The Variation of Animals and Plants by Charles Darwin - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

Chapter III: Pigs - Cattle - Sheep – Goats

PIGS BELONG TO TWO DISTINCT TYPES, SUS SCROFA AND INDICUS — TORFSCHWEIN — JAPAN PIGS — FERTILITY OF CROSSED PIGS — CHANGES IN THE SKULL OF THE HIGHLY CULTIVATED RACES — CONVERGENCE OF CHARACTER — GESTATION — SOLID-HOOFED SWINE — CURIOUS APPENDAGES TO THE JAWS — DECREASE IN SIZE OF THE TUSKS — YOUNG PIGS LONGITUDINALLY STRIPED — FERAL PIGS — CROSSED BREEDS.

CATTLE — ZEBU A DISTINCT SPECIES — EUROPEAN CATTLE PROBABLY DESCENDED FROM THREE WILD FORMS — ALL THE RACES NOW FERTILE TOGETHER — BRITISH PARK CATTLE — ON THE COLOUR OF THE ABORIGINAL SPECIES — CONSTITUTIONAL DIFFERENCES — SOUTH AFRICAN RACES — SOUTH AMERICAN RACES — NIATA CATTLE — ORIGIN OF THE VARIOUS RACES OF CATTLE.

SHEEP — REMARKABLE RACES OF — VARIATIONS ATTACHED TO THE MALE SEX — ADAPTATIONS TO VARIOUS CONDITIONS — GESTATION OF — CHANGES IN THE WOOL — SEMI-MONSTROUS BREEDS.

GOATS — REMARKABLE VARIATIONS OF.

The breeds of the pig have recently been more closely studied, though much still remains to be done, than those of almost any other domesticated animal. This has been effected by Hermann von Nathusius in two admirable works, especially in the later one on the Skulls of the several races, and by Rütimeyer in his celebrated Fauna of the ancient Swiss lakedwellings. Nathusius has shown that all the known breeds may be divided into two great groups: one resembling in all important respects and no doubt descended from the common wild boar; so that this may be called the Sus scrofa group. The other group differs in several important and constant osteological characters; its wild parent-form is unknown; the name given to it by Nathusius, according to the law of priority, is Sus indicus, of Pallas. This name must now be followed, though an unfortunate one, as the wild aboriginal does not inhabit India, and the best-known domesticated breeds have been imported from Siam and China.

First for the Sus scrofa breeds, or those resembling the common wild boar. These still exist, according to Nathusius ('Schweineschädel' s. 75), in various parts of central and northern Europe; formerly every kingdom, and almost every province in Britain, possessed its own native breed; but these are now everywhere rapidly disappearing, being replaced by improved breeds crossed with the S. indicus form. The skull in the breeds of the S. scrofa type resembles, in all important respects, that of the European wild boar; but it has become ('Schweineschädel' s. 63-68) higher and broader relatively to its length; and the hinder part is more upright. The differences, however, are all variable in degree. The breeds which thus resemble S. scrofa in their essential skull characters differ conspicuously from each other in other respects, as in the length of the ears and legs, curvature of the ribs, colour, hairiness, size and proportions of the body.
The wild Sus scrofa has a wide range, namely, Europe, North Africa, as identified by osteological characters by Rütimeyer, and Hindostan, as similarly identified by Nathusius. But the wild boars inhabiting these several countries differ so much from each other in external characters, that they have been ranked by some naturalists as specifically distinct. Even within Hindostan these animals, according to Mr. Blyth, form very distinct races in the different districts; in the N. Western provinces, as I am informed by the Rev. R. Everest, the boar never exceeds 36 inches in height, whilst in Bengal one has been measured 44 inches in height. In Europe, Northern Africa, and Hindostan, domestic pigs have been known to cross with the wild native species; and in Hindostan an accurate observer,Sir Walter Elliot, after describing the differences between wild Indian and wild German boars, remarks that "the same differences are perceptible in the domesticated individuals of the two countries." We may therefore conclude that the breeds of the Sus scrofa type are descended from, or have been modified by crossing with, forms which may be ranked as geographical races, but which, according to some naturalists, ought to be ranked as distinct species.

Pigs of the Sus indicus type are best known to Englishmen under the form of the Chinese breed. The skull of S. indicus, as described by Nathusius, differs from that of S. scrofa in several minor respects, as in its greater breadth and in some details in the teeth; but chiefly in the shortness of the lachrymal bones, in the greater width of the fore part of the palate-bones, and in the divergence of the premolar teeth. It deserves especial notice that these latter characters are not gained, even in the least degree, by the domesticated forms of S. scrofa. After reading the remarks and descriptions given by Nathusius, it seems to me to be merely playing with words to doubt whether S. indicus ought to be ranked as a species; for the above-specified differences are more strongly marked than any that can be pointed out between, for instance, the fox and the wolf, or the ass and the horse. As already stated, S. indicus is not known in a wild state; but its domesticated forms, according to Nathusius, come near to S. vittatus of Java and some allied species. A pig found wild in the Aru islands ('Schweineschädel' s. 169) is apparently identical with S. indicus; but it is doubtful whether this is a truly native animal. The domesticated breeds of China, Cochin-China, and Siam belong to this type. The Roman or Neapolitan breed, the Andalusian, the Hungarian, and the "Krause" swine of Nathusius, inhabiting southeastern Europe and Turkey, and having fine curly hair, and the small Swiss "Bündtnerschwein" of Rütimeyer, all agree in their more important skull-characters with S. indicus, and, as is supposed, have all been largely crossed with this form. Pigs of this type have existed during a long period on the shores of the Mediterranean, for a figure ('Schweineschädel' s. 142) closely resembling the existing Neapolitan pig was found in the buried city of Herculaneum.

Rütimeyer has made the remarkable discovery that there lived contemporaneously in Switzerland, during the Neolithic period, two domesticated forms, the S. scrofa, and the S. scrofa palustris or Torfschwein. Rütimeyer perceived that the latter approached the Eastern breeds, and, according to Nathusius, it certainly belongs to the S. indicus group; but Rütimeyer has subsequently shown that it differs in some well-marked characters. This author was formerly convinced that his Torfschwein existed as a wild animal during the first part of the Stone period, and was domesticated during a later part of the same period. Nathusius, whilst he fully admits the curious fact first observed by Rütimeyer, that the bones of domesticated and wild animals can be distinguished by their different aspect, yet, from special difficulties in the case of the bones of the pig ('Schweineschädel' s. 147), is not convinced of the truth of the above conclusion; and Rütimeyer himself seems now to feel some doubt. Other naturalists have also argued strongly on the same side as Nathusius.

Several breeds, differing in the proportions of the body, in the length of the ears, in the nature of the hair, in colour, etc., come under the S. indicus type. Nor is this surprising, considering how ancient the domestication of this form has been both in Europe and in China. In this latter country the date is believed by an eminent Chinese scholar to go back at least 4900 years from the present time. This same scholar alludes to the existence of many local varieties of the pig in China; and at the present time the Chinese take extraordinary pains in feeding and tending their pigs, not even allowing them to walk from place to place. Hence these pigs, as Nathusius has remarked, display in an eminent degree the characters of a highly-cultivated race, and hence, no doubt, their high value in the improvement of our European breeds. Nathusius makes a remarkable statement ('Schweineschädel' s. 138), that the infusion of the 1/32nd, or even of the 1/64th, part of the blood of S. indicus into a breed of S. scrofa, is sufficient plainly to modify the skull of the latter species. This singular fact may perhaps be accounted for by several of the chief distinctive characters of S. indicus, such as the shortness of the lachrymal bones, etc., being common to several species of the genus; for in crosses characters which are common to many species apparently tend to be prepotent over those appertaining to only a few species.

The Japan pig ( S. pliciceps of Gray), which was formerly exhibited in the Zoological Gardens, has an extraordinary appearance from its short head, broad forehead and nose, great fleshy ears, and deeply furrowed skin. Figure 2 is copied from that given by Mr. Bartlett. Not only is the face furrowed, but thick folds of skin, which are harder than the other parts, almost like the plates on the Indian rhinoceros, hang about the shoulders and rump. It is coloured black, with white feet, and breeds true. That it has long been domesticated there can be little doubt; and this might have been inferred even from the fact that its young are not longitudinally striped; for this is a character common to all the species included within the genus Sus and the allied genera whilst in their natural state. Dr. Gray has described the skull of this animal, which he ranks not only as a distinct species, but places it in a distinct section of the genus. Nathusius, however, after his careful study of the whole group, states positively ('Schweineschädel' s. 153-158). that the skull in all essential characters closely resembles that of the short-eared Chinese breed of the S. indicus type. Hence Nathusius considers the Japan pig as only a domesticated variety of S. indicus: if this really be the case, it is a wonderful instance of the amount of modification which can be effected under domestication.

Formerly there existed in the central islands of the Pacific Ocean a singular breed of pigs. These are described by the Rev. D. Tyerman and G. Bennett as of small size, humpbacked, with a disproportionately long head, with short ears turned backwards, with a bushy tail not more than two inches in length, placed as if it grew from the back. Within half a century after the introduction of European and Chinese pigs into these islands, the native breed, according to the above authors, became almost completely lost by being repeatedly crossed with them. Secluded islands, as might have been expected, seem favourable for the production or retention of peculiar breeds; thus, in the Orkney Islands, the hogs have been described as very small, with erect and sharp ears, and "with an appearance altogether different from the hogs brought from the south."

Seeing how different the Chinese pigs, belonging to the Sus indicus type, are in their osteological characters and in external appearance from the pigs of the S. scrofa type, so that they must be considered specifically distinct, it is a fact well deserving attention, that Chinese and common pigs have been repeatedly crossed in various manners, with unimpaired fertility. One great breeder who had used pure Chinese pigs assured me that the fertility of the half-breeds inter se and of their recrossed progeny was actually increased; and this is the general belief of agriculturists. Again, the Japan pig or S. pliciceps of Gray is so distinct in appearance from all common pigs, that it stretches one's belief to the utmost to admit that it is simply a domestic variety; yet this breed has been found perfectly fertile with the Berkshire breed; and Mr. Eyton informs me that he paired a half-bred brother and sister and found them quite fertile together.

The modification of the skull in the most highly cultivated races is wonderful. To appreciate the amount of change, Nathusius' work, with its excellent figures, should be studied. The whole of the exterior in all its parts has been altered: the hinder surface, instead of sloping backwards, is directed forwards, entailing many changes in other parts; the front of the head is deeply concave; the orbits have a different shape; the auditory meatus has a different direction and shape; the incisors of the upper and lower jaws do not touch each other, and they stand in both jaws beyond the plane of the molars; the canines of the upper jaw stand in front of those of the lower jaw, and this is a remarkable anomaly: the articular surfaces of the occipital condyles are so greatly changed in shape, that, as Nathusius remarks (s. 133), no naturalist, seeing this important part of the skull by itself, would suppose that it belonged to the genus Sus. These and various other modifications, as Nathusius observes, can hardly be considered as monstrosities, for they are not injurious, and are strictly inherited. The whole head is much shortened; thus, whilst in common breeds its length to that of the body is as 1 to 6, in the "cultur-racen" the proportion is as 1 to 9, and even recently as 1 to 11. The woodcut (Figure 3) of the head of a wild boar and of a sow from a photograph of the Yorkshire Large Breed, may aid in showing how greatly the head in a highly cultivated race has been modified and shortened.

Nathusius has well discussed the causes of the remarkable changes in the skull and shape of the body which the highly cultivated races have undergone. These modifications occur chiefly in the pure and crossed races of the S. indicus type; but their commencement may be clearly detected in the slightly improved breeds of the S. scrofa type.17 Nathusius states positively (s. 99, 103), as the result of common experience and of his experiments, that rich and abundant food, given during youth, tends by some direct action to make the head broader and shorter; and that poor food works a contrary result. He lays much stress on the fact that all wild and semi-domesticated pigs, in ploughing up the ground with their muzzles, have, whilst young, to exert the powerful muscles fixed to the hinder part of the head. In highly cultivated races this habit is no longer followed, and consequently the back of the skull becomes modified in shape, entailing other changes in other parts. There can hardly be a doubt that so great a change in habits would affect the skull; but it seems rather doubtful how far this will account for the greatly reduced length of the skull and for its concave front. It is well known (Nathusius himself advancing many cases, s. 104) that there is a strong tendency in many domestic animals—in bull- and pug-dogs, in the niata cattle, in sheep, in Polish fowls, short-faced tumbler pigeons, and in one variety of the carp—for the bones of the face to become greatly shortened. In the case of the dog, as H. Müller has shown, this seems caused by an abnormal state of the primordial cartilage. We may, however, readily admit that abundant and rich food supplied during many generations would give an inherited tendency to increased size of body, and that, from disuse, the limbs would become finer and shorter. We shall in a future chapter see also that the skull and limbs are apparently in some manner correlated, so that any change in the one tends to affect the other.

Nathusius has remarked, and the observation is an interesting one, that the peculiar form of the skull and body in the most highly cultivated races is not characteristic of any one race, but is common to all when improved up to the same standard. Thus the largebodied, long-eared, English breeds with a convex back, and the small-bodied, shorteared, Chinese breeds with a concave back, when bred to the same state of perfection, nearly resemble each other in the form of the head and body. This result, it appears, is partly due to similar causes of change acting on the several races, and partly to man breeding the pig for one sole purpose, namely, for the greatest amount of flesh and fat; so that selection has always tended towards one and the same end. With most domestic animals the result of selection has been divergence of character, here it has been convergence.

The nature of the food supplied during many generations has apparently affected the length of the intestines; for, according to Cuvier, their length to that of the body in the wild boar is as 9 to 1,—in the common domestic boar as 13·5 to 1,—and in the Siam breed as 16 to 1. In this latter breed the greater length may be due either to descent from a distinct species or to more ancient domestication. The number of mammæ vary, as does the period of gestation. The latest authority says that "the period averages from 17 to 20 weeks," but I think there must be some error in this statement: in M. Tessier's observations on 25 sows it varied from 109 to 123 days. The Rev. W. D. Fox has given me ten carefully recorded cases with well-bred pigs, in which the period varied from 101 to 116 days. According to Nathusius the period is shortest in the races which come early to maturity; but the course of their development does not appear to be actually shortened, for the young animal is born, judging from the state of the skull, less fully developed, or in a more embryonic condition, than in the case of common swine. In the highly cultivated and early matured races the teeth, also, are developed earlier.

The difference in the number of the vertebræ and ribs in different kinds of pigs, as observed by Mr. Eyton, and as given in the following table, has often been quoted. The African sow probably belongs to the S. scrofa type; and Mr. Eyton informs me that, since the publication of this paper, cross-bred animals from the African and English races were found by Lord Hill to be perfectly fertile.

English
Long-legged Male.
African Chinese Wild Boar Female. Male. from Cuvier.

Dorsal vertebræ 15
Lumbar 6
Dorsal and lumbar together 21
Sacral 5
Total number of vertebræ 26
13 15 14 6 4 5 19 19 19 5 4 4 24 23 23

French
Domestic Boar, from Cuvier.

14
5
19
4
23

Some semi-monstrous breeds deserve notice. From the time of Aristotle to the present time solid-hoofed swine have occasionally been observed in various parts of the world. Although this peculiarity is strongly inherited, it is hardly probable that all the animals with solid hoofs have descended from the same parents; it is more probable that the same peculiarity has reappeared at various times and places. Dr. Struthers has lately described and figured the structure of the feet; in both front and hind feet the distal phalanges of the two greater toes are represented by a single, great, hoof-bearing phalanx; and in the front feet, the middle phalanges are represented by a bone which is single towards the lower end, but bears two separate articulations towards the upper end. From other accounts it appears that an intermediate toe is likewise sometimes superadded.

Another curious anomaly is offered by the appendages, described by M. EudesDeslongchamps as often characterizing the Normandy pigs. These appendages are always attached to the same spot, to the corners of the jaw; they are cylindrical, about three inches in length, covered with bristles, and with a pencil of bristles rising out of a sinus on one side: they have a cartilaginous centre, with two small longitudinal muscles they occur either symmetrically on both sides of the face or on one side alone. Richardson figures them on the gaunt old "Irish Greyhound pig;" and Nathusius states that they occasionally appear in all the long eared races, but are not strictly inherited, for they occur or fail in animals of the same litter.As no wild pigs are known to have analogous appendages, we have at present no reason to suppose that their appearance is due to reversion; and if this be so, we are forced to admit that a somewhat complex, though apparently useless, structure may be suddenly developed without the aid of selection.

It is a remarkable fact that the boars of all domesticated breeds have much shorter tusks than wild boars. Many facts show that with many animals the state of the hair is much affected by exposure to, or protection from, climate; and as we see that the state of the hair and teeth are correlated in Turkish dogs (other analogous facts will be hereafter given), may we not venture to surmise that the reduction of the tusks in the domestic boar is related to his coat of bristles being diminished from living under shelter? On the other hand, as we shall immediately see, the tusks and bristles reappear with feral boars, which are no longer protected from the weather. It is not surprising that the tusks should be more affected than the other teeth; as parts developed to serve as secondary sexual characters are always liable to much variation.

It is a well-known fact that the young of wild European and Indian pigs, for the first six months, are longitudinally banded with light-coloured stripes. This character generally disappears under domestication. The Turkish domestic pigs, however, have striped young, as have those of Westphalia, "whatever may be their hue;" whether these latter pigs belong to the same curly-haired race as the Turkish swine, I do not know. The pigs which have run wild in Jamaica and the semi-feral pigs of New Granada, both those which are black and those which are black with a white band across the stomach, often extending over the back, have resumed this aboriginal character and produce longitudinally-striped young. This is likewise the case, at least occasionally, with the neglected pigs in the Zambesi settlement on the coast of Africa.

The common belief that all domesticated animals, when they run wild, revert completely to the character of their parent-stock, is chiefly founded, as far as I can discover, on feral pigs. But even in this case the belief is not grounded on sufficient evidence; for the two main types, namely, S. scrofa and indicus, have not been distinguished. The young, as we have just seen, reacquire their longitudinal stripes, and the boars invariably reassume their tusks. They revert also in the general shape of their bodies, and in the length of their legs and muzzles, to the state of the wild animal, as might have been expected from the amount of exercise which they are compelled to take in search of food. In Jamaica the feral pigs do not acquire the full size of the European wild boar, "never attaining a greater height than 20 inches at the shoulder." In various countries they reassume their original bristly covering, but in different degrees, dependent on the climate; thus, according to Roulin, the semi-feral pigs in the hot valleys of New Granada are very scantily clothed; whereas, on the Paramos, at the height of 7000 to 8000 feet, they acquire a thick covering of wool lying under the bristles, like that on the truly wild pigs of France. These pigs on the Paramos are small and stunted. The wild boar of India is said to have the bristles at the end of its tail arranged like the plumes of an arrow, whilst the European boar has a simple tuft; and it is a curious fact that many, but not all, of the feral pigs in Jamaica, derived from a Spanish stock, have a plumed tail. With respect to colour, feral pigs generally revert to that of the wild boar; but in certain parts of S. America, as we have seen, some of the semi-feral pigs have a curious white band across their stomachs; and in certain other hot places the pigs are red, and this colour has likewise occasionally been observed in the feral pigs of Jamaica. From these several facts we see that with pigs when feral there is a strong tendency to revert to the wild type; but that this tendency is largely governed by the nature of the climate, amount of exercise, and other causes of change to which they have been subjected.

The last point worth notice is that we have unusually good evidence of breeds of pigs now keeping perfectly true, which have been formed by the crossing of several distinct breeds. The Improved Essex pigs, for instance, breed very true; but there is no doubt that they largely owe their present excellent qualities to crosses originally made by Lord Western with the Neapolitan race, and to subsequent crosses with the Berkshire breed (this also having been improved by Neapolitan crosses), and likewise, probably, with the Sussex breed. In breeds thus formed by complex crosses, the most careful and unremitting selection during many generations has been found to be indispensable. Chiefly in consequence of so much crossing, some well-known breeds have undergone rapid changes; thus, according to Nathusius, the Berkshire breed of 1780 is quite different from that of 1810; and, since this latter period, at least two distinct forms have borne the same name.

CATTLE.

Domestic cattle are certainly the descendants of more than one wild form, in the same manner as has been shown to be the case with our dogs and pigs. Naturalists have generally made two main divisions of cattle: the humped kinds inhabiting tropical countries, called in India Zebus, to which the specific name of Bos indicus has been given; and the common non-humped cattle, generally included under the name of Bos taurus. The humped cattle were domesticated, as may be seen on the Egyptian monuments, at least as early as the twelfth dynasty, that is 2100 B.C. They differ from common cattle in various osteological characters, even in a greater degree, according to Rütimeyer, than do the fossil and prehistoric European species, namely, Bos primigenius and longifrons, from each other. They differ, also, as Mr. Blyth, who has particularly attended to this subject, remarks, in general configuration, in the shape of their ears, in the point where the dewlap commences, in the typical curvature of their horns, in their manner of carrying their heads when at rest, in their ordinary variations of colour, especially in the frequent presence of "nilgau-like markings on their feet," and "in the one being born with teeth protruding through the jaws, and the other not so." They have different habits, and their voice is entirely different. The humped cattle in India "seldom seek shade, and never go into the water and there stand knee-deep, like the cattle of Europe." They have run wild in parts of Oude and Rohilcund, and can maintain themselves in a region infested by tigers. They have given rise to many races differing greatly in size, in the presence of one or two humps, in length of horns, and other respects. Mr. Blyth sums up emphatically that the humped and humpless cattle must be considered as distinct species. When we consider the number of points in external structure and habits, independently of important osteological differences, in which they differ from each other; and that many of these points are not likely to have been affected by domestication, there can hardly be a doubt, notwithstanding the adverse opinion of some naturalists, that the humped and non-humped cattle must be ranked as specifically distinct.

The European breeds of humpless cattle are numerous. Professor Low enumerates 19 British breeds, only a few of which are identical with those on the Continent. Even the small Channel islands of Guernsey, Jersey, and Alderney possess their own sub-breeds; and these again differ from the cattle of the other British islands, such as Anglesea, and the western isles of Scotland. Desmarest, who paid attention to the subject, describes 15 French races, excluding sub-varieties and those imported from other countries. In other parts of Europe there are several distinct races, such as the pale-coloured Hungarian cattle, with their light and free step, and enormous horns sometimes measuring above five feet from tip to tip: the Podolian cattle also are remarkable from the height of their forequarters. In the most recent work on Cattle, engravings are given of fifty-five European breeds; it is, however, probable that several of these differ very little from each other, or are merely synonyms. It must not be supposed that numerous breeds of cattle exist only in long-civilised countries, for we shall presently see that several kinds are kept by the savages of Southern Africa.

With respect to the parentage of the several European breeds, we already know much from Nilsson's Memoir, and more especially from Rütimeyer's works and those of Boyd Dawkins. Two or three species or forms of Bos, closely allied to still living domestic races, have been found in the more recent tertiary deposits or amongst prehistoric remains in Europe. Following Rütimeyer, we have:—

Bos primigenius. This magnificent, well known species was domesticated in Switzerland during the Neolithic period; even at this early period it varied a little, having apparently been crossed with other races. Some of the larger races on the Continent, as the Friesland, etc., and the Pembroke race in England, closely resemble in essential structure B. primigenius, and no doubt are its descendants. This is likewise the opinion of Nilsson. Bos primigenius existed as a wild animal in Cæsar's time, and is now semi-wild, though much degenerated in size, in the park of Chillingham; for I am informed by Professor Rütimeyer, to whom Lord Tankerville sent a skull, that the Chillingham cattle are less altered from the true primigenius type than any other known breed.

Bos trochoceros. This form is not included in the three species above mentioned, for it is now considered by Rütimeyer to be the female of an early domesticated form of B. primigenius, and as the progenitor of his frontosus race. I may add that specific names have been given to four other fossil oxen, now believed to be identical with B. primigenius.

Bos longifrons (or brachyceros) of Owen.—This very distinct species was of small size, and had a short body with fine legs. According to Boyd Dawkins it was introduced as a domesticated animal into Britain at a very early period, and supplied food to the Roman legionaries. Some remains have been found in Ireland in certain crannoges, of which the dates are believed to be from 843-933 A.D. It was also the commonest form in a domesticated condition in Switzerland during the earliest part of the Neolithic period. Professor Owen thinks it probable that the Welsh and Highland cattle are descended from this form; as likewise is the case, according to Rütimeyer, with some of the existing Swiss breeds. These latter are of different shades of colour from light-grey to blackish-brown, with a lighter stripe along the spine, but they have no pure white marks. The cattle of North Wales and the Highlands, on the other hand, are generally black or darkcoloured.

Bos frontosus of Nilsson.—This species is allied to B. longifrons, and, according to the high authority of Mr. Boyd Dawkins, is identical with it, but in the opinion of some judges is distinct. Both co-existed in Scania during the same late geological period, and both have been found in the Irish crannoges. Nilsson believes that his B. frontosus may be the parent of the mountain cattle of Norway, which have a high protuberance on the skull between the base of the horns. As Professor Owen and others believe that the Scotch Highland cattle are descended from his B. longifrons, it is worth notice that a capable judgehas remarked that he saw no cattle in Norway like the Highland breed, but that they more nearly resembled the Devonshire breed.

On the whole we may conclude, more especially from the researches of Boyd Dawkins, that European cattle are descended from two species; and there is no improbability in this fact, for the genus Bos readily yields to domestication. Besides these two species and the zebu, the yak, the gayal, and the arni (not to mention the buffalo or genus Bubalus) have been domesticated; making altogether six species of Bos. The zebu and the two European species are now extinct in a wild state. Although certain races of cattle were domesticated at a very ancient period in Europe, it does not follow that they were first domesticated here. Those who place much reliance on philology argue that they were imported from the East. It is probable that they originally inhabited a temperate or cold climate, but not a land long covered with snow; for our cattle, as we have seen in the chapter on Horses, have not the instinct of scraping away the snow to get at the herbage beneath. No one could behold the magnificent wild bulls on the bleak Falkland Islands in the southern hemisphere, and doubt about the climate being admirably suited to them. Azara has remarked that in the temperate regions of La Plata the cows conceive when two years old, whilst in the much hotter country of Paraguay they do not conceive till three years old; "from which fact," as he adds, "one may conclude that cattle do not succeed so well in warm countries."

Bos primigenius and longifrons have been ranked by nearly all palæontologists as distinct species; and it would not be reasonable to take a different view simply because their domesticated descendants now intercross with the utmost freedom. All the European breeds have so often been crossed both intentionally and unintentionally, that, if any sterility had ensued from such unions, it would certainly have been detected. As zebus inhabit a distant and much hotter region, and as they differ in so many characters from our European cattle, I have taken pains to ascertain whether the two forms are fertile when crossed. The late Lord Powis imported some zebus and crossed them with common cattle in Shropshire; and I was assured by his steward that the cross-bred animals were perfectly fertile with both parent-stocks. Mr. Blyth informs me that in India hybrids, with various proportions of either blood, are quite fertile; and this can hardly fail to be known, for in some districts the two species are allowed to breed freely together. Most of the cattle which were first introduced into Tasmania were humped, so that at one time thousands of crossed animals existed there; and Mr. B. O'Neile Wilson, M.A., writes to me from Tasmania that he has never heard of any sterility having been observed. He himself formerly possessed a herd of such crossed cattle, and all were perfectly fertile; so much so, that he cannot remember even a single cow failing to calve. These several facts afford an important confirmation of the Pallasian doctrine that the descendants of species which when first domesticated would if crossed have been in all probability in some degree sterile, become perfectly fertile after a long course of domestication. In a future chapter we shall see that this doctrine throws some light on the difficult subject of Hybridism.

I have alluded to the cattle in Chillingham Park, which, according to Rütimeyer, have been very little changed from the Bos primigenius type. This park is so ancient that it is referred to in a record of the year 1220. The cattle in their instincts and habits are truly wild. They are white, with the inside of the ears reddish-brown, eyes rimmed with black, muzzles brown, hoofs black, and horns white tipped with black. Within a period of thirtythree years about a dozen calves were born with "brown and blue spots upon the cheeks or necks; but these, together with any defective animals, were always destroyed." According to Bewick, about the year 1770 some calves appeared with black ears; but these were also destroyed by the keeper, and black ears have not since reappeared. The wild white cattle in the Duke of Hamilton's park, where I have heard of the birth of a black calf, are said by Lord Tankerville to be inferior to those at Chillingham. The cattle kept until the year 1780 by the Duke of Queensberry, but now extinct, had their ears, muzzle, and orbits of the eyes black. Those which have existed from time immemorial at Chartley, closely resemble the cattle at Chillingham, but are larger, "with some small difference in the colour of the ears." "They frequently tend to become entirely black; and a singular superstition prevails in the vicinity that, when a black calf is born, some calamity impends over the noble house of Ferrers. All the black calves are destroyed." The cattle at Burton Constable in Yorkshire, now extinct, had ears, muzzle, and the tip of the tail black. Those at Gisburne, also in Yorkshire, are said by Bewick to have been sometimes without dark muzzles, with the inside alone of the ears brown; and they are elsewhere said to have been low in stature and hornless.

The several above-specified differences in the park-cattle, slight though they be, are worth recording, as they show that animals living nearly in a state of nature, and exposed to nearly uniform conditions, if not allowed to roam freely and to cross with other herds, do not keep as uniform as truly wild animals. For the preservation of a uniform character, even within the same park, a certain degree of selection—that is, the destruction of the dark-coloured calves—is apparently necessary.

Boyd Dawkins believes that the park-cattle are descended from anciently domesticated, and not truly wild animals; and from the occasional appearance of dark-coloured calves, it is improbable that the aboriginal Bos primigenius was white. It is curious what a strong, though not invariable, tendency there is in wild or escaped cattle to become white with coloured ears, under widely different conditions of life. If the old writers Boethius and Leslie can be trusted, the wild cattle of Scotland were white and furnished with a great mane; but the colour of their ears is not mentioned. In Wales, during the tenth century, some of the cattle are described as being white with red ears. Four hundred cattle thus coloured were sent to King John; and an early record speaks of a hundred cattle with red ears having been demanded as a compensation for some offence, but, if the cattle were of a dark or black colour, 150 were to be presented. The black cattle of North Wales apparently belong, as we have seen, to the small longifrons type: and as the alternative was offered of either 150 dark cattle, or 100 white cattle with red ears, we may presume that the latter were the larger beasts, and probably belonged to the primigenius type. Youatt has remarked that at the present day, whenever cattle of the shorthorn breed are white, the extremities of their ears are more or less tinged with red.

The cattle which have run wild on the Pampas, in Texas, and in two parts of Africa, have become of a nearly uniform dark brownish-red. On the Ladrone Islands, in the Pacific Ocean, immense herds of cattle, which were wild in the year 1741, are described as "milk-white, except their ears, which are generally black." The Falkland Islands, situated far south, with all the conditions of life as different as it is possible to conceive from those of the Ladrones, offer a more interesting case. Cattle have run wild there during eighty or ninety years; and in the southern districts the animals are mostly white, with their feet, or whole heads, or only their ears black; but my informant, Admiral Sulivan, who long resided on these islands, does not believe that they are ever purely white. So that in these two archipelagos we see that the cattle tend to become white with coloured ears. In other parts of the Falkland Islands other colours prevail: near Port Pleasant brown is the common tint; round Mount Usborn, about half the animals in some of the herds were lead- or mouse-coloured, which elsewhere is an unusual tint. These latter cattle, though generally inhabiting high land, breed about a month earlier than the other cattle; and this circumstance would aid in keeping them distinct and in perpetuating a peculiar colour. It is worth recalling to mind that blue or lead-coloured marks have occasionally appeared on the white cattle of Chillingham. So plainly different were the colours of the wild herds in different parts of the Falkland Islands, that in hunting them, as Admiral Sulivan informs me, white spots in one district, and dark spots in another district, were always looked out for on the distant hills. In the intermediate districts, intermediate colours prevailed. Whatever the cause may be, this tendency in the wild cattle of the Falkland Islands, which are all descended from a few brought from La Plata, to break up into herds of three different colours, is an interesting fact.

Returning to the several British breeds, the conspicuous difference in general appearance between Shorthorns, Longhorns (now rarely seen), Herefords, Highland cattle, Alderneys, etc., must be familiar to every one. A part of this difference may be attributed to descent from primordially distinct species; but we may feel sure that there has been a considerable amount of variation. Even during the Neolithic period, the domestic cattle were to a certain extent variable. Within recent times most of the breeds have been modified by careful and methodical selection. How strongly the characters thus acquired are inherited, may be inferred from the prices realised by the improved breeds; even at the first sale of Colling's Shorthorns, eleven bulls reached an average of 214 pounds, and lately Shorthorn bulls have been sold for a thousand guineas, and have been exported to all quarters of the world.

Some constitutional differences may be here noticed. The Shorthorns arrive at maturity far earlier than the wilder breeds, such as those of Wales or the Highlands. This fact has been shown in an interesting manner by Mr. Simonds, who has given a table of the average period of their dentition, which proves that there is a difference of no less than six months in the appearance of the permanent incisors. The period of gestation, from observations made by Tessier on 1131 cows, varies to the extent of eighty-one days; and what is more interesting, M. Lefour affirms "that the period of gestation is longer in the large German cattle than in the smaller breeds." With respect to the period of conception, it seems certain that Alderney and Zetland cows often become pregnant earlier than other breeds. Lastly, as four fully developed mammæ is a generic character in the genus Bos, it is worth notice that with our domestic cows the two rudimentary mammæ often become fairly well developed and yield milk.

As numerous breeds are generally found only in long-civilised countries, it may be well to show that in some countries inhabited by barbarous races, who are frequently at war with each other, and therefore have little free communication, several distinct breeds of cattle now exist or formerly existed. At the Cape of Good Hope Leguat observed, in the year 1720, three kinds. At the present day various travellers have noticed the differences in the breeds in Southern Africa. Sir Andrew Smith several years ago remarked to me that the cattle possessed by the different tribes of Caffres, though living near each other under the same latitude and in the same kind of country, yet differed, and he expressed much surprise at the fact. Mr. Andersson has described the Damara, Bechuana, and Namaqua cattle; and he informs me in a letter that the cattle north of Lake Ngami are likewise different, as Mr. Galton has heard is also the case with the cattle of Benguela. The Namaqua cattle in size and shape nearly resemble European cattle, and have short stout horns and large hoofs. The Damara cattle are very peculiar, being big-boned, with slender legs, and small hard feet; their tails are adorned with a tuft of long bushy hair nearly touching the ground, and their horns are extraordinarily large. The Bechuana cattle have even larger horns, and there is now a skull in London with the two horns 8 ft. 8-1/4 in. long, as measured in a straight line from tip to tip, and no less than 13 ft. 5 in. as measured along their curvature! Mr. Andersson in his letter to me says that, though he will not venture to describe the differences between the breeds belonging to the many different sub-tribes, yet such certainly exist, as shown by the wonderful facility with which the natives discriminate them.

That many breeds of cattle have originated through variation, independently of descent from distinct species, we may infer from what we see in South America, where the genus Bos was not endemic, and where the cattle which now exist in such vast numbers are the descendants of a few imported from Spain and Portugal. In Columbia, Roulin describes two peculiar breeds, namely, pelones, with extremely thin and fine hair, and calongos, absolutely naked. According to Castelnau there are two races in Brazil, one like European cattle, the other different, with remarkable horns. In Paraguay, Azara describes a breed which certainly originated in S. America, called chivos, "because they have straight vertical horns, conical, and very large at the base." He likewise describes a dwarf race in Corrientes, with short legs and a body larger than usual. Cattle without horns, and others with reversed hair, have also originated in Paraguay.

Another monstrous breed, called niatas or natas, of which I saw two small herds on the northern bank of the Plata, is so remarkable as to deserve a fuller description. This breed bears the same relation to other breeds, as bull or pug dogs do to other dogs, or as improved pigs, according to H. von Nathusius, do to common pigs Rütimeyer believes that these cattle belong to the primigenius type. The forehead is very short and broad, with the nasal end of the skull, together with the whole plane of the upper molar-teeth, curved upwards. The lower jaw projects beyond the upper, and has a corresponding upward curvature. It is an interesting fact that an almost similar confirmation characterizes, as I am informed by Dr. Falconer, the extinct and gigantic Sivatherium of India, and is not known in any other ruminant. The upper lip is much drawn back, the nostrils are seated high up and are widely open, the eyes project outwards, and the horns are large. In walking the head is carried low, and the neck is short. The hind legs appear to be longer, compared with the front legs, than is usual. The exposed incisor teeth, the short head and upturned nostrils, give these cattle the most ludicrous, self-confident air of defiance. The skull which I presented to the College of Surgeons has been thus described by Professor Owen: "It is remarkable from the stunted development of the nasals, premaxillaries, and fore-part of the lower jaw, which is unusually curved upwards to come into contact with the premaxillaries. The nasal bones are about one-third the ordinary length, but retain almost their normal breadth. The triangular vacuity is left between them, the frontal and lachrymal, which latter bone articulates with the premaxillary, and thus excludes the maxillary from any junction with the nasal." So that even the connexion of some of the bones is changed. Other differences might be added: thus the plane of the condyles is somewhat modified, and the terminal edge of the premaxillaries forms an arch. In fact, on comparison with the skull of a common ox, scarcely a single bone presents the same exact shape, and the whole skull has a wonderfully different appearance.

The first brief published notice of this race was by Azara, between the years 1783-96; but Don F. Muniz, of Luxan, who has kindly collected information for me, states that about 1760 these cattle were kept as curiosities near Buenos Ayres. Their origin is not positively known, but they must have originated subsequently to the year 1552, when cattle were first introduced. Senor Muniz informs me that the breed is believed to have originated with the Indians southward of the Plata. Even to this day those reared near the Plata show their less civilised nature in being fiercer than common cattle, and in the cow, if visited too often, easily deserting her first calf. The breed is very true, and a niata bull and cow invariably produce niata calves. The breed has already lasted at least a century. A niata bull crossed with a common cow, and the reverse cross, yield offspring having an intermediate character, but with the niata character strongly displayed. According to Senor Muniz, there is the clearest evidence, contrary to the common belief of agriculturists in analogous cases, that the niata cow when crossed with a common bull transmits her peculiarities more strongly than does the niata bull when crossed with a common cow. When the pasture is tolerably long, these cattle feed as well as common cattle with their tongue and palate; but during the great droughts, when so many animals perish on the Pampas, the niata breed lies under a great disadvantage, and would, if not attended to, become extinct; for the common cattle, like horses, are able to keep alive by browsing with their lips on the twigs of trees and on reeds: this the niatas cannot so well do, as their lips do not join, and hence they are found to perish before the common cattle. This strikes me as a good illustration of how little we are able to judge from the ordinary habits of an animal, on what circumstances, occurring only at long intervals of time, its rarity or extinction may depend. It shows us, also, how natural selection would have determined the rejection of the niata modification had it arisen in a state of nature.

Having described the semi-monstrous niata breed, I may allude to a white bull, said to have been brought from Africa, which was exhibited in London in 1829, and which has been well figured by Mr. Harvey. It had a hump, and was furnished with a mane. The dewlap was peculiar, being divided between its fore-legs into parallel divisions. Its lateral hoofs were annually shed, and grew to the length of five or six inches. The eye was very peculiar, being remarkably prominent, and "resembled a cup and ball, thus enabling the animal to see on all sides with equal ease; the pupil was small and oval, or rather a parallelogram with the ends cut off, and lying transversely across the ball." A new and strange breed might probably have been formed by careful breeding and selection from this animal.

I have often speculated on the probable causes through which each separate district in Great Britain came to possess in former times its own peculiar breed of cattle; and the question is, perhaps, even more perplexing in the case of Southern Africa. We now know that the differences may be in part attributed to descent from distinct species; but this cause is far from sufficient. Have the slight differences in climate and in the nature of the pasture, in the different districts of Britain, directly induced corresponding differences in the cattle? We have seen that the semi-wild cattle in the several British parks are not identical in colouring or size, and that some degree of selection has been requisite to keep them true. It is almost certain that abundant food given during many generations directly affects the size of a breed. That climate directly affects the thickness of the skin and the hair is likewise certain: thus Roulin asserts that the hides of the feral cattle on the hot Llanos "are always much less heavy than those of the cattle raised on the high platform of Bogota; and that these hides yield in weight and in thickness of hair to those of the cattle which have run wild on the lofty Paramos." The same difference has been observed in the hides of the cattle reared on the bleak Falkland Islands and on the temperate Pampas. Low has remarked that the cattle which inhabit the more humid parts of Britain have longer hair and thicker skins than other British cattle. When we compare highly improved stall-fed cattle with the wilder breeds, or compare mountain and lowland breeds, we cannot doubt that an active life, leading to the free use of the limbs and lungs, affects the shape and proportions of the whole body. It is probable that some breeds, such as the semi-monstrous niata cattle, and some peculiarities, such as being hornless, etc., have appeared suddenly owing to what we may call in our ignorance spontaneous variation; but even in this case a rude kind of selection is necessary, and the animals thus characterised must be at least partially separated from others. This degree of care, however, has sometimes been taken even in little-civilised districts, where we should least have expected it, as in the case of the niata, chivo, and hornless cattle in S. America.

That methodical selection has done wonders within a recent period in modifying our cattle, no one doubts. During the process of methodical selection it has occasionally happened that deviations of structure, more strongly pronounced than mere individual differences, yet by no means deserving to be called monstrosities, have been taken advantage of: thus the famous Longhorn Bull, Shakespeare, though of the pure Canley stock, "scarcely inherited a single point of the long-horned breed, his horns excepted; yet in the hands of Mr. Fowler, this bull greatly improved his race. We have also reason to believe that selection, carried on so far unconsciously that there was at no one time any distinct intention to improve or change the breed, has in the course of time modified most of our cattle; for by this process, aided by more abundant food, all the lowland British breeds have increased greatly in size and in early maturity since the reign of Henry VII. It should never be forgotten that many animals have to be annually slaughtered; so that each owner must determine which shall be killed and which preserved for breeding. In every district, as Youatt has remarked, there is a prejudice in favour of the native breed; so that animals possessing qualities, whatever they may be, which are most valued in each district, will be oftenest preserved; and this unmethodical selection assuredly will in the long run affect the character of the whole breed. But it may be asked, can this rude kind of selection have been practised by barbarians such as those of southern Africa? In a future chapter on Selection we shall see that this has certainly occurred to some extent. Therefore, looking to the origin of the many breeds of cattle which formerly inhabited the several districts of Britain, I conclude that, although slight differences in the nature of the climate, food, etc., as well as changed habits of life, aided by correlation of growth, and the occasional appearance from unknown causes of considerable deviations of structure, have all probably played their parts; yet that the occasional preservation in each district of those individual animals which were most valued by each owner has perhaps been even more effective in the production of the several British breeds. As soon as two or more breeds were formed in any district, or when new breeds descended from distinct species were introduced, their crossing, especially if aided by some selection, will have multiplied the number and modified the characters of the older breeds.

SHEEP.

I shall treat this subject briefly. Most authors look at our domestic sheep as descended from several distinct species. Mr. Blyth, who has carefully attended to the subject, believes that fourteen wild species now exist, but "that not one of them can be identified as the progenitor of any one of the interminable domestic races." M. Gervais thinks that there are six species of Ovis, but that our domestic sheep form a distinct genus, now completely extinct. A German naturalist believes that our sheep descend from ten aboriginally distinct species, of which only one is still living in a wild state! Another ingenious observer, though not a naturalist, with a bold defiance of everything known on geographical distribution, infers that the sheep of Great Britain alone are the descendants of eleven endemic British forms! Under such a hopeless state of doubt it would be useless for my purpose to give a detailed account of the several breeds; but a few remarks may be added.

Sheep have been domesticated from a very ancient period. Rütimeyer found in the Swiss lake-dwellings the remains of a small breed, with thin tall legs, and horns like those of a goat, thus differing somewhat from any kind now known. Almost every country has its own peculiar breed; and many countries have several breeds differing greatly from each other. One of the most strongly marked races is an Eastern one with a long tail, including, according to Pallas, twenty vertebræ, and so loaded with fat that it is sometimes placed on a truck, which is dragged about by the living animal. These sheep, though ranked by Fitzinger as a distinct aboriginal form, bear in their drooping ears the stamp of long domestication. This is likewise the case with those sheep which have two great masses of fat on the rump, with the tail in a rudimentary condition. The Angola variety of the longtailed race has curious masses of fat on the back of the head and beneath the jaws. Mr. Hodgson in an admirable paper on the sheep of the Himalaya infers from the distribution of the several races, "that this caudal augmentation in most of its phases is an instance of degeneracy in these pre-eminently Alpine animals." The horns present an endless diversity in character; being not rarely absent, especially in the female sex, or, on the other hand, amounting to four or even eight in number. The horns, when numerous, arise from a crest on the frontal bone, which is elevated in a peculiar manner. It is remarkable that multiplicity of horns "is generally accompanied by great length and coarseness of the fleece." This correlation, however, is far from being general; for instance, I am informed by Mr. D. Forbes, that the Spanish sheep in Chile resemble, in fleece and in all other characters, their parent merino-race, except that instead of a pair they generally bear four horns. The existence of a pair of mammæ is a generic character in the genus Ovis as well as in several allied forms; nevertheless, as Mr. Hodgson has remarked, "this character is not absolutely constant even among the true and proper sheep: for I have more than once met with Cágias (a sub-Himalayan domestic race) possessed of four teats." This case is the more remarkable as, when any part or organ is present in reduced number in comparison with the same part in allied groups, it usually is subject to little variation. The presence of interdigital pits has likewise been considered as a generic distinction in sheep; but Isidore Geoffroy has shown that these pits or pouches are absent in some breeds.

In sheep there is a strong tendency for characters, which have apparently been acquired under domestication, to become attached either exclusively to the male sex, or to be more highly developed in this than in the other sex. Thus in many breeds the horns are deficient in the ewe, though this likewise occurs occasionally with the female of the wild musmon. In the rams of the Wallachian breed, "the horns spring almost perpendicularly from the frontal bone, and then take a beautiful spiral form; in the ewes they protrude nearly at right angles from the head, and then become twisted in a singular manner." Mr. Hodgson states that the extraordinarily arched nose or chaffron, which is so highly developed in several foreign breeds, is characteristic of the ram alone, and apparently is the result of domestication. I hear from Mr. Blyth that the accumulation of fat in the fattailed sheep of the plains of India is greater in the male than in the female; and Fitzinger remarks that the mane in the African maned race is far more developed in the ram than in the ewe.

Different races of sheep, like cattle, present constitutional differences. Thus the improved breeds arrive at maturity at an early age, as has been well shown by Mr. Simonds through their early average period of dentition. The several races have become adapted to different kinds of pasture and climate: for instance, no one can rear Leicester sheep on mountainous regions, where Cheviots flourish. As Youatt has remarked, "In all the different districts of Great Britain we find various breeds of sheep beautifully adapted to the locality which they occupy. No one knows their origin; they are indigenous to the soil, climate, pasturage, and the locality on which they graze; they seem to have been formed for it and by it." Marshall relatesthat a flock of heavy Lincolnshire and light Norfolk sheep which had been bred together in a large sheep-walk, part of which was low, rich, and moist, and another part high and dry, with benty grass, when turned out, regularly separated from each other; the heavy sheep drawing off to the rich soil, and the lighter sheep to their own soil; so that "whilst there was plenty of grass the two breeds kept themselves as distinct as rooks and pigeons." Numerous sheep from various parts of the world have been brought during a long course of years to the Zoological Gardens of London; but as Youatt, who attended the animals as a veterinary surgeon, remarks, "few or none die of the rot, but they are phthisical; not one of them from a torrid climate lasts out the second year, and when they die their lungs are tuberculated." There is very good evidence that English breeds of sheep will not succeed in France. Even in certain parts of England it has been found impossible to keep certain breeds of sheep; thus on a farm on the banks of the Ouse, the Leicester sheep were so rapidly destroyed by pleuritisthat the owner could not keep them; the coarser-skinned sheep never being affected.

The period of gestation was formerly thought to be of so unalterable a character, that a supposed difference of this kind between the wolf and the dog was esteemed a sure sign of specific distinction; but we have seen that the period is shorter in the improved breeds of the pig, and in the larger breeds of the ox, than in other breeds of these two animals. And now we know, on the excellent authority of Hermann von Nathusius, that Merino and Southdown sheep, when both have long been kept under exactly the same conditions, differ in their average period of gestation, as is seen in the following Table:—

Merinos 150·3 days. Southdowns 144·2 days. Half-bred Merinos and Southdowns 146·3 days.
3/4 blood of Southdown 145·5 days.
7/8 blood of Southdown 144·2 days.

In this graduated difference in cross-bred animals having different proportions of Southdown blood, we see how strictly the two periods of gestation have been transmitted. Nathusius remarks that, as Southdowns grow with remarkable rapidity after birth, it is not surprising that their foetal development should have been shortened. It is of course possible that the difference in these two breeds may be due to their descent from distinct parent-species; but as the early maturity of the Southdowns has long been carefully attended to by breeders, the difference is more probably the result of such attention. Lastly, the fecundity of the several breeds differs much; some generally producing twins or even triplets at a birth, of which fact the curious Shangai sheep (with their truncated and rudimentary ears, and great Roman noses), lately exhibited in the Zoological Gardens, offer a remarkable instance.

Sheep are perhaps more readily affected by the direct action of the conditions of life to which they have been exposed than almost any other domestic animal. According to Pallas, and more recently according to Erman, the fat-tailed Kirghisian sheep, when bred for a few generations in Russia, degenerate, and the mass of fat dwindles away, "the scanty and bitter herbage of the steppes seems so essential to their development." Pallas makes an analogous statement with respect to one of the Crimean breeds. Burnes states that the Karakool breed, which produces a fine, curled, black, and valuable fleece, when removed from its own canton near Bokhara to Persia or to other quarters, loses its peculiar fleece. In all such cases, however, it may be that a change of any kind in the conditions of life causes variability and consequent loss of character, and not that certain conditions are necessary for the development of certain characters.

Great heat, however, seems to act directly on the fleece: several accounts have been published of the change which sheep imported from Europe undergo in the West Indies. Dr. Nicholson of Antigua informs me that, after the third generation, the wool disappears from the whole body, except over the loins; and the animal then appears like a goat with a dirty door-mat on its back. A similar change is said to take place on the west coast of Africa. On the other hand, many wool-bearing sheep live on the hot plains of India. Roulin asserts that in the lower and heated valleys of the Cordillera, if the lambs are sheared as soon as the wool has grown to a certain thickness, all goes on afterwards as usual; but if not sheared, the wool detaches itself in flakes, and short shining hair like that on a goat is produced ever afterwards. This curious result seems merely to be an exaggerated tendency natural to the Merino breed, for as a great authority, namely, Lord Somerville, remarks, "the wool of our Merino sheep after shear-time is hard and coarse to such a degree as to render it almost impossible to suppose that the same animal could bear wool so opposite in quality, compared to that which has been clipped from it: as the cold weather advances, the fleeces recover their soft quality." As in sheep of all breeds the fleece naturally consists of longer and coarser hair covering shorter and softer wool, the change which it often undergoes in hot climates is probably merely a case of unequal development; for even with those sheep which like goats are covered with hair, a small quantity of underlying wool may always be found. In the wild mountain-sheep (0vis montana) of North America there is an analogous annual change of coat; "the wool begins to drop out in early spring, leaving in its place a coat of hair resembling that of the elk, a change of pelage quite different in character from the ordinary thickening of the coat or hair, common to all furred animals in winter,—for instance, in the horse, the cow, etc., which shed their winter coat in the spring."

A slight difference in climate or pasture sometimes slightly affects the fleece, as has been observed even in different districts in England, and is well shown by the great softness of the wool brought from Southern Australia. But it should be observed, as Youatt repeatedly insists, that the tendency to change may generally be counteracted by careful selection. M. Lasterye, after discussing this subject, sums up as follows: "The preservation of the Merino race in its utmost purity at the Cape of Good Hope, in the marshes of Holland, and under the rigorous climate of Sweden, furnishes an additional support of this my unalterable principle, that fine-woolled sheep may be kept wherever industrious men and intelligent breeders exist."

That methodical selection has effected great changes in several breeds of sheep no one who knows anything on the subject, entertains a doubt. The case of the Southdowns, as improved by Ellman, offers perhaps the most striking instance. Unconscious or occasional selection has likewise slowly produced a great effect, as we shall see in the chapters on Selection. That crossing has largely modified some breeds, no one who will study what has been written on this subject—for instance, Mr. Spooner's paper—will dispute; but to produce uniformity in a crossed breed, careful selection and "rigorous weeding," as this author expresses it, are indispensable.

In some few instances new breeds have suddenly originated; thus, in 1791, a ram-lamb was born in Massachusetts, having short crooked legs and a long back, like a turnspitdog. From this one lamb the otter or ancon semi-monstrous breed was raised; as these sheep could not leap over the fences, it was thought that they would be valuable; but they have been supplanted by merinos, and thus exterminated. The sheep are remarkable from transmitting their character so truly that Colonel Humphreys never heard of "but one questionable case" of an ancon ram and ewe not producing ancon offspring. When they are crossed with other breeds the offspring, with rare exceptions, instead of being intermediate in character, perfectly resemble either parent; even one of twins has resembled one parent and the second the other. Lastly, "the ancons have been observed to keep together, separating themselves from the rest of the flock when put into enclosures with other sheep."

A more interesting case has been recorded in the Report of the Juries for the Great Exhibition (1851), namely, the production of a merino ram-lamb on the Mauchamp farm, in 1828, which was remarkable for its long, smooth, straight, and silky wool. By the year 1833 M. Graux had raised rams enough to serve his whole flock, and after a few more years he was able to sell stock of his new breed. So peculiar and valuable is the wool, that it sells at 25 per cent above the best merino wool: even the fleeces of half-bred animals are valuable, and are known in France as the "Mauchamp-merino." It is interesting, as showing how generally any marked deviation of structure is accompanied by other deviations, that the first ram and his immediate offspring were of small size, with large heads, long necks, narrow chests, and long flanks; but these blemishes were removed by judicious crosses and selection. The long smooth wool was also correlated with smooth horns; and as horns and hair are homologous structures, we can understand the meaning of this correlation. If the Mauchamp and ancon breeds had originated a century or two ago, we should have had no record of their birth; and many a naturalist would no doubt have insisted, especially in the case of the Mauchamp race, that they had each descended from, or been crossed with, some unknown aboriginal form.

GOATS.

From the recent researches of M. Brandt, most naturalists now believe that all our goats are descended from the Capra ægagrus of the mountains of Asia, possibly mingled with the allied Indian species C. falconeri of India. In Switzerland, during the neolithic period, the domestic goat was commoner than the sheep; and this very ancient race differed in no respect from that now common in Switzerland. At the present time, the many races found in several parts of the world differ greatly from each other; nevertheless, as far as they have been tried, they are all quite fertile when crossed. So numerous are the breeds, that Mr. G. Clarkhas described eight distinct kinds imported into the one island of Mauritius. The ears of one kind were enormously developed, being, as measured by Mr. Clark, no less than 19 inches in length and 4-3/4 inches in breadth. As with cattle, the mammæ of those breeds which are regularly milked become greatly developed; and, as Mr. Clark remarks, "it is not rare to see their teats touching the ground." The following cases are worth notice as presenting unusual points of variation. According to Godron, the mammæ differ greatly in shape in different breeds, being elongated in the common goat, hemispherical in the Angora race, and bilobed and divergent in the goats of Syria and Nubia. According to this same author, the males of certain breeds have lost their usual offensive odour. In one of the Indian breeds the males and females have horns of widelydifferent shapes; and in some breeds the females are destitute of horns. M. Ramu of Nancy informs me that many of the goats there bear on the upper part of the throat a pair of hairy appendages, 70 mm. in length and about 10 mm. in diameter, which in external appearance resemble those above described on the jaws of pigs. The presence of interdigital pits or glands on all four feet has been thought to characterise the genus Ovis, and their absence to be characteristic of the genus Capra; but Mr. Hodgson has found that they exist in the front feet of the majority of Himalayan goats. Mr. Hodgson measured the intestines in two goats of the Dúgú race, and he found that the proportional length of the great and small intestines differed considerably. In one of these goats the cæcum was thirteen inches, and in the other no less than thirty-six inches in length!

REFERENCES

1. Hermann von Nathusius 'Die Racen des Schweines,' Berlin, 1860; and 'Vorstudien für Geschichte,' etc., 'Schweineschädel,' Berlin, 1864. Rütimeyer, 'Die Fauna der Pfahlbauten,' Basel, 1861.
2. Nathusius, 'Die Racen des Schweines,' Berlin, 1860. An excellent appendix is given with references to published and trustworthy drawings of the breeds of each country.
3. For Europe see Bechstein, 'Naturgesch. Deutschlands,' 1801, B. i., s. 505. Several accounts have been published on the fertility of the offspring from wild and tame swine. See Burdach's 'Physiology,' and Godron 'De l'Espèce,' tom. i. p. 370. For Africa, 'Bull. de la Soc. d'Acclimat.' tom. iv. p. 389. For India, see Nathusius, 'Schweineschädel,' s. 148.
4. Sir W. Elliot, Catalogue of Mammalia, 'Madras Journal of Lit. and Science,' vol. x. p. 219.
5. 'Pfahlbauten,' s. 163 et passim.
6. See J. W. Schütz' interesting essay, 'Zur Kenntniss des Torfschweins,' 1868. This author believes that the Torfschwein is descended from a distinct species, the S. sennariensis of Central Africa.
7. Stan. Julien quoted by de Blainville, 'Ostéographie,' p. 163.
8. Richardson, 'Pigs, their Origin,' etc., p. 26.
9. 'Die Racen des Schweines' s. 47, 64.
10. 'Proc. Zoolog. Soc.,' 1861, p. 263.
11. Sclater, in 'Proc. Zoolog. Soc.,' Feb. 26, 1861.
12. 'Proc. Zoolog. Soc.,' 1862, p. 13. The skull has since been described much more fully by Professor Lucae in a very interesting essay, 'Der Schädel des Maskenschweines,' 1870. He confirms the conclusion of von Nathusius on the relationship of this kind of pig.
13. 'Journal of Voyages and Travels from 1821 to 1829,' vol. i. p. 300.
14. Rev. G. Low 'Fauna Orcadensis,' p. 10. See also Dr. Hibbert's account of the pig of the Shetland Islands.
15. 'Die Racen des Schweines' s. 70.)
16. These woodcuts are copied from engravings given in Mr. S. Sidney's excellent edition of 'The Pig,' by Youatt, 1860. See pp. 1, 16, 19.
17. 'Schweineschädel' s. 74, 135.
18. Nathusius, 'Die Racen des Schweines,' s. 71.
19. 'Die Racen des Schweines,' s. 47. 'Schweineschädel' s. 104. Compare, also, the figures of the old Irish and the improved Irish breeds in Richardson on 'The Pig,' 1847.
20. Quoted by Isid. Geoffroy, 'Hist. Nat. Gén.,' tom. iii. p. 441.
21. S. Sidney, 'The Pig,' p. 61.
22. 'Schweineschädel,' s. 2, 20.
23. 'Proc. Zoolog. Soc.,' 1837, p. 23. I have not given the caudal vertebræ, as Mr. Eyton says some might possibly have been lost. I have added together the dorsal and lumbar vertebræ, owing to Prof. Owen's remarks ('Journal Linn. Soc.,' vol. ii. p. 28) on the difference between dorsal and lumbar vertebræ depending only on the development of the ribs. Nevertheless the difference in the number of the ribs in pigs deserves notice. M. Sanson gives the number of lumbar vertebræ in various pigs; 'Comptes Rendus,' lxiii. p. 843.
24. 'Edinburgh New Philosoph. Journal,' April, 1863. See also De Blainville's 'Ostéographie,' p. 128, for various authorities on this subject.
25.Eudes-Deslongchamps, 'Mémoires de la Soc. Linn. de Normandie,' vol. vii., 1842, p. 41. Richardson, 'Pigs, their Origin, etc.,' 1847, p. 30. Nathusius, 'Die Racen des Schweines,' 1863, s. 54.

26. D. Johnson's 'Sketches of Indian Field Sports,' p. 272. Mr. Crawfurd informs me that the same fact holds good with the wild pigs of the Malay peninsula.
27.For Turkish pigs see Desmarest, 'Mammalogie,' 1820, p. 391. For those of Westphalia see Richardson's 'Pigs, their Origin, etc.,' 1847, p. 41.
28. With respect to the several foregoing and following statements on feral pigs, see Roulin, in 'Mém. présentés par divers Savans a l'Acad.,' etc., Paris, tom. vi. 1835, p. 326. It should be observed that his account does not apply to truly feral pigs; but to pigs long introduced into the country and living in a half-wild state. For the truly feral pigs of Jamaica, see Gosse's 'Sojourn in Jamaica,' 1851, p. 386; and Col. Hamilton Smith, in 'Nat. Library,' vol. ix. p. 93. With respect to Africa see Livingstone's 'Expedition to the Zambesi,' 1865, p. 153. The most precise statement with respect to the tusks of the West Indian feral boars is by P. Labat (quoted by Roulin); but this author attributes the state of these pigs to descent from a domestic stock which he saw in Spain. Admiral Sulivan, R.N., had ample opportunities of observing the wild pigs on Eagle Islet in the Falklands; and he informs me that they resembled wild boars with bristly ridged backs and large tusks. The pigs which have run wild in the province of Buenos Ayres (Rengger 'Säugethiere,' s. 331) have not reverted to the wild type. De Blainville ('Ostéographie,' p. 132) refers to two skulls of domestic pigs sent from Patagonia by Al. d'Orbigny, and he states that they have the occipital elevation of the wild European boar, but that the head altogether is "plus courte et plus ramassée." He refers, also, to the skin of a feral pig from North America, and says "il ressemble tout à fait à un petit sanglier, mais il est presque tout noir, et peut-être un peu plus ramassé dans ses formes."
29. Gosse's 'Jamaica,' p. 386, with a quotation from Williamson's 'Oriental Field Sports.' Also Col. Hamilton Smith, in 'Naturalist Library,' vol. ix. p. 94.
30. S. Sidney's edition of 'Youatt on the Pig,' 1860, pp. 7, 26, 27, 29, 30.
31. 'Schweineschädel' s. 140.
32. 'Die Fauna der Pfahlbauten,' 1861, s. 109, 149, 222. See also Geoffroy Saint-Hilaire in 'Mém. du Mus. d'Hist. Nat.,' tom. x. p. 172; and his son Isidore in 'Hist. Nat. Gen.' tom. iii. p. 69. Vasey, in his 'Delineations of the Ox Tribe,' 1851, p. 127, says the zebu has four, and common ox five, sacral vertebræ. Mr. Hodgson found the ribs either thirteen or fourteen in number; see a note in 'Indian Field,' 1858, p. 62.
33.'The Indian Field,' 1858, p. 74, where Mr. Blyth gives his authorities with respect to the feral humped cattle. Pickering, also, in his 'Races of Man,' 1850, p. 274, notices the peculiar grunt-like character of the voice of the humped cattle.
34. Mr. H. E. Marquand, in 'The Times,' June 23rd, 1856.
35. Vasey, 'Delineations of the Ox-Tribe,' p. 124. Brace's 'Hungary,' 1851, p. 94. The Hungarian cattle descend, according to Rütimeyer 'Zahmen Europ. Rindes,' 1866, s. 13 from Bos primigenius.
36. Moll and Gayot, 'La Connaissance Gén. du Bœuf,' Paris, 1860. Fig. 82 is that of the Podolian breed.
37. A translation appeared in three parts in the 'Annals and Mag. of Nat. Hist.,' 2nd series, vol. iv., 1849.
38. See also Rütimeyer's 'Beiträge pal. Gesch. der Wiederkäuer Basel,' 1865, s. 54.
39. Pictet 'Paléontologie,' tom. i. p. 365 (2nd edit.). With respect to B. trochoceros, see Rütimeyer 'Zahmen Europ. Rindes,' 1866, s. 26.
40. W. Boyd Dawkins on the British Fossil Oxen, 'Journal of the Geolog. Soc.,' Aug. 1867, p. 182. Also 'Proc. Phil. Soc. of Manchester,' Nov. 14th, 1871, and 'Cave Hunting,' 1875, p. 27, 138.
41. 'British Pleistocene Mammalia,' by W. B. Dawkins and W. A. Sandford, 1866, p. 15.
42. W. R. Wilde, 'An Essay on the Animal Remains, etc. Royal Irish Academy,' 1860, p. 29. Also 'Proc. of R. Irish Academy,' 1858, p. 48.
43. 'Lecture: Royal Institution of G. Britain,' May 2nd, 1856, p. 4. 'British Fossil Mammals,' p. 513.
44. Nilsson, in 'Annals and Mag. of Nat. Hist.,' 1849, vol. iv. p. 354.
45. See W. R. Wilde, ut supra; and Mr. Blyth, in 'Proc. Irish Academy,' March 5th, 1864.
46. Laing's 'Tour in Norway,' p. 110.
47. Isid. Geoffroy Saint-Hilaire, 'Hist. Nat. Gén.,' tom. iii. 96.
48. Idem, tom. iii. pp. 82, 91.
49. 'Quadrupèdes du Paraguay,' tom. ii. p. 360.
50. Walther 'Das Rindvieh,' 1817, s. 30.
51. I am much indebted to the present Earl of Tankerville for information about his wild cattle; and for the skull which was sent to Prof. Rütimeyer. The fullest account of the Chillingham cattle is given by Mr. Hindmarsh, together with a letter by the late Lord Tankerville, in 'Annals and Mag. of Nat. Hist.,' vol. ii., 1839, p. 274. See Bewick, 'Quadrupeds,' 2nd edit., 1791, p. 35, note. With respect to those of the Duke of Queensberry, see Pennant's 'Tour in Scotland,' p. 109. For those of Chartley, see Low's 'Domesticated Animals of Britain,' 1845, p. 238. For those of Gisburne, see Bewick 'Quadrupeds,' and 'Encyclop. of Rural Sports,' p. 101.
52. Boethius was born in 1470; 'Annals and Mag. of Nat. Hist.,' vol. ii., 1839, p. 281; and vol. iv., 1849, p. 424.
53.'Youatt on Cattle,' 1834, p. 48: See also p. 242, on short-horn cattle. Bell, in his 'British Quadrupeds,' p. 423, states that, after long attending to the subject, he has found that white cattle invariably have coloured ears.
54.Azara, 'Quadrupèdes du Paraguay,' tom. ii. p. 361. Azara quotes Buffon for the feral cattle of Africa. For Texas see 'Times,' Feb. 18th, 1846.
55. Anson's Voyage. See Kerr and Porter's 'Collection,' vol. xii. p. 103.
56. See also Mr. Mackinnon's pamphlet on the Falkland Islands, p. 24.
57. 'The Age of the Ox, Sheep, Pig,' etc., by Prof. James Simonds, published by order of the Royal Agricult. Soc.
58.'Ann. Agricult. France,' April, 1837, as quoted in 'The Veterinary,' vol. xii. p. 725. I quote Tessier's observations from 'Youatt on Cattle,' p. 527.
59. 'The Veterinary,' vol. viii. p. 681 and vol. x. p. 268. Low's 'Domest. Animals, etc.' p. 297.
60.Mr. Ogleby in 'Proc. Zoolog. Soc.,' 1836, p. 138, and 1840, p. 4. Quatrefages quotes Philippi ('Revue des Cours Scientifiques,' Feb. 12, 1688, p. 657), that the cattle of Piacentino have thirteen dorsal vertebræ and ribs in the place of the ordinary number of twelve.
61. Leguat's Voyage, quoted by Vasey in his 'Delineations of the Ox-tribe,' p. 132.
62. 'Travels in South Africa,' pp. 317, 336.
63. 'Mem. de l'Institut présent. par divers Savans,' tom. vi., 1835, p. 333. For Brazil, see 'Comptes Rendus,' June 15, 1846. See Azara 'Quadrupèdes du Paraguay,' tom. ii. pp. 359, 361.
64. 'Schweineschädel,' 1864, s. 104. Nathusius states that the form of skull characteristic in the niata cattle occasionally appears in European cattle; but he is mistaken, as we shall hereafter see, in supposing that these cattle do not form a distinct race. Prof. Wyman, of Cambridge, United States, informs me that the common cod-fish presents a similar monstrosity, called by the fishermen "bull-dog cod." Prof. Wyman also concluded, after making numerous inquiries in La Plata, that the niata cattle transmit their peculiarities or form a race.
65. 'Ueber Art des zahmen Europ. Rindes,' 1866, s. 28.
66. 'Descriptive Cat. of Ost. Collect. of College of Surgeons,' 1853, p. 624. Vasey in his 'Delineations of the Ox-tribe' has given a figure of this skull; and I sent a photograph of it to Prof. Rütimeyer.
67. Loudon's 'Magazine of Nat. Hist.,' vol. i. 1829, p. 113. Separate figures are given of the animal, its hoofs, eye, and dewlap.
68. Low, 'Domesticated Animals of the British Isles,' p. 264.
69. 'Mém. de l'Institut présent. Par divers Savans,' tom. vi., 1835, p. 332.
70. Idem, pp. 304, 368, etc.
71. 'Youatt on Cattle,' p. 193. A full account of this bull is taken from Marshall.
72. 'Youatt on Cattle,' p. 116. Lord Spencer has written on this same subject.
73.Blyth, on the genus Ovis, in 'Annals and Mag. of Nat. History,' vol. vii., 1841, p. 261. With respect to the parentage of the breeds see Mr. Blyth's excellent articles in 'Land and Water,' 1867, pp. 134, 156. Gervais, 'Hist. Nat. des Mammifères,' 1855, tom. ii. p. 191.
74. Dr. L. Fitzinger, 'Ueber die Racen des Zahmen Schafes,' 1860, s. 86.
75. J. Anderson, 'Recreations in Agriculture and Natural History,' vol. ii. p. 264.
76. 'Pfahlbauten' s. 127, 193.
77. 'Youatt on Sheep,' p. 120.
78. 'Journal of the Asiatic Soc. of Bengal,' vol.xvi. pp. 1007, 1016.
79. 'Youatt on Sheep,' pp. 142-169.
80. 'Journal Asiat. Soc. of Bengal,' vol. xvi., 1847, p. 1015.
81. 'Hist. Nat. Gén.,' tom. iii. p. 435.
82. 'Youatt on Sheep,' p. 138.
83. 'Journal Asiat. Soc. of Bengal,' vol. xvi., 1847, pp. 1015, 1016.
84. 'Racen des Zahmen Schafes,' s. 77.
85. 'Rural Economy of Norfolk,' vol. ii. p. 136.
86. 'Youatt on Sheep,' p. 312. On same subject, see excellent remarks in 'Gardener's Chronicle,' 1858, p. 868. For experiments in crossing Cheviot sheep with Leicesters see Youatt, p. 325.
87. 'Youatt on Sheep,' note, p. 491.
88. M. Malingié-Nouel, 'Journal R. Agricult. Soc.,' vol. xiv. 1853, p. 214. Translated and therefore approved by a great authority, Mr. Pusey.
89. 'The Veterinary,' vol. x. p. 217.
90. A translation of his paper is given in 'Bull. Soc. Imp. d'Acclimat.,' tom. ix., 1862, p. 723.
91. Erman's 'Travels in Siberia,' (Eng. trans.) vol. i. p. 228. For Pallas on the fat-tailed sheep I quote from Anderson's account of the 'Sheep of Russia,' 1794, p. 34. With respect to the Crimean sheep see Pallas' 'Travels' (Eng. trans.) vol. ii. p. 454. For the Karakool sheep see Burnes' 'Travels in Bokhara,' vol. iii. p. 151.
92. See Report of the Directors of the Sierra Leone Company, as quoted in White's 'Gradation of Man,' p. 95. With respect to the change which sheep undergo in the West Indies see also Dr. Davy, in 'Edin. New. Phil. Journal,' Jan. 1852. For the statement made by Roulin, see 'Mém. de l'Institut présent. par divers Savans,' tom. vi., 1835, p. 347.
93. 'Youatt on Sheep,' p. 69, where Lord Somerville is quoted. See p. 117 on the presence of wool under the hair. With respect to the fleeces of Australian sheep, p. 185. On selection counteracting any tendency to change, see pp. 70, 117, 120, 168.
94. Audubon and Bachman, 'The Quadrupeds of North America,' 1846, vol. v. p. 365.
95. 'Journal of R. Agricult. Soc. of England,' vol. xx., part ii., W. C. Spooner on cross-Breeding.
96. 'Philosoph. Transactions,' London, 1813, p. 88.
97. Isidore Geoffroy St. Hilaire, 'Hist. Nat. Générale,' tom. iii. p. 87. Mr. Blyth, {'Land and Water,' 1867, p. 37) has arrived at a similar conclusion, but he thinks that certain Eastern races may perhaps be in part descended from the Asiatic markhor.
98. Rütimeyer 'Pfahlbauten,' s. 127.
99. Godron 'De l'Espèce,' tom. i. p. 402.
100. 'Annals and Mag. of Nat. History,' vol ii. (2nd series), 1848, p. 363.
101. 'De l'Espèce,' tom. i. p. 406. Mr. Clark also refers to differences in the shape of the mammæ. Godron states that in the Nubian race the scrotum is divided into two lobes; and Mr. Clark gives a ludicrous proof of this fact, for he saw in the Mauritius a male goat of the Muscat breed purchased at a high price for a female in full milk. These differences in the scrotum are probably not due to descent from distinct species: for Mr. Clark states that this part varies much in form.
102. Mr. Clark, 'Annals and Mag. of Nat. Hist.,' vol. ii. (2nd series), 1848, p. 361.
103. Desmarest, 'Encyclop. Méthod. Mammalogie,' p. 480.
104. 'Journal of Asiatic Soc. of Bengal,' vol. xvi., 1847, pp. 1020, 1025.

Chapter IV: Domestic Rabbits

DOMESTIC RABBITS DESCENDED FROM THE COMMON WILD RABBIT — ANCIENT DOMESTICATION — ANCIENT SELECTION — LARGE LOP-EARED RABBITS — VARIOUS BREEDS — FLUCTUATING CHARACTERS — ORIGIN OF THE HIMALAYAN BREED — CURIOUS CASE OF INHERITANCE — FERAL RABBITS IN JAMAICA AND THE FALKLAND ISLANDS — PORTO SANTO FERAL RABBITS — OSTEOLOGICAL CHARACTERS — SKULL — SKULL OF HALF-LOP RABBITS — VARIATIONS IN THE SKULL ANALOGOUS TO DIFFERENCES IN DIFFERENT SPECIES OF HARES — VERtebræ — STERNUM — SCAPULA — EFFECTS OF USE AND DISUSE ON THE PROPORTIONS OF THE LIMBS AND BODY — CAPACITY OF THE SKULL AND REDUCED SIZE OF THE BRAIN — SUMMARY ON THE MODIFICATIONS OF DOMESTICATED RABBITS.

All naturalists, with, as far as I know, a single exception, believe that the several domestic breeds of the rabbit are descended from the common wild species; I shall therefore describe them more carefully than in the previous cases. Professor Gervais1 states "that the true wild rabbit is smaller than the domestic; its proportions are not absolutely the same; its tail is smaller; its ears are shorter and more thickly clothed with hair; and these characters, without speaking of colour, are so many indications opposed to the opinion which unites these animals under the same specific denomination." Few naturalists will agree with this author that such slight differences are sufficient to separate as distinct species the wild and domestic rabbit. How extraordinary it would be, if close confinement, perfect tameness, unnatural food, and careful breeding, all prolonged during many generations, had not produced at least some effect! The tame rabbit has been domesticated from an ancient period. Confucius ranges rabbits among animals worthy to be sacrificed to the gods, and, as he prescribes their multiplication, they were probably at this early period domesticated in China. They are mentioned by several of the classical writers. In 1631 Gervaise Markham writes, "You shall not, as in other cattell, looke to their shape, but to their richnesse, onely elect your buckes, the largest and goodliest conies you can get; and for the richnesse of the skin, that is accounted the richest which hath the equallest mixture of blacke and white haire together, yet the blacke rather shadowing the white; the furre should be thicke, deepe, smooth, and shining; ... they are of body much fatter and larger, and, when another skin is worth two or three pence, they are worth two shillings." From this full description we see that silver-grey rabbits existed in England at this period; and what is far more important, we see that the breeding or selection of rabbits was then carefully attended to. Aldrovandi, in 1637, describes, on the authority of several old writers (as Scaliger, in 1557), rabbits of various colours, some "like a hare," and he adds that P. Valerianus (who died a very old man in 1558) saw at Verona rabbits four times bigger than ours.

From the fact of the rabbit having been domesticated at an ancient period, we must look to the northern hemisphere of the Old World, and to the warmer temperate regions alone, for the aboriginal parent-form; for the rabbit cannot live without protection in countries as cold as Sweden, and, though it has run wild in the tropical island of Jamaica, it has never greatly multiplied there. It now exists, and has long existed, in the warmer temperate parts of Europe, for fossil remains have been found in several countries.3 The domestic rabbit readily becomes feral in these same countries, and when variously coloured kinds are turned out they generally revert to the ordinary grey colour.4 Wild rabbits, if taken young, can be domesticated, though the process is generally very troublesome. The various domestic races are often crossed, and are believed to be quite fertile together, and a perfect gradation can be shown to exist from the largest domestic kinds, having enormously developed ears, to the common wild kind. The parent-form must have been a burrowing animal, a habit not common, as far as I can discover, to any other species in the large genus Lepus. Only one wild species is known with certainty to exist in Europe; but the rabbit (if it be a true rabbit) from Mount Sinai, and likewise that from Algeria, present slight differences; and these forms have been considered by some authors as specifically distinct. But such slight differences would aid us little in explaining the more considerable differences characteristic of the several domestic races. If the latter are the descendants of two or more closely allied species, these, with the exception of the common rabbit, have been exterminated in a wild state; and this is very improbable, seeing with what pertinacity this animal holds its ground. From these several reasons we may infer with safety that all the domestic breeds are the descendants of the common wild species. But from what we hear of the marvellous success in France in rearing hybrids between the hare and rabbit, it is possible, though not probable, from the great difficulty in making the first cross, that some of the larger races, which are coloured like the hare, may have been modified by crosses with this animal. Nevertheless, the chief differences in the skeletons of the several domestic breeds cannot, as we shall presently see, have been derived from a cross with the hare.

There are many breeds which transmit their characters more or less truly. Every one has seen the enormous lop-eared rabbits exhibited at our shows; various allied sub-breeds are reared on the Continent, such as the so-called Andalusian, which is said to have a large head with a round forehead, and to attain a greater size than any other kind; another large Paris breed is named the Rouennais, and has a square head; the so-called Patagonian rabbit has remarkably short ears and a large round head. Although I have not seen all these breeds, I feel some doubt about there being any marked difference in the shape of their skulls. English lop-eared rabbits often weigh 8 pounds or 10 pounds, and one has been exhibited weighing 18 pounds; whereas a full-sized wild rabbit weighs only about 3-1/4 pounds. The head or skull in all the large lop-eared rabbits examined by me is much longer relatively to its breadth than in the wild rabbit. Many of them have loose transverse folds of skin or dewlaps beneath the throat, which can be pulled out so as to reach nearly to the ends of the jaws. Their ears are prodigiously developed, and hang down on each side of their faces. A rabbit was exhibited in 1867 with its two ears, down on each side of their faces. A rabbit was exhibited in 1867 with its two ears, 3/8 inches in breadth. In 1869 one was exhibited with ears, measured in the same manner, 23-1/8 in length and 5-1/2 in breadth; "thus exceeding any rabbit ever exhibited at a prize 23-1/8 in length and 5-1/2 in breadth; "thus exceeding any rabbit ever exhibited at a prize 5/8 inches, and the breadth only 1-7/8 inch. The weight of body in the larger rabbits, and the development of their ears, are the qualities which win prizes, and have been carefully selected.
The hare-coloured, or, as it is sometimes called, the Belgian rabbit, differs in nothing except colour from the other large breeds; but Mr. J. Young, of Southampton, a great breeder of this kind, informs me that the females, in all the specimens examined by him, had only six mammæ and this certainly was the case with two females which came into my possession. Mr. B. P. Brent, however, assures me that the number is variable with other domestic rabbits. The common wild rabbit always has ten mammæ. The Angora rabbit is remarkable from the length and fineness of its fur, which even on the soles of the feet is of considerable length. This breed is the only one which differs in its mental qualities, for it is said to be much more sociable than other rabbits, and the male shows no wish to destroy its young. Two live rabbits were brought to me from Moscow, of about the size of the wild species, but with long soft fur, different from that of the Angora. These Moscow rabbits had pink eyes and were snow-white, excepting the ears, two spots near the nose, the upper and under surface of the tail, and the hinder tarsi, which were blackish-brown. In short, they were coloured nearly like the so-called Himalayan rabbits, presently to be described, and differed from them only in the character of their fur. There are two other breeds which come true to colour, but differ in no other respect, namely silver-greys and chinchillas. Lastly, the Nicard or Dutch rabbit may be mentioned, which varies in colour, and is remarkable from its small size, some specimens weighing only 1-1/4 pounds; rabbits of this breed make excellent nurses for other and more delicate kinds.

Certain characters are remarkably fluctuating, or are very feebly transmitted by domestic rabbits: thus, one breeder tells me that with the smaller kinds he has hardly ever raised a whole litter of the same colour: with the large lop-eared breeds "it is impossible," says a great judge, "to breed true to colour, but by judicious crossing a great deal may be done towards it. The fancier should know how his does are bred, that is, the colour of their parents." Nevertheless, certain colours, as we shall presently see, are transmitted truly. The dewlap is not strictly inherited. Lop-eared rabbits, with their ears hanging down flat on each side of the face, do not transmit this character at all truly. Mr. Delamer remarks that, "with fancy rabbits, when both the parents are perfectly formed, have model ears, and are handsomely marked, their progeny do not invariably turn out the same." When one parent, or even both, are oar-laps, that is, have their ears sticking out at right angles, or when one parent or both are half-lops, that is, have only one ear dependent, there is nearly as good a chance of the progeny having both ears full-lop, as if both parents had been thus characterised. But I am informed, if both parents have upright ears, there is hardly a chance of a full-lop. In some half-lops the ear that hangs down is broader and longer than the upright ear; so that we have the unusual case of a want of symmetry on the two sides. This difference in the position and size of the two ears probably indicates that the lopping results from the great length and weight of the ear, favoured no doubt by the weakness of the muscles consequent on disuse. Anderson mentions a breed having only a single ear; and Professor Gervais another breed destitute of ears.

We come now to the Himalayan breed, which is sometimes called Chinese, Polish, or Russian. These pretty rabbits are white, or occasionally yellow, excepting their ears, nose, feet, and the upper side of the tail, which are all brownish-black; but as they have red eyes, they may be considered as albinoes. I have received several accounts of their breeding perfectly true. From their symmetrical marks, they were at first ranked as specifically distinct, and were provisionally named L. nigripes. Some good observers thought that they could detect a difference in their habits, and stoutly maintained that they formed a new species. The origin of this breed is so curious, both in itself and as throwing some light on the complex laws of inheritance that it is worth giving in detail. But it is first necessary briefly to describe two other breeds: silver-greys or silver-sprigs generally have black heads and legs, and their fine grey fur is interspersed with numerous black and white long hairs. They breed perfectly true, and have long been kept in warrens. When they escape and cross with common rabbits, the product, as I hear from Mr. Wyrley Birch, of Wretham Hall, is not a mixture of the two colours, but about half take after the one parent, and the other half after the other parent. Secondly, chinchillas or tame silver-greys (I will use the former name) have short, paler, mouse or slate-coloured fur, interspersed with long, blackish, slate-coloured, and white hairs. These rabbits breed perfectly true. A writer stated in 1857 that he had produced Himalayan rabbits in the following manner. He had a breed of chinchillas which had been crossed with the common black rabbit, and their offspring were either blacks or chinchillas. These latter were again crossed with other chinchillas (which had also been crossed with silvergreys), and from this complicated cross Himalayan rabbits were raised. From these and other similar statements, Mr. Bartlett was led to make a careful trial in the Zoological Gardens, and he found that by simply crossing silver-greys with chinchillas he could always produce some few Himalayans; and the latter, notwithstanding their sudden origin, if kept separate, bred perfectly true. But I have recently been assured the pure silver-greys of any sub-breed occasionally produce Himalayans.

The Himalayans, when first born, are quite white, and are then true albinoes; but in the course of a few months they gradually assume their dark ears, nose, feet, and tail. Occasionally, however, as I am informed by Mr. W. A. Wooler and the Rev. W. D. Fox, the young are born of a very pale grey colour, and specimens of such fur were sent me by the former gentleman. The grey tint, however, disappears as the animal comes to maturity. So that with these Himalayans there is a tendency, strictly confined to early youth, to revert to the colour of the adult silver-grey parent-stock. Silver-greys and chinchillas, on the other hand, present a remarkable contrast with the Himalayans in their colour whilst quite young, for they are born perfectly black, but soon assume their characteristic grey or silver tints. The same thing occurs with grey horses, which, as long as they are foals, are generally of a nearly black colour, but soon become grey, and get whiter and whiter as they grow older. Hence the usual rule is that Himalayans are born white and afterwards become in certain parts of their bodies dark-coloured; whilst silvergreys are born black and afterwards become sprinkled with white. Exceptions, however, and of a directly opposite nature, occasionally occur in both cases. For young silver-greys are sometimes born in warrens, as I hear from Mr. W. Birch, of a cream-colour, but these young animals ultimately become black. The Himalayans, on the other hand, sometimes produce, as is stated by an experienced amateur, a single black young one in a litter; and this, before two months elapse, becomes perfectly white.

To sum up the whole curious case: wild silver-greys may be considered as black rabbits which become grey at an early period of life. When they are crossed with common rabbits, the offspring are said not to have blended colours, but to take after either parent; and in this respect they resemble black and albino varieties of most quadrupeds, which often transmit their colours in this same manner. When they are crossed with chinchillas, that is, with a paler sub-variety, the young are at first pure albinoes, but soon become dark-coloured in certain parts of their bodies, and are then called Himalayans. The young Himalayans, however, are sometimes at first either pale grey or completely black, in either case changing after a time to white. In a future chapter I shall advance a large body of facts showing that, when two varieties are crossed both of which differ in colour from their parent-stock, there is a strong tendency in the young to revert to the aboriginal colour; and what is very remarkable, this reversion occasionally supervenes, not before birth, but during the growth of the animal. Hence, if it could be shown that silver-greys and chinchillas were the offspring of a cross between a black and albino variety with the colours intimately blended—a supposition in itself not improbable, and supported by the circumstance of silver-greys in warrens sometimes producing creamy-white young, which ultimately become black—then all the above given paradoxical facts on the changes of colour in silver-greys and in their descendants the Himalayans would come under the law of reversion, supervening at different periods of growth and in different degrees, either to the original black or to the original albino parent-variety.

It is, also, remarkable that Himalayans, though produced so suddenly; breed true. But as, whilst young, they are albinoes, the case falls under a very general rule; albinism being well known to be strongly inherited, for instance with white mice and many other quadrupeds, and even white flowers. But why, it may be asked, do the ears, tail, nose, and feet, and no other part of the body, revert to a black colour? This apparently depends on a law, which generally holds good, namely, that characters common to many species of a genus—and this, in fact, implies long inheritance from the ancient progenitor of the genus—are found to resist variation, or to reappear if lost, more persistently than the characters which are confined to the separate species. Now, in the genus Lepus, a large majority of the species have their ears and the upper surface of the tail tinted black; but the persistence of these marks is best seen in those species which in winter become white: thus, in Scotland the L. variabilis in its winter dress has a shade of colour on its nose, and the tips of its ears are black: in the L. tibetanus the ears are black, the upper surface of the tail greyish-black, and the soles of the feet brown: in L. glacialis the winter fur is pure white, except the soles of the feet and the points of the ears. Even in the variouslycoloured fancy rabbits we may often observe a tendency in these same parts to be more darkly tinted than the rest of the body. Thus the several coloured marks on the Himalayan rabbits, as they grow old, are rendered intelligible. I may add a nearly analogous case: fancy rabbits very often have a white star on their foreheads; and the common English hare, whilst young, generally has, as I have myself observed, a similar white star on its forehead.

When variously coloured rabbits are set free in Europe, and are thus placed under their natural conditions, they generally revert to the aboriginal grey colour; this may be in part due to the tendency in all crossed animals, as lately observed, to revert to their primordial state. But this tendency does not always prevail; thus silver-grey rabbits are kept in warrens, and remain true though living almost in a state of nature; but a warren must not be stocked with both silver-greys and common rabbits; otherwise "in a few years there will be none but common greys surviving." When rabbits run wild in foreign countries under new conditions of life, they by no means always revert to their aboriginal colour. In Jamaica the feral rabbits are described as having been "slate-coloured, deeply tinted with sprinklings of white on the neck, on the shoulders, and on the back; softening off to bluewhite under the breast and belly." But in this tropical island the conditions were not favourable to their increase, and they never spread widely, and are now extinct, as I hear from Mr. R. Hill, owing to a great fire which occurred in the woods. Rabbits during many years have run wild in the Falkland Islands; they are abundant in certain parts, but do not spread extensively. Most of them are of the common grey colour; a few, as I am informed by Admiral Sulivan, are hare-coloured, and many are black, often with nearly symmetrical white marks on their faces. Hence, M. Lesson described the black variety as a distinct species, under the name of Lepus magellanicus, but this, as I have elsewhere shown, is an error. Within recent times the sealers have stocked some of the small outlying islets in the Falkland group with rabbits; and on Pebble Islet, as I hear from Admiral Sulivan, a large proportion are hare-coloured, whereas on Rabbit Islet a large proportion are of a bluish colour, which is not elsewhere seen. How the rabbits were coloured which were turned out of these islets is not known.

The rabbits which have become feral on the island of Porto Santo, near Madeira, deserve a fuller account. In 1418 or 1419, J. Gonzales Zarco happened to have a female rabbit on board which had produced young during the voyage, and he turned them all out on the island. These animals soon increased so rapidly, that they became a nuisance, and actually caused the abandonment of the settlement. Thirty-seven years subsequently, Cada Mosto describes them as innumerable; nor is this surprising, as the island was not inhabited by any beast of prey or by any terrestrial mammal. We do not know the character of the mother-rabbit; but it was probably the common domesticated kind. The Spanish peninsula, whence Zarco sailed, is known to have abounded with the common wild species at the most remote historical period; and as these rabbits were taken on board for food, it is improbable that they should have been of any peculiar breed. That the breed was well domesticated is shown by the doe having littered during the voyage. Mr. Wollaston, at my request, brought home two of these feral rabbits in spirits of wine; and, subsequently, Mr. W. Haywood sent to me three more specimens in brine, and two alive. These seven specimens, though caught at different periods, closely resembled each other. They were full grown, as shown by the state of their bones. Although the conditions of life in Porto Santo are evidently highly favourable to rabbits, as proved by their extraordinarily rapid increase, yet they differ conspicuously in their small size from the wild English rabbit. Four English rabbits, measured from the incisors to the anus, varied between 17 and 17-3/4 inches in length; whilst two of the Porto Santo rabbits were only 14-1/2 and 15 inches in length. But the decrease in size is best shown by weight; four wild English rabbits averaged 3 pounds 5 ounces, whilst one of the Porto Santo rabbits, which had lived for four years in the Zoological Gardens, but had become thin, weighed only 1 pound 9 ounces. A fairer test is afforded by the comparison of the well-cleaned limb-bones of a Porto Santo rabbit killed on the island with the same bones of a wild English rabbit of average size, and they differed in the proportion of rather less than five to nine. So that the Porto Santo rabbits have decreased nearly three inches in length, and almost half in weight of body. The head has not decreased in length proportionally with the body; and the capacity of the brain case is, as we shall hereafter see, singularly variable. I prepared four skulls, and these resembled each other more closely than do generally the skulls of wild English rabbits; but the only difference in structure which they presented was that the supra-orbital processes of the frontal bones were narrower.

In colour the Porto Santo rabbit differs considerably from the common rabbit; the upper surface is redder, and is rarely interspersed with any black or black-tipped hairs. The throat and certain parts of the under surface, instead of being pure white, are generally pale grey or leaden colour. But the most remarkable difference is in the ears and tail; I have examined many fresh English rabbits, and the large collection of skins in the British Museum from various countries, and all have the upper surface of the tail and the tips of the ears clothed with blackish-grey fur; and this is given in most works as one of the specific characters of the rabbit. Now in the seven Porto Santo rabbits the upper surface of the tail was reddish-brown, and the tips of the ears had no trace of the black edging. But here we meet with a singular circumstance: in June, 1861 I examined two of these rabbits recently sent to the Zoological Gardens, and their tails and ears were coloured as just described; but when one of their dead bodies was sent to me in February, 1865, the ears were plainly edged, and the upper surface of the tail was covered with blackish-grey fur, and the whole body was much less red; so that under the English climate this individual rabbit had recovered the proper colour of its fur in rather less than four years!

The two little Porto Santo rabbits, whilst alive in the Zoological Gardens, had a remarkably different appearance from the common kind. They were extraordinarily wild and active, so that many persons exclaimed on seeing them that they were more like large rats than rabbits. They were nocturnal to an unusual degree in their habits, and their wildness was never in the least subdued; so that the superintendent, Mr. Bartlett, assured me that he had never had a wilder animal under his charge. This is a singular fact, considering that they are descended from a domesticated breed. I was so much surprised at it, that I requested Mr. Haywood to make inquiries on the spot, whether they were much hunted by the inhabitants, or persecuted by hawks, or cats, or other animals; but this is not the case, and no cause can be assigned for their wildness. They live both on the central, higher rocky land and near the sea-cliffs, and, from being exceedingly shy and timid, seldom appear in the lower and cultivated districts. They are said to produce from four to six young at a birth, and their breeding season is in July and August. Lastly, and this is a highly remarkable fact, Mr. Bartlett could never succeed in getting these two rabbits, which were both males, to associate or breed with the females of several breeds which were repeatedly placed with them.

If the history of these Porto Santo rabbits had not been known, most naturalists, on observing their much reduced size, their colour, reddish above and grey beneath, their tails and ears not tipped with black, would have ranked them as a distinct species. They would have been strongly confirmed in this view by seeing them alive in the Zoological Gardens, and hearing that they refused to couple with other rabbits. Yet this rabbit, which there can be little doubt would thus have been ranked as a distinct species, as certainly originated since the year 1420. Finally, from the three cases of the rabbits which have run wild in Porto Santo, Jamaica, and the Falkland Islands, we see that these animals do not, under new conditions of life, revert to or retain their aboriginal character, as is so generally asserted to be the case by most authors.

Osteological Characters.

When we remember, on the one hand, how frequently it is stated that important parts of the structure never vary; and, on the other hand, on what small differences in the skeleton fossil species have often been founded, the variability of the skull and of some other bones in the domesticated rabbit well deserves attention. It must not be supposed that the more important differences immediately to be described strictly characterise any one breed; all that can be said is, that they are generally present in certain breeds. We should bear in mind that selection has not been applied to fix any character in the skeleton, and that the animals have not had to support themselves under uniform habits of life. We cannot account for most of the differences in the skeleton; but we shall see that the increased size of the body, due to careful nurture and continued selection, has affected the head in a particular manner. Even the elongation and lopping of the ears have influenced in a small degree the form of the whole skull. The want of exercise has apparently modified the proportional length of the limbs in comparison with that of the body.

As a standard of comparison, I prepared skeletons of two wild rabbits from Kent, one from the Shetland Islands, and one from Antrim in Ireland. As all the bones in these four specimens from such distant localities closely resembled each other, presenting scarcely any appreciable difference, it may be concluded that the bones of the wild rabbit are generally uniform in character.

Skull. —I have carefully examined skulls of ten large lop-eared rabbits, and of five common domestic rabbits, which latter differ from the lop-eared only in not having such large bodies or ears, yet both larger than in the wild rabbit. First for the ten lop-eared rabbits: in all these the skull is remarkably elongated in comparison with its breadth. In a wild rabbit the length was 3·15 inches, in a large fancy rabbit 4·3; whilst the breadth of the cranium enclosing the brain was in both almost exactly the same. Even by taking as the standard of comparison the widest part of the zygomatic arch, the skulls of the lop-eared are proportionally to their breadth three-quarters of an inch too long. The depth of the head has increased almost in the same proportion with the length; it is the breadth alone which has not increased. The parietal and occipital bones enclosing the brain are less arched, both in a longitudinal and transverse line, than in the wild rabbit, so that the shape of the cranium is somewhat different. The surface is rougher, less cleanly sculptured, and the lines of sutures are more prominent.

Although the skulls of the large lop-eared rabbits in comparison with those of the wild rabbit are much elongated relatively to their breadth, yet, relatively to the size of body, they are far from elongated. The lop-eared rabbits which I examined were, though not fat, more than twice as heavy as the wild specimens; but the skull was very far from being twice as long. Even if we take the fairer standard of the length of body, from the nose to the anus, the skull is not on an average as long as it ought to be by a third of an inch. In the small feral Porto Santo rabbit, on the other hand, the head relatively to the length of body is about a quarter of an inch too long.

This elongation of the skull relatively to its breadth, I find a universal character, not only with the large lopeared rabbits, but in all the artificial breeds; as is well seen in the skull of the Angora. I was at first much surprised at the fact, and could not imagine why domestication could produce this uniform result; but the explanation seems to lie in the circumstance that during a number of generations the artificial races have been closely confined, and have had little occasion to exert either their senses, or intellect, or voluntary muscles; consequently the brain, as we shall presently more fully see, has not increased relatively with the

size of body. As the brain has not increased, the bony case enclosing it has not increased, and this has evidently affected through correlation the breadth of the entire skull from end to end.

In all the skulls of the large lop-eared rabbits, the supra-orbital plates or processes of the frontal bones are much broader than in the wild rabbit, and they generally project more upwards. In the zygomatic arch the posterior or projecting point of the malar-bone is broader and blunter; and in the specimen, fig. 8, it is so in a remarkable degree. This point approaches nearer to the auditory meatus than in the wild rabbit, as may be best seen in fig. 8; but this circumstance mainly depends on the changed direction of the meatus. The interparietal bone (see fig. 9) differs much in shape in the several skulls; generally it is more oval, that is more extended in the line of the longitudinal axis of the skull, than in the wild rabbit. The posterior margin of "the square raised platform" of the occiput, instead of being truncated, or projecting slightly as in the wild rabbit, is in most lop-eared rabbits pointed, as in fig. 9, C. The paramastoids relatively to the size of the skull are generally much thicker than in the wild rabbit.

The occipital foramen (fig. 10) presents some remarkable differences: in the wild rabbit, the lower edge between the condyles is considerably and almost angularly hollowed out, and the upper edge is deeply and squarely notched; hence the longitudinal axis exceeds the transverse axis. In the skulls of the lop-eared rabbits the transverse axis exceeds the longitudinal; for in none of these skulls was the lower edge between the condyles so deeply hollowed out; in five of them there was no upper square notch, in three there was a trace of the notch, and in two alone it was well developed. These differences in the shape of the foramen are remarkable, considering that it gives passage to so important a structure as the spinal marrow, though apparently the outline of the latter is not affected by the shape of the passage.

In all the skulls of the large lop-eared rabbits, the bony auditory meatus is conspicuously larger than in the wild rabbit. In a skull 4·3 inches in length, and which barely exceeded in breadth the skull of a wild rabbit (which was 3·15 inches in length), the longer diameter of the meatus was exactly twice as great. The orifice is more compressed, and its margin on the side nearest the skull stands up higher than the outer side. The whole meatus is directed more forwards. As in breeding lop-eared rabbits the length of the ears, and their consequent lopping and lying flat on the face, are the chief points of excellence, there can hardly be a doubt that the great change in the size, form, and direction of the bony meatus, relatively to this same part in the wild rabbit, is due to the continued selection of individuals having larger and larger ears. The influence of the external ear on the bony meatus is well shown in the skulls (I have examined three) of half-lops (see fig. 5), in which one ear stands upright, and the other and longer ear hangs down; for in these skulls there was a plain difference in the form and direction of the bony meatus on the two sides. But it is a much more interesting fact, that the changed direction and increased size of the bony meatus have slightly affected on the same side the structure of the whole skull. I here give a drawing (fig. 11) of the skull of a half-lop; and it may be observed that the suture between the parietal and frontal bones does not run strictly at right angles to the longitudinal axis of the skull; the left frontal bone projects beyond the right one; both the posterior and anterior margins of the left zygomatic arch on the side of the lopping ear stand a little in advance of the corresponding bones on the opposite side. Even the lower jaw is affected, and the condyles are not quite symmetrical, that on the left standing a little in advance of that on the right. This seems to me a remarkable case of correlation of growth. Who would have surmised that by keeping an animal during many generations under confinement, and so leading to the disuse of the muscles of the ears, and by continually selecting individuals with the longest and largest ears, he would thus indirectly have affected almost every suture in the skull and the form of the lower jaw!
these two teeth did not correspond in size; and as no rodent has seven molars, this is merely a monstrosity, though a curious one.

In the large lop-eared rabbits the only difference in the lower jaw, in comparison with that of the wild rabbit, is that the posterior margin of the ascending ramus is broader and more inflected. The teeth in neither jaw present any difference, except that the small incisors, beneath the large ones, are proportionately a little longer. The molar teeth have increased in size proportionately with the increased width of the skull, measured across the zygomatic arch, and not proportionally with its increased length. The inner line of the sockets of the molar teeth in the upper jaw of the wild rabbit forms a perfectly straight line; but in some of the largest skulls of the lop-eared this line was plainly bowed inwards. In one specimen there was an additional molar tooth on each side of the upper jaw, between the molars and premolars; but

The five other skulls of common domestic rabbits, some of which approach in size the above-described largest skulls, whilst the others exceed but little those of the wild rabbit, are only worth notice as presenting a perfect gradation in all the above-specified differences between the skulls of the largest lop-eared and wild rabbits. In all, however, the supra-orbital plates are rather larger, and in all the auditory meatus is larger, in conformity with the increased size of the external ears, than in the wild rabbit. The lower notch in the occipital foramen in some was not so deep as in the wild rabbit, but in all five skulls the upper notch was well developed.

The skull of the Angora rabbit, like the latter five skulls, is intermediate in general proportions, and in most other characters, between those of the largest lop-eared and wild rabbits. It presents only one singular character: though considerably longer than the skull of the wild rabbit, the breadth measured within the posterior supra-orbital fissures is nearly a third less than in the wild. The skulls of the silver-grey, and chinchilla and Himalayan rabbits are more elongated than in the wild, with broader supra-orbital plates, but differ little in any other respect, excepting that the upper and lower notches of the occipital foramen are not so deep or so well developed. The skull of the Moscow rabbit scarcely differs at all from that of the wild rabbit. In the Porto Santo feral rabbits the supra-orbital plates are generally narrower and more pointed than in our wild rabbits.

As some of the largest lop-eared rabbits of which I prepared skeletons were coloured almost like hares, and as these latter animals and rabbits have, as it is affirmed, been recently crossed in France, it might be thought that some of the above-described characters had been derived from a cross at a remote period with the hare. Consequently I examined skulls of the hare, but no light could thus be thrown on the peculiarities of the skulls of the larger rabbits. It is, however, an interesting fact, as illustrating the law that varieties of one species often assume the characters of other species of the same genus, that I found, on comparing the skulls of ten species of hares in the British Museum, that they differed from each other chiefly in the very same points in which domestic rabbits vary,—namely, in general proportions, in the form and size of the supra-orbital plates, in the form of the free end of the malar bone, and in the line of suture separating the occipital and frontal bones. Moreover two eminently variable characters in the domestic rabbit, namely, the outline of the occipital foramen and the shape of the "raised platform" of the occiput, were likewise variable in two instances in the same species of hare.

Vertebræ. —The number is uniform in all the skeletons which I have examined, with two exceptions, namely, in one of the small feral Porto Santo rabbits and in one of the largest lop-eared kinds; both of these had as usual seven cervical, twelve dorsal with ribs, but, instead of seven lumbar, both had eight lumbar vertebræ. This is remarkable, as Gervais gives seven as the number for the whole genus Lepus. The caudal vertebræ apparently differ by two or three, but I did not attend to them, and they are difficult to count with certainty

In the first cervical vertebra, or atlas, the anterior margin of the neural arch varies a little in wild specimens, being either nearly smooth, or furnished with a small supra-median atlantoid process; I have figured a specimen with the largest process (a) which I have seen; but it will be observed how inferior this is in size and different in shape to that in a large lop-eared rabbit. In the latter, the infra-median process (b) is also proportionally much thicker and longer. The alæ are a little squarer in outline.

Third cervical vertebra. —In the wild rabbit (fig. 13, A a) this vertebra, viewed on the inferior surface, has a transverse process, which is directed obliquely backwards, and consists of a single pointed bar; in the fourth vertebra this process is slightly forked in the middle. In the large lop-eared rabbits this process (B a) is forked in the third vertebra, as in the fourth of the wild rabbit. But the third cervical vertebræ of the wild and lop-eared (A b, B b) rabbits differ more conspicuously when their anterior articular surfaces are compared; for the extremities of the antero-dorsal processes in the wild rabbit are simply rounded, whilst in the lop-eared they are trifid, with a deep central pit. The canal for the spinal marrow in the lop-eared (B b)

is more elongated in a transverse direction than in the wild rabbit; and the passages for the arteries are of a slightly different shape. These several differences in this vertebra seem to me well deserving attention.

First dorsal vertebra. —Its neural spine varies in length in the wild rabbit; being sometimes very short, but generally more than half as long as that of the second dorsal; but I have seen it in two large lop-eared rabbits three-fourths of the length of that of the second dorsal vertebra.

Ninth and tenth dorsal vertebræ. —In the wild rabbit the neural spine of the ninth vertebra is just perceptibly thicker than that of the eighth; and the neural spine of the tenth is plainly thicker and shorter than those of all the anterior vertebræ. In the large lop-eared rabbits the neural spines of the tenth, ninth, and eighth vertebræ, and even in a slight degree that of the seventh, are very much thicker, and of somewhat different shape, in comparison with those of the wild rabbit. So that this part of the vertebral column differs considerably in appearance from the same part in the wild rabbit, and closely resembles in an interesting manner these same vertebræ in some species of hares. In the Angora, Chinchilla, and Himalayan rabbits, the neural spines of the eighth and ninth vertebræ are in a slight degree thicker than in the wild. On the other hand, in one of the feral Porto Santo rabbits, which in most of its characters deviates from the common wild rabbit, in a direction exactly opposite to that assumed by the large lop-eared rabbits, the neural spines of the ninth and tenth vertebræ were not at all larger than those of the several anterior vertebra. In this same Porto Santo specimen there was no trace in the ninth vertebra of the anterior lateral processes (see fig. 14), which are plainly developed in all British wild rabbits, and still more plainly developed in the large lop-eared rabbits. In a half-wild rabbit from Sandon Park, a haemal spine was moderately well developed on the under side of the twelfth dorsal vertebra, and I have seen this in no other specimen.

Lumbar vertebræ. —I have stated that in two cases there were eight instead of seven lumbar vertebræ. The third lumbar vertebræ in one skeleton of a wild British rabbit, and in one of the Porto Santo feral rabbits, had a haemal spine; whilst in four skeletons of large lop-eared rabbits, and in the Himalayan rabbit, this same vertebra had a well developed hæmal spine.

Pelvis. —In four wild specimens this bone was almost absolutely identical in shape; but in several domesticated breeds shades of differences could be distinguished. In the large lop-eared rabbits, the whole upper part of the ilium is straighter, or less splayed outwards, than in the wild rabbit; and the tuberosity on the inner lip of the anterior and upper part of the ilium is proportionally more prominent.

Sternum. —The posterior end of the posterior sternal bone in the wild rabbit (fig. 15, A) is thin and slightly enlarged; in some of the large lop-eared rabbits (B) it is much more enlarged towards the extremity; whilst in other specimens (C) it keeps nearly of the same breadth from end to end, but is much thicker at the extremity.

Scapula. —The acromion sends out a rectangular bar, ending in an oblique knob, which latter in the wild rabbit (fig. 16, A) varies a little in shape and size, as does the apex of the acromion in sharpness, and the part just below the rectangular bar in breadth. But the variations in these respects in the wild rabbit are very slight: whilst in the large lop-eared rabbits they are considerable. Thus in some specimens (B) the oblique terminal knob is developed into a short bar, forming an obtuse angle with the rectangular bar. In another specimen (C) these two unequal bars form nearly a straight line. The apex of the acromion varies much in breadth and sharpness, as may be seen by comparing figures B, C, and D.

Limbs.—In these I could detect no variation; but the bones of the feet were too troublesome to compare with much care.

I have now described all the differences in the skeletons which I have observed. It is impossible not to be struck with the high degree of variability or plasticity of many of the bones. We see how erroneous the often-repeated statement is, that only the crests of the bones which give attachment to muscles vary in shape, and that only parts of slight importance become modified under domestication. No one will say, for instance, that the occipital foramen, or the atlas, or the third cervical vertebra is a part of slight importance. If the several vertebræ of the wild and lop-eared rabbits, of which figures have been given, had been found fossil, palæontologists would have declared without hesitation that they had belonged to distinct species.

The effects of the use and disuse of parts. —In the large lop-eared rabbits the relative proportional length of the bones of the same leg, and of the front and hind legs compared with each other, have remained nearly the same as in the wild rabbit; but in weight, the bones of the hind legs apparently have not increased in due proportion with the front legs. The weight of the whole body in the large rabbits examined by me was from twice to twice and a half as great as that of the wild rabbit; and the weight of the bones of the front and hind limbs taken together (excluding the feet, on account of the difficulty of cleaning so many small bones) has increased in the large lop-eared rabbits in nearly the same proportion; consequently in due proportion to the weight of body which they have to support. If we take the length of the body as the standard of comparison, the limbs of the large rabbits have not increased in length in due proportion by one inch and a half. Again, if we take as the standard of comparison the length of the skull, which, as we have before seen, has not increased in length in due proportion to the length of body, the limbs will be found to be, proportionally with those of the wild rabbit, from half to three-quarters of an inch too short. Hence, whatever standard of comparison be taken, the limb-bones of the large lop-eared rabbits have not increased in length, though they have in weight, in full proportion to the other parts of the frame; and this, I presume, may be accounted for by the inactive life which during many generations they have spent. Nor has the scapula increased in length in due proportion to the increased length of the body.

The capacity of the osseous case of the brain is a more interesting point, to which I was led to attend by finding, as previously stated, that with all domesticated rabbits the length of the skull relatively to its breadth has greatly increased in comparison with that of the wild rabbits. If we had possessed a large number of domesticated rabbits of nearly the same size with the wild rabbits, it would have been a simple task to have measured and compared the capacities of their skulls. But this is not the case: almost all the domestic breeds have larger bodies than wild rabbits, and the lop-eared kinds are more than double their weight. As a small animal has to exert its senses, intellect, and instincts equally with a large animal, we ought not by any means to expect an animal twice or thrice as large as another to have a brain of double or treble the size. Now, after weighing the bodies of four wild rabbits, and of four large but not fattened lopeared rabbits, I find that on an average the wild are to the lop-eared in weight as 1 to 2·17; in average length of body as 1 to 1·41; whilst in capacity of skull they are as 1 to 1·15. Hence we see that the capacity of the skull, and consequently the size of the brain, has increased but little, relatively to the increased size of the body; and this fact explains the narrowness of the skull relatively to its length in all domestic rabbits.

I

 

Name of BreedLength WILD AND SEMI-WILD RABBITS.

 

of Skull.

inches
1 Wild Rabbit, Kent 3·15
2 Wild Rabbit, Shetland Islands 3·15
3 Wild Rabbit, Ireland 3·15
II III IV

Length of Capacity Body
from
Incisors
to Anus.

inches
17·4
--
--

Weight of Skull of whole measured Body. by Small

Shot. lbs ozs grains 3 5 972
-- 979
-- 992 4 Domestic rabbit, run wild, Sandon 3·15 18·5 -- 997 5 Wild, common variety, small specimen, Kent 2·96 17·0 2 14 875 6 Wild, fawn-coloured variety, Scotland 3·10 -- -- 918 7 Silver-grey, small specimen, Thetford warren 2·95 15·5 2 11 938 8 Feral rabbit, Porto Santo 2·83 -- -- 893 9 Feral rabbit, Porto Santo 2·85 -- -- 756 10 Feral Rabbit, Porto Santo 2·95 -- -- 835

Average of the three Porto Santo rabbits 2·88 -- -- 828

DOMESTIC RABBITS.
11 Himalayan 3·50 20·5 -- 963
12 Moscow 3·25 17·0 3 8 803
13 Angora 3·50 19·5 3 1 697
14 Chinchilla 3·65 22·0 -- 995
15 Large lop-eared 4·10 24·5 7 0 1065
16 Large lop-eared 4·10 25·0 7 13 1153
17 Large lop-eared 4·07 -- -- 1037
18 Large lop-eared 4·10 25·0 7 4 1208
19 Large lop-eared 4·30 -- -- 1232
20 Large lop-eared 4·25 -- -- 1124
21 Large hare-coloured 3·86 24·0 6 14 1131

22 Average of above seven large lop-eared 4·11 24·62 7 4 1136

 

rabbits

 

23 Hare (L. timidus) English specimen 3·61 -- 7 0 1315 24 Hare (L. timidus) German specimen 3·82 -- 7 0 1415

 

V Name of Breed Capacity calculated

 

VI VII
Difference Showing how much between per cent. the Brain,

 

WILD AND SEMI-WILD RABBITS.

 

according to actual and

Length of calculated capacities of Skulls. Skull
relatively
to that of No. 1.
by calculation according to the length of the Skull is too light or too heavy, relatively to the Brain of the Wild Rabbit No. 1.

1 Wild Rabbit, Kent

 

grains

 

--

 

grains

 

--

 

2 Wild Rabbit, Shetland Islands

 

--

-- 2 per cent. too heavy in comparison with No. 1

3 Wild Rabbit, Ireland

 

4 Domestic rabbit, run wild, Sandon

 

5 Wild, common variety, small specimen,

 

Kent

 

6 Wild, fawn-coloured variety, Scotland

 

--

 

--

 

913 38 4 per cent. too light. 950 32 3 per cent. too light.

 

7 Silver-grey, small specimen, Thetford 910

 

warren

8 Feral rabbit, Porto Santo 873
9 Feral rabbit, Porto Santo 879
10 Feral Rabbit, Porto Santo 910
Average of the three Porto Santo 888 rabbits

28 3 per cent. too heavy.

20
123
75

60 2 per cent. too heavy. 16 per cent. too light. 9 per cent. too light.

7 per cent. too light.

DOMESTIC RABBITS.
11 Himalayan
12 Moscow
13 Angora
14 Chinchilla
15 Large lop-eared
16 Large lop-eared
17 Large lop-eared
18 Large lop-eared
19 Large lop-eared
20 Large lop-eared
21 Large hare-coloured 1080 1002 1080 1126 1265 1265 1255 1265 1326 1311 1191

22 Average of above seven large lop-eared 1268

 

rabbits

117
199
383
131
200
112
218
57
94
187
60

132 12 per cent. too light. 24 per cent. too light. 54 per cent. too light. 13 per cent. too light. 18 per cent. too light. 9 per cent. too light. 21 per cent. too light. 4 per cent. too light. 7 per cent. too light. 16 per cent. too light. 5 per cent. too light.

11 per cent. too light.

In the upper half of Table 3 I have given the measurements of the skull of ten wild rabbits; and in the lower half, of eleven thoroughly domesticated kinds. As these rabbits differ so greatly in size, it is necessary to have some standard by which to compare the capacities of their skulls. I have selected the length of skull as the best standard, for in the larger rabbits it has not, as already stated, increased in length so much as the body; but as the skull, like every other part, varies in length, neither it nor any other part affords a perfect standard.

In the first column of figures the extreme length of the skull is given in inches and decimals. I am aware that these measurements pretend to greater accuracy than is possible; but I have found it the least trouble to record the exact length which the compass gave. The second and third columns give the length and weight of body, whenever these observations were made. The fourth column gives the capacity of the skull by the weight of small shot with which the skulls were filled; but it is not pretended that these weights are accurate within a few grains. In the fifth column the capacity is given which the skull ought to have had by calculation, according to the length of skull, in comparison with that of the wild rabbit No. 1; in the sixth column the difference between the actual and calculated capacities, and in the seventh the percentage of increase or decrease, are given. For instance, as the wild rabbit No. 5 has a shorter and lighter body than the wild rabbit No. 1, we might have expected that its skull would have had less capacity; the actual capacity, as expressed by the weight of shot, is 875 grains, which is 97 grains less than that of the first rabbit. But comparing these two rabbits by the length of their skulls, we see that in No. 1 the skull is 3·15 inches in length, and in No. 5 2·96 inches in length; according to this ratio, the brain of No. 5 ought to have had a capacity of 913 grains of shot, which is above the actual capacity, but only by 38 grains. Or, to put the case in another way (as in column vii), the brain of this small rabbit, No. 5, for every 100 grains of weight is only 4 grains too light,—that is, it ought, according to the standard rabbit No. 1, to have been 4 per cent heavier. I have taken the rabbit No. 1 as the standard of comparison because, of the skulls having a full average length, this has the least capacity; so that it is the least favourable to the result which I wish to show, namely, that the brain in all long-domesticated rabbits has decreased in size, either actually, or relatively to the length of the head and body, in comparison with the brain of the wild rabbit. Had I taken the Irish rabbit, No. 3, as the standard, the following results would have been somewhat more striking.

Turning to Table 3: the first four wild rabbits have skulls of the same length, and these differ but little in capacity. The Sandon rabbit (No. 4) is interesting, as, though now wild, it is known to be descended from a domesticated breed, as is still shown by its peculiar colouring and longer body; nevertheless the skull has recovered its normal length and full capacity. The next three rabbits are wild, but of small size, and they all have skulls with slightly lessened capacities. The three Porto Santo feral rabbits (Nos. 8 to 10) offer a perplexing case; their bodies are greatly reduced in size, as in a lesser degree are their skulls in length and in actual capacity, in comparison with the skulls of wild English rabbits. But when we compare the capacities of the skull in the three Porto Santo rabbits, we observe a surprising difference, which does not stand in any relation to the slight difference in the length of their skulls, nor, as I believe, to any difference in the size of their bodies; but I neglected weighing separately their bodies. I can hardly suppose that the medullary matter of the brain in these three rabbits, living under similar conditions, can differ as much as is indicated by the proportional difference of capacity in their skulls; nor do I know whether it is possible that one brain may contain considerably more fluid than another. Hence I can throw no light on this case.

Looking to the lower half of Table 3, which gives the measurements of domesticated rabbits, we see that in all the capacity of the skull is less, but in very various degrees, than might have been anticipated according to the length of their skulls, relatively to that of the wild rabbit No. 1. In line 22 the average measurements of seven large lop-eared rabbits are given. Now the question arises, has the average capacity of the skull in these seven large rabbits increased as much as might have been expected from the greatly increased size of body. We may endeavour to answer this question in two ways: in the upper half of the Table we have measurements of the skulls of six small wild rabbits (Nos. 5 to 10), and we find that on an average the skulls are ·18 of an inch shorter, and in capacity 91 grains less, than the average length and capacity of the three first wild rabbits on the list. The seven large lop-eared rabbits, on an average, have skulls 4·11 inches in length, and 1136 grains in capacity; so that these skulls have increased in length more than five times as much as the skulls of the six small wild rabbits have decreased in length; hence we might have expected that the skulls of the large lop-eared rabbits would have increased in capacity five times as much as the

skulls of the six small rabbits have decreased in capacity; and this would have given an average increased capacity of 455 grains, whilst the real average increase is only 155 grains. Again, the large lop-eared rabbits have bodies of nearly the same weight and size as the common hare, but their heads are longer; consequently, if the lop-eared rabbits had been wild, it might have been expected that their skulls would have had nearly the same capacity as that of the skull of the hare. But this is far from being the case; for the average capacity of the two hare-skulls (Nos. 23, 24) is so much larger than the average capacity of the seven lop-eared skulls, that the latter would have to be increased 21 per cent to come up to the standard of the hare.

I have previously remarked that, if we had possessed many domestic rabbits of the same average size with the wild rabbit, it would have been easy to compare the capacity of their skulls. Now the Himalayan, Moscow, and Angora rabbits (Nos. 11, 12, 13 of Table 3) are only a little larger in body and have skulls only a little longer, than the wild animal, and we see that the actual capacity of their skulls is less than in the wild animal, and considerably less by calculation (column 7), according to the difference in the length of their skulls. The narrowness of the brain-case in these three rabbits could be plainly seen and proved by external measurement. The Chinchilla rabbit (No. 14) is a considerably larger animal than the wild rabbit, yet the capacity of its skull only slightly exceeds that of the wild rabbit. The Angora rabbit, No. 13, offers the most remarkable case; this animal in its pure white colour and length of silky fur bears the stamp of long domesticity. It has a considerably longer head and body than the wild rabbit, but the actual capacity of its skull is less than that of even the little wild Porto Santo rabbits. By the standard of the length of skull the capacity (see column 7) is only half of what it ought to have been! I kept this individual animal alive, and it was not unhealthy nor idiotic. This case of the Angora rabbit so much surprised me, that I repeated all the measurements and found them correct. I have also compared the capacity of the skull of the Angora with that of the wild rabbit by other standards, namely, by the length and weight of the body, and by the weight of the limb-bones; but by all these standards the brain appears to be much too small, though in a less degree when the standard of the limb-bones was used; and this latter circumstance may probably be accounted for by the limbs of this anciently domesticated breed having become much reduced in weight, from its longcontinued inactive life. Hence I infer that in the Angora breed, which is said to differ from other breeds in being quieter and more social, the capacity of the skull has really undergone a remarkable amount of reduction.

From the several facts above given,—namely, firstly, that the actual capacity of the skull in the Himalayan, Moscow, and Angora breeds, is less than in the wild rabbit, though they are in all their dimensions rather larger animals; secondly, that the capacity of the skull of the large lop-eared rabbits has not been increased in nearly the same ratio as the capacity of the skull of the smaller wild rabbits has been decreased; and thirdly, that the capacity of the skull in these same large lop-eared rabbits is very inferior to that of the hare, an animal of nearly the same size,—I conclude, notwithstanding the remarkable differences in capacity in the skulls of the small Porto Santo rabbits, and likewise in the large lop-eared kinds, that in all long-domesticated rabbits the brain has either by no means increased in due proportion with the increased length of the head and increased size of the body, or that it has actually decreased in size, relatively to what would have occurred had these animals lived in a state of nature. When we remember that rabbits, from having been domesticated and closely confined during many generations, cannot have exerted their intellect, instincts, senses, and voluntary movements, either in escaping from various dangers or in searching for food, we may conclude that their brains will have been feebly exercised, and consequently have suffered in development. We thus see that the most important and complicated organ in the whole organisation is subject to the law of decrease in size from disuse.
Finally, let us sum up the more important modifications which domestic rabbits have undergone, together with their causes as far as we can obscurely see them. By the supply of abundant and nutritious food, together with little exercise, and by the continued selection of the heaviest individuals, the weight of the larger breeds has been more than doubled. The bones of the limbs taken together have increased in weight, in due proportion with the increased weight of body, but the hind legs have increased less than the front legs; but in length they have not increased in due proportion, and this may have been caused by the want of proper exercise. With the increased size of the body the third cervical has assumed characters proper to the fourth cervical vertebra; and the eighth and ninth dorsal vertebræ have similarly assumed characters proper to the tenth and posterior vertebræ. The skull in the larger breeds has increased in length, but not in due proportion with the increased length of body; the brain has not duly increased in dimensions, or has even actually decreased, and consequently the bony case for the brain has remained narrow, and by correlation has affected the bones of the face and the entire length of the skull. The skull has thus acquired its characteristic narrowness. From unknown causes the supra-orbital process of the frontal bones and the free end of the malar bones have increased in breadth; and in the larger breeds the occipital foramen is generally much less deeply notched than in wild rabbits. Certain parts of the scapula and the terminal sternal bones have become highly variable in shape. The ears have been increased enormously in length and breadth through continued selection; their weight, conjoined probably with the disuse of their muscles, has caused them to lop downwards; and this has affected the position and form of the bony auditory meatus; and this again, by correlation, the position in a slight degree of almost every bone in the upper part of the skull, and even the position of the condyles of the lower jaw.

REFERENCES 14. 'Proc. Zoolog. Soc.,' June 23, 1857, p. 159.
15. 'Journal of Horticulture,' April 9, 1861, p. 35.
16. 'Cottage Gardener,' 1857, p. 141.
17. Mr. Bartlett, in 'Proc. Zoolog Soc.,' 1861, p. 40.
18. 'Phenomenon in Himalayan Rabbits,' in 'Journal of Horticulture,' Jan. 27, 1865, p. 102.
19. G. R. Waterhouse, 'Natural History of Mammalia: Rodents,' 1846, pp. 52, 60, 105.
20. Delamer on 'Pigeons and Rabbits,' p. 114.
21. Gosse's 'Sojourn in Jamaica,' 1851, p. 441, as described by an excellent observer, Mr. R. Hill. This is the only known case in which rabbits have become feral in a hot country. They can be kept, however, at Loanda (see Livingstone's 'Travels,' p. 407). In parts of India, as I am informed by Mr. Blyth, they breed well.
22. Darwin's 'Journal of Researches,' p. 193; and 'Zoology of the Voyage of the Beagle: Mammalia,' p. 92.
23.Kerr's 'Collection of Voyages,' vol. ii. p. 177: p. 205 for Cada Mosto. According to a work published in Lisbon in 1717 entitled 'Historia Insulana,' written by a Jesuit, the rabbits were turned out in 1420. Some authors believe that the island was discovered in 1413.
24. Something of the same kind has occurred on the island of Lipari, where, according to Spallanzani ('Voyage dans les deux Siciles,' quoted by Godron, 'De l'Espèce,' p. 364), a countryman turned out some rabbits which multiplied prodigiously, but, says Spallanzani, "les lapins de l'ile de Lipari sont plus petits que ceux qu'on élève en domesticité."
25. Waterhouse, 'Nat. Hist. Mammalia,' vol. ii. p. 36.
26.These rabbits have run wild for a considerable time in Sandon Park, and in other places in Staffordshire and Shropshire. They originated, as I have been informed by the gamekeeper, from variously-coloured domestic rabbits which had been turned out. They vary in colour; but many are symmetrically coloured, being white with a streak along the spine, and with the ears and certain marks about the head of a blackish-grey tint. They have rather longer bodies than common rabbits.
27. See Prof. Owen's remarks on this subject in his paper on the 'Zoological Significance of the Brain, etc., of Man, etc.,' read before Brit. Association 1862: with respect to Birds, see 'Proc. Zoolog. Soc.,' Jan. 11, 1848, p. 8.
28. This standard is apparently considerably too low, for Dr. Crisp ('Proc. Zoolog. Soc.,' 1861, p. 86) gives 210 grains as the actual weight of the brain of a hare which weighed 7 pounds, and 125 grains as the weight of the brain of a rabbit which weighed 3 pounds 5 ounces, that is, the same weight as the rabbit No. 1 in my list. Now the contents of the skull of rabbit No. 1 in shot is in my table 972 grains; and according to Dr. Crisp's ratio of 125 to 210, the skull of the hare ought to have contained 1632 grains of shot, instead of only (in the largest hare in my table) 1455 grains.

1. M. P. Gervais, 'Hist. Nat. des Mammifères,' 1854, tom. i., p. 288.
2. U. Aldrovandi 'De Quadrupedibus digitatis,' 1637, p. 383. For Confucius and G. Markham see a writer who has studied the subject in 'Cottage Gardener,' Jan. 22, 1861, p. 250.
3. Owen, 'British Fossil Mammals,' p. 212.
4. Bechstein, 'Naturgesch. Deutschlands,' 1801, B. i. p. 1133. I have received similar accounts with respect to England and Scotland.
5. 'Pigeons and Rabbits,' by E. S. Delamer, 1854, p. 133. Sir J. Sebright ('Observations on Instinct,' 1836, p. 10.) speaks most strongly on the difficulty. But this difficulty is not invariable, as I have received two accounts of perfect success in taming and breeding from the wild rabbit. See also Dr. P. Broca in 'Journal de la Physiologie,' tom. ii. p. 368.
6. Gervais, 'Hist. Nat. des Mammifères,' tom. i. p. 292.
7. See Dr. P. Broca's interesting memoir on this subject in Brown-Séquard's 'Journ. de. Phys.,' vol. ii. p. 367.
8. The skulls of these breeds are briefly described in the 'Journal of Horticulture,' May 7, 1861, p. 108.
9. 'Journal of Horticulture,' 1861, p. 380.
10. 'Journal of Horticulture,' May 28, 1861, p. 169.
11.'Journal of Horticulture,' 1861, p. 327. With respect to the ears see Delamer on 'Pigeons and Rabbits,' 1854, p. 141; also 'Poultry Chronicle,' vol. ii. p. 499, and ditto for 1854, p. 586.
12. Delamer, 'Pigeons and Rabbits,' p. 136. See also 'Journal of Horticulture,' 1861, p. 375.
13. 'An Account of the different Kinds of Sheep in the Russian Dominions,' 1794, p. 39.