 + ε) + 5 = 8 + 3ε ' 8 = f(1),

so f is continuous from the right at x = 1, and

f(1− ε) = 3(1− ε) + 5 = 8− 3ε ' 8 = f(1),

so f is continuous from the left at x = 1 as well. Hence f is continuous at x = 1.

Exercise 1.4.5. Verify that the function

U(t) =


0, if t < 0,

1, if 0 ≤ t ≤ 1,

0, if t > 1,

is continuous from the right at t = 0 and continuous from the left at t = 1, but
not continuous at either t = 0 or t = 1. See Figure 1.4.2.

Given real numbers a and b, we let

[a, b] = {x | x is a real number and a ≤ x ≤ b}, (1.4.8)

[a,∞) = {x | x is a real number and x ≥ a}, (1.4.9)

and
(−∞, b] = {x | x is a real number and x ≤ b}. (1.4.10)

A closed interval is any set of one of these forms.

Definition 1.4.4. If a and b are real numbers, we say a function f is contin-
uous on the closed interval [a, b] if f is continuous on the open interval (a, b),
continuous from the right at a, and continuous from the left at b. We say f is
continuous on the closed interval [a,∞) if f is continuous on the open interval
(a,∞) and continuous from the right at a. We say f is continuous on the closed
interval (−∞, b] if f is continuous on (−∞, b) and continuous from the left at b.
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