
3 

Vision Guided Robot Gripping Systems 

Zdzislaw Kowalczuk and Daniel Wesierski 
Gdansk University of Technology 

Poland 

1. Description of the past and recent trends in robot positioning systems 

Industrial robots are used customary without any embedded sensors. They rely on a 
predictable pose of an object (position and orientation in 6 degrees of freedom, 6DOF) when 
performing the task of gripping parts located for instance on palettes or assembly lines. In 
practice though, a part can easily deviate from its ideal nominal location and a robot having 
no embedded sensors can miss or crash into the object. This would lead to damages and 
downtime of such an assembly line.   

1.1 Manual and automated part acquisition 

Manual part acquisition involves human employment. Clearly, it is not a good solution 
because humans are exposed to possible injuries, what increasing medical and social costs. 
Parts are often sharp and heavy. Yet, they are not sterile. Contamination (for instance, dust, 
oil, hair etc.) transferred to critical areas of the object leads to reduction in the quality of 
assembly (inevitably followed by product recalls).   
Conventionally, automated gripping relied on intricate mechanical and electromechanical 
devices known as precision fixtures, which were utilized to ensure that the part was always 
at the programmed pose with respect to the robot. The design of such fixtures is though 
expensive, imposes design constraints, requires frequent maintenance, and has a reduced 
flexibility. 

1.2 2D and 3D robot positioning 

Over the years a variety of techniques have been developed to automate the process of 

gripping parts as an alternative to the existing manual part acquisition. Due to the rapidly 

evolving machine vision technology, vision sensors are playing today a key role in the three-

dimensional robot positioning systems. They are not only cheaper but also far more 

effective. 

A robot with an embedded vision sensor can have greater ‘awareness’ of the scene. It can 
grip objects, which can be non-fixtured, stacked or loosely located. Thus, it enables the robot 
to grip objects that are provided in racks, bins, or on pallets. Regardless of the presentation, 
a vision-guided robot can locate an object for further processing. This generic application of 
robotic guidance is applied in industries such as automotive for the location of power train 
components, sheet metal body parts, complete car bodies, and other parts used in assembly. 
Other industries such as food, pharmaceutical, glass and daily products apply vision guided 
robotic technology to their applications, as well. 
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As a response to the industry needs two major techniques have emerged: 2D and 3D 
machine vision. Two-dimensional machine vision is a well-developed technique and has 
been successfully implemented in the past years. 2D robotic vision systems locate the object 
in 3 degrees of freedom (x, y, and roll angle) based on one image. Consequently, the main 
limitation of 2D vision is its inability to compute part’s rotation outside of a single plane. 
Unfortunately, this does not suffice in many applications that aim to eliminate, for instance, 
the precision fixtures in order to achieve greater versatility. 2D vision systems have proved 
to be very useful in picking objects from moving conveyors. Calibration of such robotic 
systems requires relatively simple methods. 
The problem of creating a vision-guided robot positioning system for 3D part acquisition 
has apparently been studied before. 3D machine vision systems locate the object in 6 degrees 
of freedom (x, y, z and yaw, pitch, roll). We can distinguish here single-image systems which 
compute the object’s pose iteratively using only one image, stereo systems which compute 
the pose analytically based on two overlapping images, and multi-vision systems, which 
combine the stereo-systems in a conventional manner to increase robustness and precision.  
The 3D vision applications, which can position the robot to grip a rigid object using 
information derived only from one image, are gaining an increasing attention. The distances 
between the object features have to be known to the system beforehand for the purpose of 
computing the object’s pose iteratively based on some minimized criteria. This information 
can be taken from a CAD model of the object in a model-based approach. Since only one 
camera is required, the cost of the whole plant is reduced, the cycle time is decreased, and 
the calibration process is made easier. Yet, finding features in one image (and not in 
multiple images)  is simpler for image processing applications (IPAs). However, one-image 
methods have several drawbacks. One of them is that there are some critical configurations 
of points in 3D space, which could limit the number of potential features of the object for 
IPA. Another disadvantage is that these methods give good results if more than 5 points are 
found on the object what increases the processing time of IPA, and, more importantly, it 
increases the risk that not all points are found by IPA what can bring about stopping the 
plant and the entire assembly line. 
Stereovision is thus far more often used in 3D positioning systems as it is simple to be 
implemented due to its analytical form. It computes the distance between the object features 
and the vision sensors, and derives all 3 coordinates of a feature. Having computed at least 3 
features, the pose of the object can be determined. Commonly, more points are used to 
provide a certain degree of redundancy. This method has several disadvantages though: it is 
relatively sensitive to noise, identification of the corresponding features in two images can 
be very difficult (although the epipolar geometry of stereo cameras is very helpful here), and 
its application is confined to small objects due to a relatively small field of view. Multi-
stereo-systems are used to compute the pose of bigger objects as they can examine them 
from opposite sides.  

1.3 Retrieving information based on laser vision 
Laser vision plays a vital role in 3D part acquisition tasks, as well. By painting a part’s 
surface with a laser beam (coherent light), a laser triangulation sensor can determine the 
depth and the orientation of the surface observed. Although such measurements are very 
precise, the use of lasers has several drawbacks, such as long process of relating the features 
to the ‘point cloud’ data, shadowing/occlusion, as well as ergonomic issues when deployed 
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near human operators. Moreover, lasers require using sophisticated interlock mechanisms, 
protective curtains, and goggles, which is very expensive.  

1.4 Flexible assembly systems 

Apart from integrating robots with machine vision, the assembly technology takes yet 
another interesting course. It aims to develop intelligent systems supporting human 
workers instead of replacing them. Such an effect can be gained by combining human skills 
(in particular, flexibility and intelligence) with the advantages of machine systems. It allows 
for creating a next generation of flexible assembly and technology processes. Their 
objectives cover the development of concepts, control algorithms and prototypes of 
intelligent assist robotic systems that allow workplace sharing (assistant robots), time-
sharing with human workers, and pure collaboration with human workers in assembly 
processes. In order to fulfill these objectives new intelligent prototype robots are to be 
developed that integrate power assistance, motion guidance, advanced interaction control 
through sophisticated human-machine interfaces as well as multi-arm robotic systems, 
which integrate human skillfulness and manipulation capabilities. 
Taking into account the above remarks, an analytical robot positioning system (Kowalczuk 
& Wesierski, 2007) guided by stereovision has been developed achieving the repeatability of 
±1 mm and ±1 deg as a response to rising demands for safe, cost-effective, versatile, precise, 
and automated gripping of rigid objects, deviated in three-dimensional space (in 6DOF). 
After calibration, the system can be assessed for gripping parts during depalletizing, racking 
and un-racking, picking from assembly lines or even from bins, in which the parts are 
placed randomly. Such an effect is not possible to be obtained by robots without vision 
guidance. The Matlab Calibration Toolbox (MCT) software can be used for calibrating the 
system. Mathematical formulas for robot positioning and calibration developed here can be 
implemented in industrial tracking algorithms. 

2. 3D object pose estimation based on single and stereo images 

The entire vision-guided robot positioning system for object picking shall consist of three 
essential software modules: image processing application to retrieve object’s features, 
mathematics involving calibration and transformations between CSs to grip the object, and 
communication interface to control the automatic process of gripping. 

2.1 Camera model 

In this chapter we explain how to map a point from a 3D scene onto the 2D image plane of 
the camera. In particular, we distinguish several parameters of the camera to determine the 
point mapping mathematically. These parameters comprise a model of the camera applied. 
In particular, such a model represents a mathematical description of how the light reflected 
or emitted at points in a 3D scene is projected onto the image plane of the camera. In this 
Section we will be concerned with a projective camera model often referred to as a pinhole 
camera model. It is a model of a pinhole camera having its aperture infinitely small (reduced 
to a single point). With such a model, a point in space, represented by a vector characterized 

by three coordinates 
T

C C C Cr x y z= ⎡ ⎤⎣ ⎦f
, is mapped to a point 

T
S S Sr x y= ⎡ ⎤⎣ ⎦f

in the 

sensor plane, where the line joining the point Cr
f

 with a center of projection OC meets the 
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sensor plane, as shown in Fig.1. The center of projection OC , also called the camera center, is 

the origin of a coordinate system (CS) { }ccc ZYX ˆ,ˆ,ˆ  in which the point Cr
f

 is defined (later 

on, this system we will be referred to as the Camera CS). By using the triangle similarity rule 

(confer Fig.1) one can easily see that the point Cr
f

 is mapped to the following point: 

T

⎥⎦
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⎡ −−=
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that means that  
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which describes the central projection mapping from Euclidean space R3 to R2. As the 

coordinate zC cannot be reconstructed, the depth information is lost.  
 

 

Fig. 1. Right side view of the camera-lens system  

The line passing through the camera center OC and perpendicular to the sensor plane is 

called the principal axis of the camera. The point where the principal axis meets the sensor 

plane is called a principal point, which is denoted in Fig. 1 as C. 

The projected point Sr
f

has negative coordinates with respect to the positive coordinates of 

the point Cr
f

due to the fact that the projection inverts the image. Let us consider, for 

instance, the coordinate yC of the point Cr
f

. It has a negative value in space because the axis 

CŶ  points downwards. However, after projecting it onto the sensor plane it gains a positive 

value. The same concerns the coordinate xC. In order to omit introducing negative 

coordinates to point Sr
f

, we can rotate the image plane by 180 deg around the axes CX̂  and 
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CŶ  obtaining a non-existent plane, called an imaginary sensor plane. As can be seen in Fig. 1, 

the coordinates of the point 'Sr
f

 directly correspond to the coordinates of point Cr
f

, and the 
projection law holds as well. In this Chapter we shall thus refer to the imaginary sensor 
plane. 
Consequently, the central projection can be written in terms of matrix multiplication: 
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where 
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M  is called a camera matrix. 

The pinhole camera describes the ideal projection. As we use CCD cameras with lens, the 
above model is not sufficient enough for precise measurements because factors like 
rectangular pixels and lens distortions can easily occur. In order to describe the point 
mapping more accurately, i.e. from the 3D scene measured in millimeters onto the image 
plane measured in pixels, we extend our pinhole model by introducing additional 
parameters into both the camera matrix M and the projection equation (2). These parameters 
will be referred to as intern camera parameters.  
Intern camera parameters The list of intern camera parameters contains the following 
components: 

• distortion 

• focal length (also known as a camera constant)  

• principal point offset 

• skew coefficient. 
Distortion   In optics the phenomenon of distortion refers to lens and is called lens distortion. 
It is an abnormal rendering of lines of an image, which most commonly appear to be 
bending inward (pincushion distortion) or outward (barrel distortion), as shown in Fig. 2.   
 

 

Fig. 2. Distortion: lines forming pincushion (left image) and lines forming a barrel (right 
image) 

Since distortion is a principal phenomenon that affects the light rays producing an image, 
initially we have to apply the distortion parameters to the following normalized camera 
coordinates  
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Using the above and letting 22
normnorm yxh += , we can include the effect of distortion as 

follows:  
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where  xd and yd  stand for normalized distorted coordinates and dx1 and dx2 are tangential 

distortion parameters defined as:  
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The distortion parameters k1 through k5 describe both radial and tangential distortion. Such 

a model introduced by Brown in 1966 and called a "Plumb Bob" model is used in the MCT 

tool. 

Focal length  Each camera has an intern parameter called focal length fc, also called a camera 

constant. It is the distance from the center of projection OC to the sensor plane and is directly 

related to the focal length of the lens, as shown in Fig. 3. Lens focal length f is the distance in 

air from the center of projection OC to the focus, also known as focal point.  

In Fig. 3 the light rays coming from one point of the object converge onto the sensor plane 

creating a sharp image. Obviously, the distance d from the camera to an object can vary. 

Hence, the camera constant fc has to be adjusted to different positions of the object by 

moving the lens to the right or left along the principal axis (here cẐ -axis), which changes 

the distance OC . Certainly, the lens focal length always remains the same, that is 

=OF const. 

 

 

Fig. 3. Left side view of the camera-lens system 
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The camera focal length fc might be roughly derived from the thin lens formula:   

 
fd

df
f

fdf
C

C −=⇒=+ 111
 (5) 

Without loss of generality, let us assume that a lens has its focal length of f = 16 mm. The 

graph below represents the camera constant )(dfC  as a function of the distance d. 

 

Fig. 4. Camera constant fc in terms of the distance d 

As can be seen from equation (5), when the distance goes to infinity, the camera constant 

equals to the focal length of the lens, what can be inferred from Fig. 4, as well.  Since in 

industrial applications the distance ranges from 200 to 5000 mm, it is clear that the camera 

constant is always greater than the focal length of the lens. Because physical measurement of 

the distance is overly erroneous, it is generally recommended to use calibrating algorithms, 

like MCT, to extract this parameter. Let us assume for the time being that the camera matrix 

is represented by  
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Principal point offset   The location of the principal point C on the sensor plane is most 

important since it strongly influences the precision of measurements. As has already been 

mentioned above, the principal point is the place where the principal axis meets the sensor 

plane. In CCD camera systems the term principal axis refers to the lens, as shown in both 

Fig. 1 and Fig. 3. Thus it is not the camera but the lens mounted on the camera that 

determines this point and the camera’s coordinate system.  

In (1) it is assumed that the origin of the sensor plane is at the principal point, so that the 
Sensor Coordinate System is parallel to the Camera CS and their origins are only the camera 
constant away from each other. It is, however, not truthful in reality. Thus we have to 
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compute a principal point offset [ ]T00 yx CC  from the sensor center, and extend the camera 

matrix by this parameter so that the projected point can be correctly determined in the 
Sensor CS (shifted parallel to the Camera CS). Consequently, we have the following 
mapping: 

[ ] T

T ⎥⎦
⎤⎢⎣

⎡ ++→ OyC
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x
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Introducing this parameter to the camera matrix results in  
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As CCD cameras are never perfect, it is most likely that CCD chips have pixels, which are 

not of the shape of a square. The image coordinates, however, are measured in square 

pixels. This has certainly an extra effect of introducing unequal scale factors in each 

direction. In particular, if the number of pixels per unit distance (per millimeter) in image 

coordinates are mx and my in the directions x and y , respectively, then the camera 

transformation from space coordinates measured in millimeters to pixel coordinates can be 

gained by pre-multiplying the camera matrix M by a matrix factor diag(mx, my, 1). The 

camera matrix can then be estimated as 
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where 
xccp mff =1

 and 
yccp mff =2

 represent the focal length of the camera in terms of 

pixels in the x and y directions,  respectively. The ratio 21 cpcp ff , called an aspect ratio, gives 

a simple measure of regularity meaning that the closer it is to 1 the nearer to squares are the 
pixels. It is very convenient to express the matrix M in terms of pixels because the data 
forming an image are determined in pixels and there is no need to re-compute the intern 
camera parameters into millimeters.   
Skew coefficient   Skewing does not exist in most regular cameras. However, in certain 

unusual instances it can be present. A skew parameter, which in CCD cameras relates to 

pixels, determines how pixels in a CCD array are skewed, that is to what extent the x and y 

axes of a pixel are not perpendicular. Principally, the CCD camera model assumes that the 

image has been stretched by some factor in the two axial directions. If it is stretched in a 

non-axial direction, then skewing results. Taking the skew parameter into considerations 

yields the following form of the camera matrix: 
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This form of the camera matrix (M) allows us to calculate the pixel coordinates of a point 
Cr

f
cast from a 3D scene into the sensor plane (assuming that we know the original 

coordinates): 
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Since images are recorded through the CCD sensor, we have to consider closely the image 
plane, too. The origin of the sensor plane lies exactly in the middle, while the origin of the 
Image CS is always located in the upper left corner of the image. Let us assume that the 

principal point offset is known and the resolution of the camera is yx NN ×  pixels. As the 

center of the sensor plane lies intuitively in the middle of the image, the principal point 

offset, denoted as T][ yx cccc , with respect to the Image CS is 
T

22
⎥⎦
⎤⎢⎣

⎡ ++ Oyp
y
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x CC

NN . 

Hence the full form of the camera matrix suitable for the pinhole camera model is 
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Consequently, a complete equation describing the projection of the point [ ]TCCCC zyxr =f  from the camera’s three-dimensional scene to the point [ ]TIII yxr =f
 

in the camera’s Image CS has the following form:  
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where  xd  and  yd stand for the normalized distorted camera coordinates as in (3). 

2.2 Conventions on the orientation matrix of the rigid body transformation 

There are various industrial tasks in which a robotic plant can be utilized. For example, a 
robot with its tool mounted on a robotic flange can be used for welding, body painting or 
gripping objects. To automate this process, an object, a tool, and a complete mechanism 
itself have their own fixed coordinate systems assigned. These CSs are rotated and 
translated w.r.t. each other. Their relations are determined in the form of certain 
mathematical transformations T.  
Let us assume that we have two coordinate systems {F1} and {F2} shifted and rotated w.r.t. 

to each other. The mapping ( )2
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F KRT =  in a three-dimensional space can be 

represented by the following 4×4 homogenous coordinate transformation matrix:  
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where 2

1

F

F R  is a 3×3 orthogonal rotation matrix determining the orientation of the {F2} CS 

with respect to the {F1} CS and 2

1

F

F K  is a 3×1 translation vector determining the position 

of the origin of the {F2} CS shifted with respect to the origin of the {F1} CS. 

The matrix 2

1

F

F T  can be divided into two sub-matrices:  
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Due to its orthogonality, the rotation matrix R fulfills the condition IRR =T , where I is a 
3×3 identity matrix.  
It is worth noticing that there are a great number (about 24) of conventions of determining 

the rotation matrix R. We describe here two most common conventions, which are utilized 

by leading robot-producing companies, i.e. the ZYX-Euler-angles and the unit-quaternion 

notations. 

Euler angles notation   The ZYX Euler angles representation can be described as follows. 
Let us first assume that two CS, {F1} and {F2}, coincide with each other. Then we rotate the 

{F2} CS by an angle A around the 2
ˆ
FZ  axis, then by an angle B around the '

2
ˆ
FY  axis, and 

finally by an angle C around the "

2
ˆ
FX  axis. The rotations refer to the rotation axes of the {F2} 

CS instead of the fixed {F1} CS. In other words, each rotation is carried out with respect to an 
axis whose position depends on the previous rotation, as shown in Fig. 5. 
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Fig. 5. Representation of the rotations in terms of the ZYX Euler angles 

In order to find the rotation matrix 2

1

F

F R  from the {F1} CS to the {F2} CS, we introduce 

indirect {F2’} and {F2”} CSs. Taking the rotations as descriptions of these coordinate systems 
(CSs), we write:  
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In general, the rotations around the XYZ ˆ,ˆ,ˆ  axes are given as follows, respectively: 
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By multiplying these matrices we get a compose formula for the rotation matrix 
XYZ

R ˆˆˆ
: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ⎥⎥

⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
−

−+
+−

=
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CACBACACBABA
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R
XYZ

coscossincossin

sincoscossinsincoscossinsinsincossin

sinsincossincoscossinsinsincoscoscos

ˆˆˆ

(10) 

As the above formula implies, the rotation matrix is actually described by only 3 parameters, 

i.e. the Euler angles A, B and C of each rotation, and not by 9 parameters, as suggested (9b). 

Hence the transformation matrix T is described by 6 parameters overall, also referred to as a 

frame.  

Let us now describe the transformation between points in a three-dimensional space, by 

assuming that the {F2} CS is moved by a vector [ ]T

212121 FFFFFF kzkykxK =  w.r.t. the {F1} 

CS in three dimensions and rotated by the angles A, B and C following the ZYX Euler angles 

convention. Given a point [ ]T2222 FFFF zyxr =f
, a point [ ]T1111 FFFF zyxr =f

 is 

computed in the following way:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
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⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡

⎥⎥
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⎣
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⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡

11000
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z

y

x

 

                                                                                                                                                             (11) 
Using (9) we can also represent the above in a concise way: 
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 (12) 

After decomposing this transformation into rotation and translation matrices, we have: 
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⎥
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⎣
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 (13) 

There from, knowing the rotation R and the translation K from the first CS to the second CS 

in the three-dimensional space and having the coordinates of a point defined in the second 

CS, we can compute its coordinates in the first CS. 
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Unit quaternion notation   Another notation for rotation, widely utilized in machine vision 
industry and computer graphics, refers to unit quaternions. A quaternion, ( ) ( )ppppppp

f
,,,, 03210 == , is a collection of four components, first of which is taken as a 

scalar and the other three form a vector. Such an entity can thus be treated in terms of 
complex numbers what allows us to re-write it in the following form: 

3210 pkpjpipp ⋅+⋅+⋅+=  

where i, j, k are imaginary numbers. This means that a real number (scalar) can be 
represented by a purely real quaternion and a three-dimensional vector by a purely 
imaginary quaternion. The conjugate and the magnitude of a quaternion can be determined 
in a way similar to the complex numbers calculus: 

3210 pkpjpipp ⋅−⋅−⋅−=∗       ,         2

3

2

2

2

1

2

0 ppppp +++=  

With another quaternion ( ) ( )qqqqqqq
f

,,,, 03210 ==  in use, the sum of them is 

( )qpqpqp
ff ++=+ ,00

 

and their (non-commutative) product can be defined as 

( )qppqqpqpqpqp
ffffff ++−=⋅ 0000 ,  

The latter can also be written in a matrix form as 

qPq

pppp

pppp

pppp

pppp

qp ⋅=⋅
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡

−
−

−
−−−

=⋅
0123

1032

2301

3210

     

or 

    
qPq

pppp

pppp

pppp

pppp

pq ⋅=⋅
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡

−
−

−
−−−

=⋅
0123

1032

2301

3210

 

where P and P  are 4×4 orthogonal matrices. 
Dot product of two quaternions is the sum of products of corresponding elements:  

33221100 qpqpqpqpqp +++=c  

A unit quaternion 1=p  has its inverse equal its conjugate: 

∗∗− =⎟⎟⎠
⎞⎜⎜⎝

⎛= pp
pp

p
c
11  

as the square of the magnitude of a quaternion is a dot product of the quaternion with itself: 
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ppp c=2
 

It is clear that the vector’s length and angles relative to the coordinate axes remain constant 
after rotation. Hence rotation also preserves dot products. Therefore it is possible to 
represent the rotation in terms of quaternions. However, simple multiplication of a vector 
by a quaternion would yield a quaternion with a real part (vectors are quaternions with 

imaginary parts only). Namely, if we express a vector q
f

 from a three-dimensional space as 

a unit quaternion ( )qq
f

,0=  and perform the operation with another unit quaternion p 

( )',',','' 3210 qqqqqpq =⋅=f
 

then we attain a quaternion which is not a vector. Thus we use composite product in order 
to rotate a vector into another one while preserving its length and angles: 

( )',',',0' 321
1 qqqpqppqpq =⋅⋅=⋅⋅= ∗−f

 

We can prove this by the following expansion: 

( ) ( ) ( )qPPPqPpPqpqp TT ===⋅⋅ ∗∗  

where 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡

+−−−−
−−+−−
−−−−+=

2

3

2

2

2

1

2

010232013

1032

2

3

2

2

2

1

2

03021

20313021

2

3

2

2

2

1

2

0T

220

220

220

000

pppppppppppp

pppppppppppp

pppppppppppp

pp

PP

c
 

Therefore, if q is purely imaginary then q’ is purely imaginary, as well. Moreover, if p is a 

unit quaternion, then 1=pp c , and P and P  are orthonormal. Consequently, the 3×3 lower 

right-hand sub-matrix is also orthonormal and represents the rotation matrix as in (9b). 
The quaternion notation is closely related to the axis-angle representation of the rotation 

matrix. A rotation by an angle θ  about a unit vector [ ]Tˆ
zyx ωωωω =  can be 

determined in terms of a unit quaternion as: 

( )
zyx kjip ωωωθθ +++=

2
sin

2
cos  

In other words, the imaginary part of the quaternion represents the vector of rotation and 
the real part along with the magnitude of the imaginary part provides the angle of rotation.  
There are several important advantages of unit quaternions over other conventions. Firstly, 
it is much simpler to enforce the constraint on the quaternion to have a unit magnitude than 
to implement the orthogonality of the rotation matrix based on Euler angles. Secondly, 

quaternions avoid the gimbal lock phenomenon occurring when the pitch angle is c90 . Then 
yaw and roll angles refer to the same motion what results in losing one degree of freedom. 
We postpone this issue until Section 3.3.  
Finally, let us study the following example. In Fig. 6 there are four CSs: {A}, {B}, {C} and {D}. 

Assuming that the transformations 
B

AT ,
C

BT  and 
D

AT  are known, we want to find the 
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other two, 
C

AT and 
C

DT . Note that there are 5 loops altogether, ABCD, ABC, ACD, ABD 

and BCD, that connect the origins of all CSs. Thus there are several ways to find the 

unknown transformations. We find 
C

AT  by means of the loop ABC, and 
C

DT
 by following 

the loop ABCD. Writing the matrix equation for the first loop we immediately obtain:   

C

B

B

A

C

A TTT =  

Writing the equation for the other loop we have: 

( ) C
B

B
A

D
A

C
D

C
D

D
A

C
B

B
A TTTTTTTT

1−=⇒=  

To conclude, given that the transformations can be placed in a closed loop and only one of 
them is unknown, we can compute the latter transformation based on the known ones. This 
is a principal property of transformations in vision-guided robot positioning applications. 
 

 

Fig. 6. Transformations based on closed loops 

2.3 Pose estimation – problem statement 
There are many methods in the machine vision literature suitable for retrieving the 
information from a three-dimensional scene with the use of a single image or multiple 
images. Most common cases include single and stereo imaging, though recently developed 
applications in robotic guidance use 4 or even more images at a time. In this Section we 
characterize few methods of pose estimation to give the general idea of how they can be 
utilized in robot positioning systems. 
Why do we compute the pose of the object relative to the camera? Let us suppose that we 
have a robot-camera-gripper positioning system, which has already been calibrated. In robot 
positioning applications the vision sensor acts somewhat as a medium only. It determines 
the pose of the object that is then transformed to the Gripper CS. This means that the pose of 
the object is estimated with respect to the gripper and the robot ‘knows’ how to grip the 
object.  
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In another approach we do not compute the pose of the object relative to the camera and 
then to the gripper. Single or multi camera systems calculate the coordinates of points at the 
calibration stage, and then perform the calculation at each position while the system is 
running. Based on the computed coordinates, a geometrical motion of a given camera from 
the calibrated position to its actual position is processed. Knowing this motion and the 
geometrical relation between the camera and the gripper, the gripping motion can then be 
computed so that the robot ‘learns’ where its gripper is located w.r.t to the object, and then 
the gripping motion can follow.  

2.3.1 Computing 3D points using stereovision  
When a point in a 3D scene is projected onto a 2D image plane, the depth information is lost. 
The simplest method to render this information is stereovision. The 3D coordinates of any 
point can be computed provided that this point is visible in two images (1 and 2) and the 
intern camera parameters together with the geometrical relation between stereo cameras are 
known.  
Rendering 3D point coordinates based on image data is called inverse point mapping. It is a 
very important issue in machine vision because it allows us to compute the camera motion 
from one position to another. We shall now derive a mathematical formula for rendering the 
3D point coordinates using stereovision.  

Let us denote the 3D point r
f

 in the Camera 1 CS as [ ]T1111 1CCCC zyxr =f
. The same 

point in the Camera 2 CS will be represented by [ ]T2222 1CCCC zyxr =f
. Moreover, let 

the geometrical relation between these two cameras be given as the transformation from 

Camera 1 to Camera 2 ( )2

1

2

1

2

1 , C

C

C

C

C

C KRT = , their calibration matrices be MC1 and MC2, and 

the projected image points be [ ]T111 1III yxr =f
 and [ ]T222 1III yxr =f , respectively.  

There is no direct way to transform distorted image coordinates into undistorted ones 
because (3) and (4) are not linear. Hence, the first step would be to solve these equations 
iteratively. For the sake of simplicity, however, let us assume that our camera model is free 
of distortion. In Section 5 we will verify how these parameters affect the precision of 
measurements. In the considered case, the normalized distorted coordinates match the 

normalized undistorted ones: 
normd xx =  and

normd yy = . As the stereo images are related 

with each other through the transformation 2

1

C

C T , the pixel coordinates of Image 2 can be 

transformed to the plane of Image 1. Thus combining (8) and (13), and eliminating the 
coordinates x and y yields: 

 
2

1

221

2

2

1

111

1

C

C

CI

C

C

C

CI

C KzrMRzrM += −− ff
  (14) 

This overconstrained system is solved by the linear least squares method (LS) and 
computation of the remaining coordinates in {C1} and {C2} comes straightforward. Such an 
approach based on (14) is called triangulation. 
It is worth mentioning that the stereo camera configuration has several interesting 
geometrical properties, which can be used, for instance, to inform the operator that the 
system needs recalibration and/or to simplify the implementation of the image processing 
application (IPA) used to retrieve object features from the images. Namely, the only 
constraint of the stereovision systems is imposed by their epipolar geometry. An epipolar 
plane and an epipolar line represent epipolar geometry. The epipolar plane is defined by a 
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3D point in the scene and the origins of the two Camera CSs. On the basis of the projection 
of this point onto the first image, it is possible to derive the equation of the epipolar plane 
(characterized by a fundamental matrix) which has also to be satisfied by the projection of this 
point onto the second image plane. If such a plane equation condition is not satisfied, then 
an error offset can be estimated. When, for instance, the frequency of the appearance of such 
errors exceeds an a priori defined threshold, it can be treated as a warning sign of the 
necessity for recalibration. The epipolar line is also quite useful. It is the straight line of 
intersection of the epipolar plane with the image plane. Consequently, a 3D point projected 
onto one image generates a line in the other image on which its corresponding projection 
point must lie. This feature is extremely important when creating an IPA. Having found one 
feature in the image reduces the scope of the search for its corresponding projection in the 
other image from a region to a line. Since the main problem of stereovision IPAs lies in 
locating the corresponding image features (which are projections of the same 3D point), this 
greatly improves the efficiency of IPAs and yet eases the process of creating them. 

 

Fig. 7. Stereo–image configuration with epipolar geometry 

2.3.2 Single image pose estimation 
There are two methods of pose estimation utilized in 3D robot positioning applications. A 
first one, designated as 3D-3D estimation, refers to computing the actual pose of the camera 
either w.r.t. the camera at the calibrated position or w.r.t. the actual position of the object. In 
the first case, the 3D point coordinates have to be known in both camera positions. In the 
latter, the points have to be known in the Camera CS as well as in the Object CS. Points 
defined in the Object CS can be taken from its CAD model (therefore called model points).  
The second type of pose estimation is called 2D-3D estimation and is used only by the 
gripping systems equipped with a single camera. It consists in computing the pose of the 
object with respect to the actual position of the camera given the 3D model points and their 
projected pixel coordinates. The main advantage of this approach over the first one is that it 
does not need to calculate the 3D points in the Camera CS to find the pose. Its disadvantage 
lies in only iterative implementations of the computations. Nevertheless, it is widely utilized 
in camera calibration procedures.  
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The assessment of camera motions or else the poses of the camera at the actual position 
relative to the pose of the camera at the calibration position are also known as relative 
orientation. The estimation of the transformation between the camera and the object is 
identified as exterior orientation.  
Relative orientation 
Let us consider the following situation. During the calibration process we have positioned 
the cameras, measured n 3D object points (n ≥ 3) in a chosen Camera CS {Y}, and taught the 
robot how to grip the object from that particular camera position. We could measure the 
points using, for instance, stereovision, linear n-point algorithms, or structure-from-motion 

algorithms. Let us denote these points as Y

n

Y rr
ff

,...,1
. Now, we move the camera-robot system 

to another (actual) position  in order to get another measurement of the same points (in the 
Camera CS {X}). This time they have different coordinates as the Camera CS has been 

moved. We denote these points as X

n

X rr
ff

,...,1
, where for an i-th point we have: X

i

Y

i rr
ff ↔ , 

meaning that the points correspond to each other. From Section 2.2 we know that there 

exists a mapping which transforms points Xr
f

 to points Yr
f

. Note that this transformation 

implies the rigid motion of the camera from the calibrated position to the actual position. As 
will be shown in Section 3.2, knowing it, the robot is able to grip the object from the actual 

position. We can also consider these pairs of points as defined in the Object CS ( X

n

X rr
ff

,...,1
) 

and in the Camera CS ( Y

n

Y rr
ff

,...,1
). In such a case the mapping between these points 

describes the relation between the Object and the Camera CSs. Therefore, in general, given 
the points in these two CSs, we can infer the transformation between them from the 
following equation: 

[ ] [ ] [ ]X
n

Y
n rTr ××× = 4444

ff
 

After rearranging and adding noise η to the measurements, we obtain: 

n
X
n

Y
n KrRr η++⋅= ff

 

One of the ways of solving the above equation consists in setting up a least squares equation 
and minimizing it, taking into account the constraint of orthogonality of the rotation matrix. 
For example, Haralick et al. (1989) describe iterative and non-iterative solutions to this 
problem. Another method, developed by Weinstein (1998), minimizes the summed-squared-
distance between three pairs of corresponding points. He derives an analytic least squares 
fitting method for computing the transformation between these points. Horn (1987) 
approaches this problem using unit quaternions and giving a closed-form solution for any 
number of corresponding points.  
Exterior orientation 
The problem of determining the pose of an object relative to the camera based on a single-
image has found many relevant applications in machine vision for object gripping, camera 
calibration, hand-eye calibration, cartography, etc. It can be easily stated more formally: 
given a set of (model) points that are described in the Object CS, the projections of these 

points onto an image plane, and the intern camera parameters, determine the rotation R  

and translation K  between the object centered and the camera centered coordinate system.  
As has been mentioned, this problem is labeled as the exterior orientation problem (in the 
photogrammetry literature, for instance). The dissertation by Szczepanski (1958) surveys 
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