The Variation of Animals and Plants by Charles Darwin - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

Chapter XXV: Laws Of Variation, continued. - Correlated Variability

EXPLANATION OF TERM CORRELATION — CONNECTED WITH DEVELOPMENT — MODIFICATIONS CORRELATED WITH THE INCREASED OR DECREASED SIZE OF PARTS — CORRELATED VARIATION OF HOMOLOGOUS PARTS — FEATHERED FEET IN BIRDS ASSUMING THE STRUCTURE OF THE WINGS — CORRELATION BETWEEN THE HEAD AND THE EXTREMITIES — BETWEEN THE SKIN AND DERMAL APPENDAGES — BETWEEN THE ORGANS OF SIGHT AND HEARING — CORRELATED MODIFICATIONS IN THE ORGANS OF PLANTS — CORRELATED MONSTROSITIES — CORRELATION BETWEEN THE SKULL AND EARS — SKULL AND CREST OF FEATHERS — SKULL AND HORNS — CORRELATION OF GROWTH COMPLICATED BY THE ACCUMULATED EFFECTS OF NATURAL SELECTION — COLOUR AS CORRELATED WITH CONSTITUTIONAL PECULIARITIES.

All parts of the organisation are to a certain extent connected together; but the connection may be so slight that it hardly exists, as with compound animals or the buds on the same tree. Even in the higher animals various parts are not at all closely related; for one part may be wholly suppressed or rendered monstrous without any other part of the body being affected. But in some cases, when one part varies, certain other parts always, or nearly always, simultaneously vary; they are then subject to the law of correlated variation. The whole body is admirably co-ordinated for the peculiar habits of life of each organic being, and may be said, as the Duke of Argyll insists in his 'Reign of Law' to be correlated for this purpose. Again, in large groups of animals certain structures always co-exist: for instance, a peculiar form of stomach with teeth of peculiar form, and such structures may in one sense be said to be correlated. But these cases have no necessary connection with the law to be discussed in the present chapter; for we do not know that the initial or primary variations of the several parts were in any way related: slight modifications or individual differences may have been preserved, first in one and then in another part, until the final and perfectly co-adapted structure was acquired; but to this subject I shall presently recur. Again, in many groups of animals the males alone are furnished with weapons, or are ornamented with gay colours; and these characters manifestly stand in some sort of correlation with the male reproductive organs, for when the latter are destroyed these characters disappear. But it was shown in the twelfth chapter that the very same peculiarity may become attached at any age to either sex, and afterwards be exclusively transmitted to the same sex at a corresponding age. In these cases we have inheritance limited by both sex and age; but we have no reason for supposing that the original cause of the variation was necessarily connected with the reproductive organs, or with the age of the affected being.

In cases of true correlated variation, we are sometimes able to see the nature of the connection; but in most cases it is hidden from us, and certainly differs in different cases. We can seldom say which of two correlated parts first varies, and induces a change in the other; or whether the two are the effects of some common cause. Correlated variation is an important subject for us; for when one part is modified through continued selection, either by man or under nature, other parts of the organisation will be unavoidably modified. From this correlation it apparently follows that with our domesticated animals and plants, varieties rarely or never differ from one another by a single character alone.

One of the simplest cases of correlation is that a modification which arises during an early stage of growth tends to influence the subsequent development of the same part, as well as of other and intimately connected parts. Isidore Geoffroy Saint-Hilaire states1 that this may constantly be observed with monstrosities in the animal kingdom; and MoquinTandon2 remarks, that, as with plants the axis cannot become monstrous without in some way affecting the organs subsequently produced from it, so axial anomalies are almost always accompanied by deviations of structure in the appended parts. We shall presently see that with short-muzzled races of the dog certain histological changes in the basal elements of the bones arrest their development and shorten them, and this affects the position of the subsequently developed molar teeth. It is probable that certain modifications in the larvæ of insects would affect the structure of the mature insects. But we must be careful not to extend this view too far, for during the normal course of development, certain species pass through an extraordinary course of change, whilst other and closely allied species arrive at maturity with little change of structure.

Another simple case of correlation is that with the increased or decreased dimensions of the whole body, or of any particular part, certain organs are increased or diminished in number, or are otherwise modified. Thus pigeon fanciers have gone on selecting pouters for length of body, and we have seen that their vertebrae are generally increased not only in size but in number, and their ribs in breadth. Tumblers have been selected for their small bodies, and their ribs and primary wing-feathers are generally lessened in number. Fantails have been selected for their large widely-expanded tails, with numerous tailfeathers, and the caudal vertebrae are increased in size and number. Carriers have been selected for length of beak, and their tongues have become longer, but not in strict accordance with the length of beak. In this latter breed and in others having large feet, the number of the scutellae on the toes is greater than in the breeds with small feet. Many similar cases could be given. In Germany it has been observed that the period of gestation is longer in large than in small breeds of cattle. With our highly-improved breeds of all kinds, the periods of maturity and of reproduction have advanced with respect to the age of the animal; and, in correspondence with this, the teeth are now developed earlier than formerly, so that, to the surprise of agriculturists, the ancient rules for judging of the age of an animal by the state of its teeth are no longer trustworthy.3

Correlated Variation of Homologous Parts. —Parts which are homologous tend to vary in the same manner; and this is what might have been expected, for such parts are identical in form and structure during an early period of embryonic development, and are exposed in the egg or womb to similar conditions. The symmetry, in most kinds of animals, of the corresponding or homologous organs on the right and left sides of the body, is the simplest case in point; but this symmetry sometimes fails, as with rabbits having only one ear, or stags with one horn, or with many-horned sheep which sometimes carry an additional horn on one side of their heads. With flowers which have regular corollas, all the petals generally vary in the same manner, as we see in the complicated and symmetrical pattern, on the flowers, for instance, of the Chinese pink; but with irregular flowers, though the petals are of course homologous, this symmetry often fails, as with the varieties of the Antirrhinum or snapdragon, or that variety of the kidney-bean (Phaseolus) which has a white standard-petal.

In the Vertebrata the front and hind limbs are homologous, and they tend to vary in the same manner, as we see in long and short legged, or in thick and thin legged races of the horse and dog. Isidore Geoffroy4 has remarked on the tendency of supernumerary digits in man to appear, not only on the right and left sides, but on the upper and lower extremities. Meckel has insisted5 that, when the muscles of the arm depart in number or arrangement from their proper type, they almost always imitate those of the leg; and so conversely the varying muscles of the leg imitate the normal muscles of the arm.

In several distinct breeds of the pigeon and fowl, the legs and the two outer toes are heavily feathered, so that in the trumpeter pigeon they appear like little wings. In the feather-legged bantam the "boots" or feathers, which grow from the outside of the leg and generally from the two outer toes, have, according to the excellent authority of Mr. Hewitt,6 been seen to exceed the wing-feathers in length, and in one case were actually nine and a half inches long! As Mr. Blyth has remarked to me, these leg-feathers resemble the primary wing-feathers, and are totally unlike the fine down which naturally grows on the legs of some birds, such as grouse and owls. Hence it may be suspected that excess of food has first given redundancy to the plumage, and then that the law of homologous variation has led to the development of feathers on the legs, in a position corresponding with those on the wing, namely, on the outside of the tarsi and toes. I am strengthened in this belief by the following curious case of correlation, which for a long time seemed to me utterly inexplicable, namely, that in pigeons of any breed, if the legs are feathered, the two outer toes are partially connected by skin. These two outer toes correspond with our third and fourth toes.7 Now, in the wing of the pigeon or of any other bird, the first and fifth digits are aborted; the second is rudimentary and carries the socalled "bastard-wing;" whilst the third and fourth digits are completely united and enclosed by skin, together forming the extremity of the wing. So that in feather-footed pigeons, not only does the exterior surface support a row of long feathers, like wingfeathers, but the very same digits which in the wing are completely united by skin become partially united by skin in the feet; and thus by the law of the correlated variation of homologous parts we can understand the curious connection of feathered legs and membrane between the two outer toes.

Andrew Knight8 has remarked that the face or head and the limbs usually vary together in general proportions. Compare, for instance, the limbs of a dray and race horse, or of a greyhound and mastiff. What a monster a greyhound would appear with the head of a mastiff! The modern bulldog, however, has fine limbs, but this is a recently-selected character. From the measurements given in the sixth chapter, we see that in several breeds of the pigeon the length of the beak and the size of the feet are correlated. The view which, as before explained, seems the most probable is, that disuse in all cases tends to diminish the feet, the beak becoming at the same time shorter through correlation; but that in some few breeds in which length of beak has been a selected point, the feet, notwithstanding disuse, have increased in size through correlation. In the following case some kind of correlation is seen to exist between the feet and beak: several specimens have been sent to Mr. Bartlett at different times, as hybrids between ducks and fowls, and I have seen one; these were, as might be expected, ordinary ducks in a semi-monstrous condition, and in all of them the swimming-web between the toes was quite deficient or much reduced, and in all the beak was narrow and ill-shaped.

With the increased length of the beak in pigeons, not only the tongue increases in length, but likewise the orifice of the nostrils. But the increased length of the orifice of the nostrils perhaps stands in closer correlation with the development of the corrugated skin or wattle at the base of the beak, for when there is much wattle round the eyes, the eyelids are greatly increased or even doubled in length.

There is apparently some correlation even in colour between the head and the extremities. Thus with horses a large white star or blaze on the forehead is generally accompanied by white feet.9 With white rabbits and cattle, dark marks often co-exist on the tips of the ears and on the feet. In black and tan dogs of different breeds, tan-coloured spots over the eyes and tan-coloured feet almost invariably go together. These latter cases of connected colouring may be due either to reversion or to analogous variation,—subjects to which I shall hereafter return,—but this does not necessarily determine the question of their original correlation. Mr. H. W. Jackson informs me that he has observed many hundred white-footed cats, and he finds that all are more or less conspicuously marked with white on the front of the neck or chest.

The lopping forwards and downwards of the immense ears of fancy rabbits seems partly due to the disuse of the muscles, and partly to the weight and length of the ears, which have been increased by selection during many generations. Now, with the increased size and changed direction of the ears not only has the bony auditory meatus become changed in outline, direction, and greatly in size, but the whole skull has been slightly modified. This could be clearly seen in "half-lops"—that is, in rabbits with only one ear lopping forward— for the opposite sides of their skulls were not strictly symmetrical. This seems to me a curious instance of correlation, between hard bones and organs so soft and flexible, as well as so unimportant under a physiological point of view, as the external ears. The result no doubt is largely due to mere mechanical action, that is, to the weight of the ears, on the same principle that the skull of a human infant is easily modified by pressure.

The skin and the appendages of hair, feathers, hoofs, horns, and teeth, are homologous over the whole body. Every one knows that the colour of the skin and that of the hair usually vary together; so that Virgil advises the shepherd to look whether the mouth and tongue of the ram are black, lest the lambs should not be purely white. The colour of the skin and hair, and the odour emitted by the glands of the skin, are said10 to be connected, even in the same race of men. Generally the hair varies in the same way all over the body in length, fineness, and curliness. The same rule holds good with feathers, as we see with the laced and frizzled breeds both of fowls and pigeons. In the common cock the feathers on the neck and loins are always of a particular shape, called hackles: now in the Polish breed, both sexes are characterised by a tuft of feathers on the head, and through correlation these feathers in the male always assume the form of hackles. The wing and tail-feathers, though arising from parts not homologous, vary in length together; so that long or short winged pigeons generally have long or short tails. The case of the Jacobinpigeon is more curious, for the wing and tail feathers are remarkably long; and this apparently has arisen in correlation with the elongated and reversed feathers on the back of the neck, which form the hood.

The hoofs and hair are homologous appendages; and a careful observer, namely Azara,11 states that in Paraguay horses of various colours are often born with their hair curled and twisted like that on the head of a negro. This peculiarity is strongly inherited. But what is remarkable is that the hoofs of these horses "are absolutely like those of a mule." The hair also of their manes and tails is invariably much shorter than usual, being only from four to twelve inches in length; so that curliness and shortness of the hair are here, as with the negro, apparently correlated.

With respect to the horns of sheep, Youatt12 remarks that "multiplicity of horns is not found in any breed of much value; it is generally accompanied by great length and coarseness of the fleece." Several tropical breeds of sheep which are clothed with hair instead of wool, have horns almost like those of a goat. Sturm13 expressly declares that in different races the more the wool is curled the more the horns are spirally twisted. We have seen in the third chapter, where other analogous facts have been given, that the parent of the Mauchamp breed, so famous for its fleece, had peculiarly shaped horns. The inhabitants of Angora assert14 that "only the white goats which have horns wear the fleece in the long curly locks that are so much admired; those which are not horned having a comparatively close coat." From these cases we may infer that the hair or wool and the horns tend to vary in a correlated manner.15 Those who have tried hydropathy are aware that the frequent application of cold water stimulates the skin; and whatever stimulates the skin tends to increase the growth of the hair, as is well shown in the abnormal growth of hair near old inflamed surfaces. Now, Professor Low16 is convinced that with the different races of British cattle thick skin and long hair depend on the humidity of the climate which they inhabit. We can thus see how a humid climate might act on the horns—in the first place directly on the skin and hair, and secondly by correlation on the horns. The presence or absence of horns, moreover, both in the case of sheep and cattle, acts, as will presently be shown, by some sort of correlation on the skull.

With respect to hair and teeth, Mr. Yarrell17 found many of the teeth deficient in three hairless "Egyptian dogs," and in a hairless terrier. The incisors, canines, and the premolars suffered most, but in one case all the teeth, except the large tubercular molar on each side, were deficient. With man several striking cases have been recorded18 of inherited baldness with inherited deficiency, either complete or partial, of the teeth. I may give an analogous case, communicated to me by Mr. W. Wedderburn, of a Hindoo family in Scinde, in which ten men, in the course of four generations, were furnished, in both jaws taken together, with only four small and weak incisor teeth and with eight posterior molars. The men thus affected have very little hair on the body, and become bald early in life. They also suffer much during hot weather from excessive dryness of the skin. It is remarkable that no instance has occurred of a daughter being thus affected; and this fact reminds us how much more liable men are in England to become bald than women. Though the daughters in the above family are never affected, they transmit the tendency to their sons; and no case has occurred of a son transmitting it to his sons. The affection thus appears only in alternate generations, or after longer intervals. There is a similar connection between hair and teeth, according to Mr. Sedgwick, in those rare cases in which the hair has been renewed in old age, for this has "usually been accompanied by a renewal of the teeth." I have remarked in a former part of this volume that the great reduction in the size of the tusks in domestic boars probably stands in close relation with their diminished bristles, due to a certain amount of protection; and that the reappearance of the tusks in boars, which have become feral and are fully exposed to the weather, probably depends on the reappearance of the bristles. I may add, though not strictly connected with our present point, that an agriculturist19 asserts that "pigs with little hair on their bodies are most liable to lose their tails, showing a weakness of the tegumental structure. It may be prevented by crossing with a more hairy breed."

In the previous cases deficient hair, and teeth deficient in number or size, are apparently connected. In the following cases abnormally redundant hair, and teeth either deficient or redundant, are likewise connected. Mr. Crawfurd20 saw at the Burmese Court a man, thirty years old, with his whole body, except the hands and feet, covered with straight silky hair, which on the shoulders and spine was five inches in length. At birth the ears alone were covered. He did not arrive at puberty, or shed his milk teeth, until twenty years old; and at this period he acquired five teeth in the upper jaw, namely, four incisors and one canine, and four incisor teeth in the lower jaw; all the teeth were small. This man had a daughter who was born with hair within her ears; and the hair soon extended over her body. When Captain Yule21 visited the Court, he found this girl grown up; and she presented a strange appearance with even her nose densely covered with soft hair. Like her father, she was furnished with incisor teeth alone. The King had with difficulty bribed a man to marry her, and of her two children, one, a boy fourteen months old, had hair growing out of his ears, with a beard and moustache. This strange peculiarity has, therefore, been inherited for three generations, with the molar teeth deficient in the grandfather and mother; whether these teeth would likewise fail in the infant could not then be told.

A parallel case of a man fifty-five years old, and of his son, with their faces covered with hair, has recently occurred in Russia. Dr. Alex. Brandt has sent me an account of this case, together with specimens of the extremely fine hair from the cheeks. The man is deficient in teeth, possessing only four incisors in the lower and two in the upper jaw. His son, about three years old, has no teeth except four lower incisors. The case, as Dr. Brandt remarks in his letter, no doubt is due to an arrest of development in the hair and teeth. We here see how independent of the ordinary conditions of existence such arrests must be, for the lives of a Russian peasant and of a native of Burmah are as different as possible.22

Here is another and somewhat different case communicated to me by Mr. Wallace on the authority of Dr. Purland, a dentist: Julia Pastrana, a Spanish dancer, was a remarkably fine woman, but she had a thick masculine beard and a hairy forehead; she was photographed, and her stuffed skin was exhibited as a show; but what concerns us is, that she had in both the upper and lower jaw an irregular double set of teeth, one row being placed within the other, of which Dr. Purland took a cast. From the redundancy of teeth her mouth projected, and her face had a gorilla-like appearance. These cases and those of the hairless dogs forcibly call to mind the fact, that the two orders of mammals—namely, the Edentata and Cetacea—which are the most abnormal in their dermal covering, are likewise the most abnormal either by deficiency or redundancy of teeth.

The organs of sight and hearing are generally admitted to be homologous with one another and with various dermal appendages; hence these parts are liable to be abnormally affected in conjunction. Mr. White Cowper says "that in all cases of double microphthalmia brought under his notice he has at the same time met with defective development of the dental system." Certain forms of blindness seem to be associated with the colour of the hair; a man with black hair and a woman with light-coloured hair, both of sound constitution, married and had nine children, all of whom were born blind; of these children, five "with dark hair and brown iris were afflicted with amaurosis; the four others, with light-coloured hair and blue iris, had amaurosis and cataract conjoined." Several cases could be given, showing that some relation exists between various affections of the eyes and ears; thus Liebreich states that out of 241 deaf-mutes in Berlin, no less than fourteen suffered from the rare disease called pigmentary retinitis. Mr. White Cowper and Dr. Earle have remarked that inability to distinguish different colours, or colour-blindness, "is often associated with a corresponding inability to distinguish musical sounds."23

Here is a more curious case: white cats, if they have blue eyes, are almost always deaf. I formerly thought that the rule was invariable, but I have heard of a few authentic exceptions. The first two notices were published in 1829 and relate to English and Persian cats: of the latter, the Rev. W. T. Bree possessed a female, and he states, "that of the offspring produced at one and the same birth, such as, like the mother, were entirely white (with blue eyes) were, like her, invariably deaf; while those that had the least speck of colour on their fur, as invariably possessed the usual faculty of hearing."24 The Rev. W. Darwin Fox informs me that he has seen more than a dozen instances of this correlation in English, Persian, and Danish cats; but he adds "that, if one eye, as I have several times observed, be not blue, the cat hears. On the other hand, I have never seen a white cat with eyes of the common colour that was deaf." In France Dr. Sichel25 has observed during twenty years similar facts; he adds the remarkable case of the iris beginning, at the end of four months, to grow dark-coloured, and then the cat first began to hear.

This case of correlation in cats has struck many persons as marvellous. There is nothing unusual in the relation between blue eyes and white fur; and we have already seen that the organs of sight and hearing are often simultaneously affected. In the present instance the cause probably lies in a slight arrest of development in the nervous system in connection with the sense-organs. Kittens during the first nine days, whilst their eyes are closed, appear to be completely deaf; I have made a great clanging noise with a poker and shovel close to their heads, both when they were asleep and awake, without producing any effect. The trial must not be made by shouting close to their ears, for they are, even when asleep, extremely sensitive to a breath of air. Now, as long as the eyes continue closed, the iris is no doubt blue, for in all the kittens which I have seen this colour remains for some time after the eyelids open. Hence, if we suppose the development of the organs of sight and hearing to be arrested at the stage of the closed eyelids, the eyes would remain permanently blue and the ears would be incapable of perceiving sound; and we should thus understand this curious case. As, however, the colour of the fur is determined long before birth, and as the blueness of the eyes and the whiteness of the fur are obviously connected, we must believe that some primary cause acts at a much earlier period.

The instances of correlated variability hitherto given have been chiefly drawn from the animal kingdom, and we will now turn to plants. Leaves, sepals, petals, stamens, and pistils are all homologous. In double flowers we see that the stamens and pistils vary in the same manner, and assume the form and colour of the petals. In the double columbine (Aquilegia vulgaris), the successive whorls of stamens are converted into cornucopias, which are enclosed within one another and resemble the true petals. In hose-in-hose flowers the sepals mock the petals. In some cases the flowers and leaves vary together in tint: in all the varieties of the common pea, which have purple flowers, a purple mark may be seen on the stipules.

M. Faivre states that with the varieties of Primula sinensis the colour of the flower is evidently correlated with the colour of the under side of the leaves; and he adds that the varieties with fimbriated flowers almost always have voluminous, balloon-like calyces.26 With other plants the leaves and fruit or seeds vary together in colour, as in a curious pale-leaved variety of the sycamore, which has recently been described in France,27 and as in the purple-leaved hazel, in which the leaves, the husk of the nut, and the pellicle round the kernel are all coloured purple.28 Pomologists can predict to a certain extent, from the size and appearance of the leaves of their seedlings, the probable nature of the fruit; for, as Van Mons remarks29 variations in the leaves are generally accompanied by some modification in the flower, and consequently in the fruit. In the Serpent melon, which has a narrow tortuous fruit above a yard in length, the stem of the plant, the peduncle of the female flower, and the middle lobe of the leaf, are all elongated in a remarkable manner. On the other hand, several varieties of Cucurbita, which have dwarfed stems, all produce, as Naudin remarks, leaves of the same peculiar shape. Mr. G. Maw informs me that all the varieties of the scarlet Pelargoniums which have contracted or imperfect leaves have contracted flowers: the difference between "Brilliant" and its parent "Tom Thumb" is a good instance of this. It may be suspected that the curious case described by Risso,30 of a variety of the Orange which produces on the young shoots rounded leaves with winged petioles, and afterwards elongated leaves on long but wingless petioles, is connected with the remarkable change in form and nature which the fruit undergoes during its development.

In the following instance we have the colour and the form of the petals apparently correlated, and both dependent on the nature of the season. An observer, skilled in the subject, writes,31 "I noticed, during the year 1842, that every Dahlia of which the colour had any tendency to scarlet, was deeply notched—indeed, to so great an extent as to give the petals the appearance of a saw; the indentures were, in some instances, more than a quarter of an inch deep." Again, Dahlias which have their petals tipped with a different colour from the rest of the flower are very inconstant, and during certain years some, or even all the flowers, become uniformly coloured; and it has been observed with several varieties32 that when this happens the petals grow much elongated and lose their proper shape. This, however, may be due to reversion, both in colour and form, to the aboriginal species.

In this discussion on correlation, we have hitherto treated of cases in which we can partly understand the bond of connection; but I will now give cases in which we cannot even conjecture, or can only very obscurely see, the nature of the bond. Isidore Geoffroy SaintHilaire, in his work on Monstrosities, insists,33 "que certaines anomalies coexistent rarement entr'elles, d'autres fréquemment, d'autres enfin presque constamment, malgré la différence très-grande de leur nature, et quoiqu'elles puissent paraître complètement indépendantes les unes des autres." We see something analogous in certain diseases: thus in a rare affection of the renal capsules (of which the functions are unknown), the skin becomes bronzed; and in hereditary syphilis, as I hear from Sir J. Paget, both the milk and the second teeth assume a peculiar and characteristic form. Professor Rolleston, also, informs me that the incisor teeth are sometimes furnished with a vascular rim in correlation with intra-pulmonary deposition of tubercles. In other cases of phthisis and of cyanosis the nails and finger-ends become clubbed like acorns. I believe that no explanation has been offered of these and of many other cases of correlated disease.

What can be more curious and less intelligible than the fact previously given, on the authority of Mr. Tegetmeier, that young pigeons of all breeds, which when mature have white, yellow, silver-blue, or dun-coloured plumage, come out of the egg almost naked; whereas pigeons of other colours when first born are clothed with plenty of down? White Pea-fowls, as has been observed both in England and France,34 and as I have myself seen, are inferior in size to the common coloured kind; and this cannot be accounted for by the belief that albinism is always accompanied by constitutional weakness; for white or albino moles are generally larger than the common kind.

To turn to more important characters: the niata cattle of the Pampas are remarkable from their short foreheads, upturned muzzles, and curved lower jaws. In the skull the nasal and premaxillary bones are much shortened, the maxillaries are excluded from any junction with the nasals, and all the bones are slightly modified, even to the plane of the occiput. From the analogous case of the dog, hereafter to be given, it is probable that the shortening of the nasal and adjoining bones is the proximate cause of the other modifications in the skull, including the upward curvature of the lower jaw, though we cannot follow out the steps by which these changes have been effected.

Polish fowls have a large tuft of feathers on their heads; and their skulls are perforated by numerous holes, so that a pin can be driven into the brain without touching any bone. That this deficiency of bone is in some way connected with the tuft of feathers is clear from tufted ducks and geese likewise having perforated skulls. The case would probably be considered by some authors as one of balancement or compensation. In the chapter on Fowls, I have shown that with Polish fowls the tuft of feathers was probably at first small; by continued selection it became larger, and then rested on a fibrous mass; and finally, as it became still larger, the skull itself became more and more protuberant until it acquired its present extraordinary structure. Through correlation with the protuberance of the skull, the shape and even the relative connection of the premaxillary and nasal bones, the shape of the orifice of the nostrils, the breadth of the frontal bone, the shape of the post-lateral processes of the frontal and squamosal bones, and the direction of the bony cavity of the ear, have all been modified. The internal configuration of the skull and the whole shape of the brain have likewise been altered in a truly marvellous manner.

After this case of the Polish fowl it would be superfluous to do more than refer to the details previously given on the manner in which the changed form of the comb has affected the skull, in various breeds of the fowl, causing by correlation crests, protuberances, and depressions on its surface.

With our cattle and sheep the horns stand in close connection with the size of the skull, and with the shape of the frontal bones; thus Cline35 found that the skull of a horned ram weighed five times as much as that of a hornless ram of the same age. When cattle become hornless, the frontal bones are "materially diminished in breadth towards the poll;" and the cavities between the bony plates "are not so deep, nor do they extend beyond the frontals."36 It may be well here to pause and observe how the effects of correlated variability, of the increased use of parts, and of the accumulation of so-called spontaneous variations through natural selection, are in many cases inextricably commingled. We may borrow an illustration from Mr. Herbert Spencer, who remarks that, when the Irish elk acquired its gigantic horns, weighing above one hundred pounds, numerous co-ordinated changes of structure would have been indispensable,—namely, a thickened skull to carry the horns; strengthened cervical vertebrae, with strengthened ligaments; enlarged dorsal vertebrae to support the neck, with powerful fore-legs and feet; all these parts being supplied with proper muscles, blood-vessels, and nerves. How then could these admirably co-ordinated modifications of structure have been acquired? According to the doctrine which I maintain, the horns of the male elk were slowly gained through sexual selection,—that is, by the best-armed males conquering the worse-armed, and leaving a greater number of descendants. But it is not at all necessary that the several parts of the body should have simultaneously varied. Each stag presents individual characteristics, and in the same district those which had slightly heavier horns, or stronger necks, or stronger bodies, or were the most courageous, would secure the greater number of does, and consequently have a greater number of offspring. The offspring would inherit, in a greater or less degree, these same qualities, would occasionally intercross with one another, or with other individuals varying in some favourable manner; and of their offspring, those which were the best endowed in any respect would continue multiplying; and so onwards, always progressing, sometimes in one direction, and sometimes in another, towards the excellently co-ordinated structure of the male elk. To make this clear, let us reflect on the probable steps, as shown in the twentieth chapter, by which our race and dray horses have arrived at their present state of excellence; if we could view the whole series of intermediate forms between one of these animals and an early unimproved progenitor, we should behold a vast number of animals, not equally improved in each generation throughout their entire structure, but sometimes a little more in one point, and sometimes in another, yet on the whole gradually approaching in character to our present race or dray horses, which are so admirably fitted in the one case for fleetness and in the other for draught.

Although natural selection would thus37 tend to give to the male elk its present structure, yet it is probable that the inherited effects of use, and of the mutual action of part on part, have been equally or more important. As the horns gradually increased in weight the muscles of the neck, with the bones to which they are attached, would increase in size and strength; and these parts would react on the body and legs. Nor must we overlook the fact that certain parts of the skull and the extremities would, judging by analogy, tend from the first to vary in a correlated manner. The increased weight of the horns would also act directly on the skull, in the same manner as when one bone is removed in the leg of a dog, the other bone, which has to carry the whole weight of the body, increases in thickness. But from the fact given with respect to horned and hornless cattle, it is probable that the horns and skull would immediately act on each other through the principle of correlation. Lastly, the growth and subsequent wear and tear of the augmented muscles and bones would require an increased supply of blood, and consequently increased supply of food; and this again would require increased powers of mastication, digestion, respiration, and excretion.

Colour as Correlated with Constitutional Peculiarities.

It is an old belief that with man there is a connection between complexions and constitution; and I find that some of the best authorities believe in this to the present day.38 Thus Dr. Beddoe by his tables shows39 that a relation exists between liability to consumption and the colour of the hair, eyes, and skin. It has been affirmed40 that, in the French army which invaded Russia, soldiers having a dark complexion from the southern parts of Europe, withstood the intense cold better than those with lighter complexions from the north; but no doubt such statements are liable to error.

In the second chapter on Selection I have given several cases proving that with animals and plants differences in colour are correlated with constitutional differences, as shown by greater or less immunity from certain diseases, from the attacks of parasitic plants and animals, from scorching by the sun, and from the action of certain poisons. When all the individuals of any one variety possess an immunity of this nature, we do not know that it stands in any sort of correlation with their colour; but when several similarly coloured varieties of the same species are thus characterised, whilst other coloured varieties are not thus favoured, we must believe in the existence of a correlation of this kind. Thus, in the United States purple-fruited plums of many kinds are far more affected by a certain disease than green or yellow-fruited varieties. On the other hand, yellow-fleshed peaches of various kinds suffer from another disease much more than the white-fleshed varieties. In the Mauritius red sugar-canes are much less affected by a particular disease than the white canes. White onions and verbenas are the most liable to mildew; and in Spain the green-fruited grapes suffered from the vine-disease more than other coloured varieties. Dark-coloured pelargoniums and verbenas are more scorched by the sun than varieties of other colours. Red wheats are believed to be hardier than white; and red-flowered hyacinths were more injured during one particular winter in Holland than other coloured varieties. With animals, white terriers suffer most from the distemper, white chickens from a parasitic worm in their tracheae, white pigs from scorching by the sun, and white cattle from flies; but the caterpillars of the silk-moth which yield white cocoons suffered in France less from the deadly parasitic fungus than those producing yellow silk.

The cases of immunity from the action of certain vegetable poisons, in connexion with colour, are more interesting, and are at present wholly inexplicable. I have already given a remarkable instance, on the authority of Professor Wyman, of all the hogs, excepting those of a black colour, suffering severely in Virginia from eating the root of the Lachnanthes tinctoria. According to Spinola and others,41 buckwheat (Po1ygonum fagopyrum), when in flower, is highly injurious to white or white-spotted pigs, if they are exposed to the heat of the sun, but is quite innocuous to black pigs. According to two accounts, the Hypericum crispum in Sicily is poisonous to white sheep alone; their heads swell, their wool falls off, and they often die; but this plant, according to Lecce, is poisonous only when it grows in swamps; nor is this improbable, as we know how readily the poisonous principle in plants is influenced by the conditions under which they grow.

Three accounts have been published in Eastern Prussia, of white and white-spotted horses being greatly injured by eating mildewed and honeydewed vetches; every spot of skin bearing white hairs becoming inflamed and gangrenous. The Rev. J. Rodwell informs me that his father turned out about fifteen cart-horses into a field of tares which in parts swarmed with black aphides, and which no doubt were honeydewed, and probably mildewed; the horses, with two exceptions, were chestnuts and bays with white marks on their faces and pasterns, and the white parts alone swelled and became angry scabs. The two bay horses with no white marks entirely escaped all injury. In Guernsey, when horses eat fool's parsley (Æthusa cynapium) they are sometimes violently purged; and this plant "has a peculiar effect on the nose and lips, causing deep cracks and ulcers, particularly on horses with white muzzles."42 With cattle, independently of the action of any poison, cases have been published by Youatt and Erdt of cutaneous diseases with much constitutional disturbance (in one instance after exposure to a hot sun) affecting every single point which bore a white hair, but completely passing over other parts of the body. Similar cases have been observed with horses.43

We thus see that not only do those parts of the skin which bear white hair differ in a remarkable manner from those bearing hair of any other colour, but that some great constitutional difference must be correlated with the colour of the hair; for in the abovementioned cases, vegetable poisons caused fever, swelling of the head, as well as other symptoms, and even death, to all the white, or white-spotted animals.

REFERENCES Mollusca, in his paper on the Morphology of the Cephalous Mollusca in 'Phil. Transact.,' 1853, p. 56.

1. 'Hist. des Anomalies,' tom. iii. p. 392. Prof. Huxley applies the same principle in accounting for the remarkable, though normal, differences in the arrangement of the nervous system in the

 

2. 'Eléments de Tératologie Veg.,' 1841, p. 13.

 

3. Prof. J. B. Simonds on the Age of the Ox, Sheep, etc., quoted in 'Gardener's Chronicle,' 1854, p.

588.
4. 'Hist. des Anomalies,' tom. i. p. 674.
5. Quoted by Isid. Geoffroy, ibid., tom. i. p. 635.
6. 'The Poultry Book,' by W. B. Tegetmeier, 1866, p. 250.
7. Naturalists differ with respect to the homologies of the digits of birds; but several uphold the view

above advanced. See on this subject Dr. E. S. Morse in 'Annals of the Lyceum of Nat. Hist. of

New York,' vol. x. 1872, p. 16.
8. A. Walker on Intermarriage, 1838, p. 160.
9. 'The Farrier and Naturalist,' vol. i. 1828, p. 456. A gentleman who has attended to this point, tells

me that about three-fourths of white-faced horses have white legs.
10. Godron, 'Sur l'Espèce,' tom. ii. p. 217.
11. 'Quadrupèdes du Paraguay,' tom. ii. p. 333.
12. On Sheep, p. 142.
13. 'Ueber Racen, Kreuzungen,' etc., 1825, s. 24.
14. Quoted from Conolly, in 'The Indian Field,' Feb. 1859, vol. ii. p. 266.
15. In the third chapter I have said that "the hair and horns are so closely related to each other, that they are apt to vary together." Dr. Wilckens ("Darwin's Theorie," 'Jahrbuch der Deutschen Viehzucht,' 1866, 1. Heft) translates my words into "lang-und grobhaarige Thiere sollen geneigter sein, lange und viele Hörner zu bekommen" and he then justly disputes this proposition; but what I have really said, in accordance with the authorities just quoted, may, I think, be trusted.
16.'Domesticated Animals of the British Islands,' pp. 307, 368. Dr. Wilckens argues ('Landwirth. Wochenblatt,' Nr. 10, 1869) to the same effect with respect to domestic animals in Germany.
17. 'Proceedings Zoolog. Soc.,' 1833, p. 113.
18. Sedgwick, 'Brit. and Foreign Medico-Chirurg. Review,' April 1863, p. 453.
19. 'Gardener's Chronicle,' 1849, p. 205.
20. 'Embassy to the Court of Ava,' vol. i. p. 320.
21. 'Narrative of a Mission to the Court of Ava in 1855,' p. 94.
22. I owe to the kindness of M. Chauman, of St. Petersburg, excellent photographs of this man and his son, both of whom have since been exhibited in Paris and London.
23. These statements are taken from Mr. Sedgwick in the 'Medico-Chirurg. Review,' July, 1861, p. 198; April, 1863, pp. 455 and 458. Liebreich is quoted by Professor Devay, in his 'Mariages Consanguins,' 1862, p. 116.
24. Loudon's 'Mag. of Nat. Hist.,' vol. i. 1829, pp. 66, 178. See also Dr. P. Lucas, 'L'Héréd. Nat.,' tom. i. p. 428, on the inheritance of deafness in cats. Mr. Lawson Tait states ('Nature,' 1873, p. 323) that only male cats are thus affected; but this must be a hasty generalisation. The first case recorded in England by Mr. Bree related to a female, and Mr. Fox informs me that he has bred kittens from a white female with blue eyes, which was completely deaf; he has also observed other females in the same condition.
25. 'Annales des Sc. Nat.' Zoolog., 3rd series, 1847, tom. viii. p. 239.
26. 'Revue des Cours Scientifiques,' June 5th, 1869, p. 430.
27. 'Gardener's Chronicle,' 1864, p. 1202.
28. Verlot gives several other instances, 'Des Variétés,' 1865, p. 72.
29. 'Arbres Fruitiers,' 1836, tom. ii. pp. 204, 226.
30. 'Annales du Muséum,' tom. xx. p. 188.
31. 'Gardener's Chronicle,' 1843, p. 877.
32. Ibid., 1845, p. 102.
33.'Hist. des Anomalies,' tom. iii. p. 402. See also M. Camille Dareste, 'Recherches sur les Conditions,' etc., 1863, pp. 16, 48.
34. Rev. E. S. Dixon, 'Ornamental Poultry,' 1848, p. 111; Isidore Geoffroy, 'Hist. Anomalies,' tom. i. p. 211.
35. 'On the Breeding of Domestic Animals,' 1829, p. 6.
36. Youatt on Cattle, 1834, p. 283.
37. Mr. Herbert Spencer ('Principles of Biology,' 1864, vol. i. pp. 452, 468) takes a different view; and in one place remarks: "We have seen reason to think that, as fast as essential faculties multiply, and as fast as the number of organs that co-operate in any given function increases, indirect equilibration through natural selection becomes less and less capable of producing specific adaptations; and remains fully capable only of maintaining the general fitness of constitution to conditions." This view that natural selection can do little in modifying the higher animals surprises me, seeing that man's selection has undoubtedly effected much with our domesticated quadrupeds and birds.
38.38. 94.
39. 'British Medical Journal,' 1862, p. 433.
40. Boudin, 'Géograph. Médicale,' tom. i. p. 406.
41. This fact and the following cases, when not stated to the contrary, are taken from a very curious paper by Prof. Heusinger, in 'Wochenschrift fur Heilkunde,' May, 1846, s. 277. Settegast ('Die Thierzucht,' 1868, p. 39) says that white or white-spotted sheep suffer like pigs, or even die from eating buckwheat; whilst black or dark-woolled individuals are not in the least affected.
42. Mr. Mogford, in the 'Veterinarian,' quoted in 'The Field,' Jan. 22nd, 1861, p. 545.
43. 'Edinburgh Veterinary Journal,' Oct. 1860, p. 347.

Chapter XXVI: Laws Of Variation, continued – Summary

THE FUSION OF HOMOLOGOUS PARTS — THE VARIABILITY OF MULTIPLE AND HOMOLOGOUS PARTS — COMPENSATION OF GROWTH — MECHANICAL PRESSURE — RELATIVE POSITION OF FLOWERS WITH RESPECT TO THE AXIS, AND OF SEEDS IN THE OVARY, AS INDUCING VARIATION — ANALOGOUS OR PARALLEL VARIETIES — SUMMARY OF THE THREE LAST CHAPTERS.

The Fusion of Homologous Parts. —Geoffroy Saint-Hilaire formerly propounded what he called la loi de l'affinité de soi pour soi, which has been discussed and illustrated by his son, Isidore, with respect to monsters in the animal kingdom,1 and by Moquin-Tandon, with respect to monstrous plants. This law seems to imply that homologous parts actually attract one another and then unite. No doubt there are many wonderful cases, in which such parts become intimately fused together. This is perhaps best seen in monsters with two heads, which are united, summit to summit, or face to face, or Janus-like, back to back, or obliquely side to side. In one instance of two heads united almost face to face, but a little obliquely, four ears were developed, and on one side a perfect face, which was manifestly formed by the fusion of two half-faces. Whenever two bodies or two heads are united, each bone, muscle, vessel, and nerve on the line of junction appears as if it had sought out its fellow, and had become completely fused with it. Lereboullet,2 who carefully studied the development of double monsters in fishes, observed in fifteen instances the steps by which two heads gradually became united into one. In all such cases it is now thought by the greater number of capable judges that the homologous parts do not attract each other, but that in the words of Mr. Lowne:3 "As union takes place before the differentiation of distinct organs occurs, these are formed in continuity with each other." He adds that organs already differentiated probably in no case become united to homologous ones. M. Dareste does not speak4 quite decisively against the law of soi pour soi, but concludes by saying, "On se rend parfaitement compte de la formation des monstres, si l'on admet que les embryons qui se soudent appartiennent à un même œuf; qu'ils s'unissent en même temps qu'ils se forment, et que la soudure ne se produit que pendant la première période de la vie embryonnaire, celle ou les organes ne sont encore constitués que par des blastèmes homogènes."

By whatever means the abnormal fusion of homologous parts is effected, such cases throw light on the frequent presence of organs which are double during an embryonic period (and throughout life in other and lower members of the same class) but which afterwards unite by a normal process into a single medial organ. In the vegetable kingdom Moquin-Tandon5 gives a long list of cases, showing how frequently homologous parts, such as leaves, petals, stamens, and pistils, flowers, and aggregates of homologous parts, such as buds, as well as fruit, become blended, both normally and abnormally, with perfect symmetry into one another.

The Variability of Multiple and Homologous parts. —Isidore Geoffroy6 insists that, when any part or organ is repeated many times in the same animal, it is particularly liable to vary both in number and structure. With respect to number, the proposition may, I think, be considered as fully established; but the evidence is chiefly derived from organic beings living under their natural conditions, with which we are not here concerned. Whenever such parts as the vertebrae or teeth, the rays in the fins of fishes, or the feathers in the tails of birds, or petals, stamens, pistils, or seeds, are very numerous, the number is generally variable. With respect to the structure of multiple parts, the evidence of variability is not so decisive; but the fact, as far as it may be trusted, probably depends on multiple parts being of less physiological importance than single parts; consequently their structure has been less rigorously guarded by natural selection.

Compensation of Growth, or Balancement. —This law, as applied to natural species, was propounded by Goethe and Geoffroy Saint-Hilaire at nearly the same time. It implies that, when much organised matter is used in building up some one part, other parts are starved and become reduced. Several authors, especially botanists, believe in this law; others reject it. As far as I can judge, it occasionally holds good; but its importance has probably been exaggerated. It is scarcely possible to distinguish between the supposed effects of such compensation, and the effects of long-continued selection which may lead to the augmentation of one part, and simultaneously to the diminution of another. Anyhow, there can be no doubt that an organ may be greatly increased without any corresponding diminution of an adjoining part. To recur to our former illustration of the Irish elk, it may be asked what part has suffered in consequence of the immense development of the horns?

It has already been observed that the struggle for existence does not bear hard on our domesticated productions, and consequently the principle of economy of growth will seldom come into play, so that we ought not to expect to find with them frequent evidence of compensation. We have, however, some such cases. Moquin-Tandon describes a monstrous bean, in which the stipules were enormously developed, and the leaflets apparently in consequence completely aborted; this case is interesting, as it represents the natural condition of Lathyrus aphaca, with its stipules of great size, and its leaves reduced to mere threads, which act as tendrils. De Candolle8 has remarked that the varieties of Raphanus sativus which have small roots yield numerous seed containing much oil, whilst those with large roots are not productive in oil; and so it is with Brassica asperifolia. The varieties of Cucurbita pepo which bear large fruit yield a small crop, according to Naudin; whilst those producing small fruit yield a vast number. Lastly, I have endeavoured to show in the eighteenth chapter that with many cultivated plants unnatural treatment checks the full and proper action of the reproductive organs, and they are thus rendered more or less sterile; consequently, in the way of compensation, the fruit becomes greatly enlarged, and, in double flowers, the petals are greatly increased in number.

With animals, it has been found difficult to produce cows which yield much milk, and are afterwards capable of fattening well. With fowls which have large top-knots and beards the comb and wattles are generally much reduced in size; though there are exceptions to this rule. Perhaps the entire absence of the oil-gland in fantail pigeons may be connected with the great development of their tails.

Mechanical Pressure as a Cause of Modifications. —In some few cases there is reason to believe that mere mechanical pressure has affected certain structures. Vrolik and Weber9 maintain that the shape of the human head is influenced by the shape of the mother's pelvis. The kidneys in different birds differ much in form, and St. Ange10 believes that this is determined by the form of the pelvis, which again, no doubt, stands in close relation with their power of locomotion. In snakes, the viscera are curiously displaced, in comparison with their position in other vertebrates; and this has been attributed by some authors to the elongation of their bodies; but here, as in so many previous cases, it is impossible to disentangle a direct result of this kind from that consequent on natural selection. Godron has argued11 that the abortion of the spur on the inner side of the flowers in Corydalis, is caused by the buds at a very early period of growth whilst underground being closely pressed against one another and against the stem. Some botanists believe that the singular difference in the shape both of the seed and corolla, in the interior and exterior florets in certain Compositous and Umbelliferous plants, is due to the pressure to which the inner florets are subjected; but this conclusion is doubtful.

The facts just given do not relate to domesticated productions, and therefore do not strictly concern us. But here is a more appropriate case: H. Müller12 has shown that in shortfaced races of the dog some of the molar teeth are placed in a slightly different position to that which they occupy in other dogs, especially in those having elongated muzzles; and as he remarks, any inherited change in the arrangement of the teeth deserves notice, considering their classificatory importance. This difference in position is due to the shortening of certain facial bones and the consequent want of space; and the shortening results from a peculiar and abnormal state of the embryonal cartilages of the bones.

Relative Position of Flowers with respect to the Axis, and of Seeds in the Ovary, as inducing Variation.

In the thirteenth chapter various peloric flowers were described, and their production was shown to be due either to arrested development, or to reversion to a primordial condition. Moquin-Tandon has remarked that the flowers which stand on the summit of the main stem or of a lateral branch are more liable to become peloric than those on the sides;13 and he adduces, amongst other instances, that of Teucrium campanulatum. In another Labiate plant grown by me, viz., the Galeobdolon luteum, the peloric flowers were always produced on the summit of the stem, where flowers are not usually borne. In Pelargonium, a single flower in the truss is frequently peloric, and when this occurs I have during several years invariably observed it to be the central flower. This is of such frequent occurrence that one observer14 gives the names of ten varieties flowering at the same time, in every one of which the central flower was peloric. Occasionally more than one flower in the truss is peloric, and then of course the additional ones must be lateral. These flowers are interesting as showing how the whole structure is correlated. In the common Pelargonium the upper sepal is produced into a nectary which coheres with the flower-peduncle; the two upper petals differ a little in shape from the three lower ones, and are marked with dark shades of colour; the stamens are graduated in length and upturned. In the peloric flowers, the nectary aborts; all the petals become alike both in shape and colour; the stamens are generally reduced in number and become straight, so that the whole flower resembles that of the allied genus Erodium. The correlation between these changes is well shown when one of the two upper petals alone loses its dark mark, for in this case the nectary does not entirely abort, but is usually much reduced in length.15
side; Prof. Westwood also has described17 three similar peloric flowers, which all occupied a central position on the flower-branches. In the Orchideous genus, Phalænopsis, the terminal flower has been seen to become peloric.

Morren has described16 a marvellous flask-shaped flower of the Calceolaria, nearly four inches in length, which was almost completely peloric; it grew on the summit of the plant, with a normal flower on each

In a Laburnum-tree I observed that about a fourth part of the racemes produced terminal flowers which had lost their papilionaceous structure. These were produced after almost all the other flowers on the same racemes had withered. The most perfectly pelorised examples had six petals, each marked with black striae like those on the standard-petal. The keel seemed to resist the change more than the other petals. Dutrochet has described18 an exactly similar case in France, and I believe these are the only two instances of pelorism in the laburnum which have been recorded. Dutrochet remarks that the racemes on this tree do not properly produce a terminal flower, so that (as in the case of the Galeobdolon) their position as well as structure are both anomalies, which no doubt are in some manner related. Dr. Masters has briefly described another leguminous plant,19 namely, a species of clover, in which the uppermost and central flowers were regular or had lost their papilionaceous structure. In some of these plants the flower-heads were also proliferous.

Lastly, Linaria produces two kinds of peloric flowers, one having simple petals, and the other having them all spurred. The two forms, as Naudin remarks,20 not rarely occur on the same plant, but in this case the spurred form almost invariably stands on the summit of the spike.

The tendency in the terminal or central flower to become peloric more frequently than the other flowers, probably results from "the bud which stands on the end of a shoot receiving the most sap; it grows out into a stronger shoot than those situated lower down."21 I have discussed the connection between pelorism and a central position, partly because some few plants are known normally to produce a terminal flower different in structure from the lateral ones; but chiefly on account of the following case, in which we see a tendency to variability or to reversion connected with the same position. A great judge of Auriculas22 states that when one throws up a side bloom it is pretty sure to keep its character; but that if it grows from the centre or heart of the plant, whatever the colour of the edging ought to be, "it is just as likely to come in any other class as in the one to which it properly belongs." This is so notorious a fact, that some florists regularly pinch off the central trusses of flowers. Whether in the highly improved varieties the departure of the central trusses from their proper type is due to reversion, I do not know. Mr. Dombrain insists that, whatever may be the commonest kind of imperfection in each variety, this is generally exaggerated in the central truss. Thus one variety "sometimes has the fault of producing a little green floret in the centre of the flower," and in central blooms these become excessive in size. In some central blooms, sent to me by Mr. Dombrain, all the organs of the flower were rudimentary in structure, of minute size, and of a green colour, so that by a little further change all would have been converted into small leaves. In this case we clearly see a tendency to prolification—a term which I may explain, for those who have never attended to botany, to mean the production of a branch or flower, or head of flowers, out of another flower. Now Dr. Masters23 states that the central or uppermost flower on a plant is generally the most liable to prolification. Thus, in the varieties of the Auricula, the loss of their proper character and a tendency to prolification, also a tendency to prolification with pelorism, are all connected together, and are due either to arrested development, or to reversion to a former condition.

The following is a more interesting case; Metzger24 cultivated in Germany several kinds of maize brought from the hotter parts of America, and he found, as previously described, that in two or three generations the grains became greatly changed in form, size, and colour; and with respect to two races he expressly states that in the first generation, whilst the lower grains on each head retained their proper character, the uppermost grains already began to assume that character which in the third generation all the grains acquired. As we do not know the aboriginal parent of the maize, we cannot tell whether these changes are in any way connected with reversion.

In the two following cases, reversion comes into play and is determined by the position of the seed in the capsule. The Blue Imperial pea is the offspring of the Blue Prussian, and has larger seed and broader pods than its parent. Now Mr. Masters, of Canterbury, a careful observer and a raiser of new varieties of the pea, states25 that the Blue Imperial always has a strong tendency to revert to its parent-stock, and the reversion "occurs in this manner: the last (or uppermost) pea in the pod is frequently much smaller than the rest; and

if these small peas are carefully collected and sown separately, very many more, in proportion, will revert to their origin, than those taken from the other parts of the pod." Again, M. Chaté26 says that in raising seedling stocks he succeeds in getting eighty per cent to bear double flowers, by leaving only a few of the secondary branches to seed; but in addition to this, "at the time of extracting the seeds, the upper portion of the pod is separated and placed aside, because it has been ascertained that the plants coming from the seeds situated in this portion of the pod, give eighty per cent of single flowers." Now the production of singleflowering plants from the seed of double-flowering plants is clearly a case of reversion. These latter facts, as well as the connection between a central position and pelorism and prolification, show in an interesting manner how small a difference—namely, a little greater or less freedom in the flow of sap towards one part of the plant—determines important changes of structure.

Analogous or Parallel Variation. —By this term I mean that similar characters occasionally make their appearance in the several varieties or races descended from the same species, and more rarely in the offspring of widely distinct species. We are here concerned, not as hitherto with the causes of variation, but with the results; but this discussion could not have been more conveniently introduced elsewhere. The cases of analogous variation, as far as their origin is concerned, may be grouped, disregarding minor subdivisions, under two main heads; firstly, those due to unknown causes acting on similarly constituted organisms, and which consequently have varied in a similar manner; and secondly, those due to the reappearance of characters which were possessed by a more or less remote progenitor. But these two main divisions can often be separated only conjecturally, and graduate, as we shall presently see, into each other.

Under the first head of analogous variations, not due to reversion, we have the many cases of trees belonging to quite different orders which have produced pendulous and fastigiate varieties. The beech, hazel, and barberry have given rise to purple-leaved varieties; and, as Bernhardi remarks,27 a multitude of plants, as distinct as possible, have yielded varieties with deeply-cut or laciniated leaves. Varieties descended from three distinct species of Brassica have their stems, or so-called roots, enlarged into globular masses. The nectarine is the offspring of the peach; and the varieties of peaches and nectarines offer a remarkable parallelism in the fruit being white, red, or yellow fleshed—in being clingstones or freestones—in the flowers being large or small—in the leaves being serrated or crenated, furnished with globose or reniform glands, or quite destitute of glands. It should be remarked that each variety of the nectarine has not derived its character from a corresponding variety of the peach. The several varieties also of a closely allied genus, namely the apricot, differ from one another in nearly the same parallel manner. There is no reason to believe that any of these varieties have merely reacquired long-lost characters; and in most of them this certainly is not the case.

Three species of Cucurbita have yielded a multitude of races which correspond so closely in character that, as Naudin insists, they may be arranged in almost strictly parallel series. Several varieties of the melon are interesting from resembling, in important characters, other species, either of the same genus or of allied genera; thus, one variety has fruit so like, both externally and internally, the fruit of a perfectly distinct species, namely, the cucumber, as hardly to be distinguished from it; another has long cylindrical fruit twisting about like a serpent; in another the seeds adhere to portions of the pulp; in another the fruit, when ripe, suddenly cracks and falls into pieces; and all these highly remarkable peculiarities are characteristic of species belonging to allied genera. We can hardly account for the appearance of so many unusual characters by reversion to a single ancient form; but we must believe that all the members of the family have inherited a nearly similar constitution from an early progenitor. Our cereal and many other plants offer similar cases.

With animals we have fewer cases of analogous variation, independently of direct reversion. We see something of the kind in the resemblance between the short-muzzled races of the dog, such as the pug and bull-dog; in feather-footed races of the fowl, pigeon, and canary-bird; in horses of the most different races presenting the same range of colour; in all black-and-tan dogs having tan-coloured eye-spots and feet, but

in this latter case reversion may possibly have played a part. Low has remarked28 that several breeds of cattle are "sheeted,"—that is, have a broad band of white passing round their bodies like a sheet; this character is strongly inherited, and sometimes originates from a cross; it may be the first step in reversion to an early type, for, as was shown in the third chapter, white cattle with dark ears, dark feet and tip of tail, formerly existed, and now exist in feral or semi-feral condition in several quarters of the world.

Under our second main division, namely, of analogous variations due to reversion, the best cases are afforded by pigeons. In all the most distinct breeds, sub-varieties occasionally appear coloured exactly like the parent rock-pigeon, with black wing-bars, white loins, banded tail, etc.; and no one can doubt that these characters are due to reversion. So with minor details; turbits properly have white tails, but occasionally a bird is born with a dark-coloured and banded tail; pouters properly have their primary wing-feathers white, but not rarely a "sword-flighted" bird appears, that is, one with the few first primaries dark-coloured; and in these cases we have characters proper to the rock-pigeon, but new to the breed, evidently appearing from reversion. In some domestic varieties the wing-bars, instead of being simply black, as in the rock-pigeon, are beautifully edged with different zones of colour, and they then present a striking analogy with the wingbars in certain natural species of the same family, such as Phaps chalcoptera; and this may probably be accounted for by all the species of the family being descended from the same remote progenitor and having a tendency to vary in the same manner. Thus, also, we can perhaps understand the fact of some Laugherpigeons cooing almost like turtle-doves, and for several races having peculiarities in their flight, since certain natural species (viz., C. torquatrix and palumbus), display singular vagaries in this respect. In other cases a race, instead of imitating a distinct species, resembles some other race; thus, certain runts tremble and slightly elevate their tails, like fantails; and turbits inflate the upper part of their oesophagus, like pouter-pigeons.

It is a common circumstance to find certain coloured marks persistently characterising all the species of a genus, but differing much in tint; and the same thing occurs with the varieties of the pigeon: thus, instead of the general plumage being blue, with the wing-bars black, there are snow-white varieties with red bars, and black varieties with white bars; in other varieties the wing-bars, as we have seen, are elegantly zoned with different tints. The Spot pigeon is characterised by the whole plumage being white, excepting a spot on the forehead and the tail; but these parts may be red, yellow, or black. In the rock-pigeon and in many varieties the tail is blue, with the outer edges of the outer feathers white; but in the sub-variety of the monk-pigeon we have a reversed style of coloration, for the tail is white, except the outer edges of the outer feathers, which are black.29

With some species of birds, for instance with gulls, certain coloured parts appear as if almost washed out, and I have observed exactly the same appearance in the terminal dark tail-bar in certain pigeons, and in the whole plumage of certain varieties of the duck. Analogous facts in the vegetable kingdom could be given.

Many sub-varieties of the pigeon have reversed and somewhat lengthened feathers on the back part of their heads, and this is certainly not due to reversion to the parent-species, which shows no trace of such structure: but when we remember that sub-varieties of the fowl, turkey, canary-bird, duck, and goose, all have either topknots or reversed feathers on their heads; and when we remember that scarcely a single large natural group of birds can be named, in which some members have not a tuft of feathers on their heads, we may suspect that reversion to some extremely remote form has come into action.

Several breeds of the fowl have either spangled or pencilled feathers; and these cannot be derived from the parent-species, the Gallus bankiva; though of course it is possible that one early progenitor of this species may have been spangled, and another pencilled. But, as many gallinaceous birds are either spangled or pencilled, it is a more probable view that the several domestic breeds of the fowl have acquired this kind of plumage from all the members of the family inheriting a tendency to vary in a like manner. The same principle may account for the ewes in certain breeds of sheep being hornless, like the females of some other hollow-horned ruminants; it may account for certain domestic cats having slightly-tufted ears, like those of the lynx; and for the skulls of domestic rabbits often differing from one another in the same characters by which the skulls of the various species of the genus Lepus differ.

I will only allude to one other case, already discussed. Now that we know that the wild parent of the ass commonly has striped legs, we may feel confident that the occasional appearance of stripes on the legs of the domestic ass is due to reversion; but this will not account for the lower end of the shoulder-stripe being sometimes angularly bent or slightly forked. So, again, when we see dun and other coloured horses with stripes on the spine, shoulders, and legs, we are led, from reasons formerly given, to believe that they reappear through reversion to the wild parent-horse. But when horses have two or three shoulder-stripes, with one of them occasionally forked at the lower end, or when they have stripes on their faces, or are faintly striped as foals over nearly their whole bodies, with the stripes angularly bent one under the other on the forehead, or irregularly branched in other parts, it would be rash to attribute such diversified characters to the reappearance of those proper to the aboriginal wild horse. As three African species of the genus are much striped, and as we have seen that the crossing of the unstriped species often leads to the hybrid offspring being conspicuously striped—bearing also in mind that the act of crossing certainly causes the reappearance of long-lost characters—it is a more probable view that the above-specified stripes are due to reversion, not to the immediate wild parent-horse, but to the striped progenitor of the whole genus.

I have discussed this subject of analogous variation at considerable length, because it is well known that the varieties of one species frequently resemble distinct species—a fact in perfect harmony with the foregoing cases, and explicable on the theory of descent. Secondly, because these facts are important from showing, as remarked in a former chapter, that each trifling variation is governed by law, and is determined in a much higher degree by the nature of the organisation, than by the nature of the conditions to which the varying being has been exposed. Thirdly, because these facts are to a certain extent related to a more general law, namely, that which Mr. B. D. Walsh30 has called the "Law of Equable Variability," or, as he explains it, "if any given character is very variable in one species of a group, it will tend to be variable in allied species; and if any given character is perfectly constant in one species of a group, it will tend to be constant in allied species."

This leads me to recall a discussion in the chapter on Selection, in which it was shown that with domestic races, which are now undergoing rapid improvement, those parts or characters vary the most, which are the most valued. This naturally follows from recently selected characters continually tending to revert to their former less improved standard, and from their being still acted on by the same agencies, whatever these may be, which first caused the characters in question to vary. The same principle is applicable to natural species, for, as stated in my 'Origin of Species' generic characters are less variable than specific characters; and the latter are those which have been modified by variation and natural selection, since the period when all the species belonging to the genus branched off from a common progenitor, whilst generic characters are those which have remained unaltered from a much more remote epoch, and accordingly are now less variable. This statement makes a near approach to Mr. Walsh's law of Equable Variability. Secondary sexual characters, it may be added, rarely serve to characterise distinct genera, for they usually differ much in the species of the same genus, and they are highly variable in the individuals of the same species; we have also seen in the earlier chapters of this work how variable secondary sexual characters become under domestication.

Summary of the three previous Chapters on the Laws of Variation.

In the twenty-third chapter we saw that changed conditions occasionally, or even often, act in a definite manner on the organisation, so that all, or nearly all, the individuals thus exposed become modified in the same manner. But a far more frequent result of changed conditions, whether acting directly on the organisation or indirectly through the reproductive system, is indefinite and fluctuating variability. In the three last chapters, some of the laws by which such variability is regulated have been discussed.

Increased use adds to the size of muscles, together with the blood-vessels, nerves, ligaments, the crests of bone and the whole bones, to which they are attached. Increased functional activity increases the size of various glands, and strengthens the sense-organs. Increased and intermittent pressure thickens the epidermis. A change in the nature of the food sometimes modifies the coats of the stomach, and augments or decreases the length of the intestines. Continued disuse, on the other hand, weakens and diminishes all parts of the organisation. Animals which during many generations have taken but little exercise, have their lungs reduced in size, and as a consequence the bony fabric of the chest and the whole form of the body become modified. With our anciently domesticated birds, the wings have been little used, and they are slightly reduced; with their decrease, the crest of the sternum, the scapulae, coracoids, and furculum, have all been reduced.

With domesticated animals, the reduction of a part from disuse is never carried so far that a mere rudiment is left; whereas we have reason to believe that this has often occurred under nature; the effects of disuse in this latter case being aided by economy of growth, together with the intercrossing of many varying individuals. The cause of this difference between organisms in a state of nature, and under domestication, probably is that in the latter case there has not been time sufficient for any very great change, and that the principle of economy of growth does not come into action. On the contrary, structures which are rudimentary in the parent-species, sometimes become partially redeveloped in our domesticated productions. Such rudiments as occasionally make their appearance under domestication, seem always to be the result of a sudden arrest of development; nevertheless they are of interest, as showing that rudiments are the relics of organs once perfectly developed.

Corporeal, periodical, and mental habits, though the latter have been almost passed over in this work, become changed under domestication, and the changes are often inherited. Such changed habits in an organic being, especially when living a free life, would often lead to the augmented or diminished use of various organs, and consequently to their modification. From long-continued habit, and more especially from the occasional birth of individuals with a slightly different constitution, domestic animals and cultivated plants become to a certain extent acclimatised or adapted to a climate different from that proper to the parent-species.

Through the principle of correlated variability, taken in its widest sense, when one part varies other parts vary, either simultaneously, or one after the other. Thus, an organ modified during an early embryonic period affects other parts subsequently developed. When an organ, such as the beak, increases or decreases in length, adjoining or correlated parts, as the tongue and the orifice of the nostrils, tend to vary in the same manner. When the whole body increases or decreases in size, various parts become modified; thus, with pigeons the ribs increase or decrease in number and breadth. Homologous parts which are identical during their early development and are exposed to similar conditions, tend to vary in the same or in some connected manner,—as in the case of the right and left sides of the body, and of the front and hind limbs. So it is with the organs of sight and hearing; for instance, white cats with blue eyes are almost always deaf. There is a manifest relation throughout the body between the skin and various dermal appendages, such as hair, feathers, hoofs, horns, and teeth. In Paraguay, horses with curly hair have hoofs like those of a mule; the wool and the horns of sheep often vary together; hairless dogs are deficient in their teeth; men with redundant hair have abnormal teeth, either by deficiency or excess. Birds with long wing-feathers usually have long tail-feathers. When long feathers grow from the outside of the legs and toes of pigeons, the two outer toes are connected by membrane; for the whole leg tends to assume the structure of the wing. There is a manifest relation between a crest of feathers on the head and a marvellous amount of change in the skull of various fowls; and in a lesser degree, between the greatly elongated, lopping ears of rabbits and the structure of their skulls. With plants, the leaves, various parts of the flower, and the fruit, often vary together to a correlated manner.

In some cases we find correlation without being able even to conjecture what is the nature of the connection, as with various monstrosities and diseases. This is likewise the case with the colour of the adult pigeon, in connection with the presence of down on the young bird. Numerous curious instances have been given of peculiarities of constitution, in correlation with colour, as shown by the immunity of individuals of one colour from certain diseases, from the attacks of parasites and from the action of certain vegetable poisons.

Correlation is an important subject; for with species, and in a lesser degree with domestic races, we continually find that certain parts have been greatly modified to serve some useful purpose; but we almost invariably find that other parts have likewise been more or less modified, without our being able to discover any advantage in the change. No doubt great caution is necessary with respect to this latter point, for it is difficult to overrate our ignorance on the use of various parts of the organisation; but from what we have seen, we may believe that many modifications are of no direct service, having arisen in correlation with other and useful changes.

Homologous parts during their early development often become fused together. Multiple and homologous organs are especially liable to vary in number and probably in form. As the supply of organised matter is not unlimited, the principle of compensation sometimes comes into action; so that, when one part is greatly developed, adjoining parts are apt to be reduced; but this principle is probably of much less importance than the more general one of the economy of growth. Through mere mechanical pressure hard parts occasionally affect adjoining parts. With plants the position of the flowers on the axis, and of the seeds in the ovary, sometimes leads, through a more or less free flow of sap, to changes of structure; but such changes are often due to reversion. Modifications, in whatever manner caused, will be to a certain extent regulated by that co-ordinating power, or so-called nisus formativus, which is in fact a remnant of that simple form of reproduction, displayed by many lowly organised beings in their power of fissiparous generation and budding. Finally, the effects of the laws which directly or indirectly govern variability, may be largely regulated by man's selection, and will so far be determined by natural selection that changes advantageous to any race will be favoured, and disadvantageous changes will be checked.Domestic races descended from the same species, or from two or more allied species, are liable to revert to characters derived from their common progenitor; and, as they inherit a somewhat similar constitution, they are liable to vary in the same manner. From these two causes analogous varieties often arise. When we reflect on the several foregoing laws, imperfectly as we understand them, and when we bear in mind how much remains to be discovered, we need not be surprised at the intricate and to us unintelligible manner in which our domestic productions have varied, and still go on varying.

REFERENCES

1. 'Hist. des Anomalies,' 1832, tom. i. pp. 22, 537-556; tom. iii. p. 462.
2. 'Comptes Rendus,' 1855, pp. 855, 1039.
3. 'Catalogue of the Teratological Series in the Museum of the R. Coll. of Surgeons,' 1872, p. 16.
4. 'Archives de Zoolog. Exper.,' Jan. 1874, p. 78.
5. 'Tératologie Vég.,' 1841, livre iii.
6. 'Hist. des Anomalies,' tom. iii. pp. 4, 5, 6.
7. 'Tératologie Vég.,' p. 156. See also my book on 'The Movements and Habits of Climbing Plants,' 2nd edit., 1875, p. 202.
8. 'Mémoires du Muséum,' etc., tom. viii. p. 178.
9. Prichard, 'Phys. Hist. of Mankind,' 1851, vol. i. p. 324.
10. 'Annales des Sc. Nat.,' 1st series, tom. xix. p. 327.
11. 'Comptes Rendus,' Dec. 1864, p. 1039.
12. "Ueber fötale Rachites," 'Würzburger Medicin. Zeitschrift,' 1860, B. i. s. 265.
13. 'Tératologie Vég.,' p. 192.
14. 'Journal of Horticulture,' July 2nd, 1861, p. 253.
15.It would be worth trial to fertilise with the same pollen the central and lateral flowers of the pelargonium, or of other highly cultivated plants, protecting them of course from insects: then to sow the seed separately, and observe whether the one or the other lot of seedlings varied the most.
16. Quoted in 'Journal of Horticulture,' Feb. 24th, 1863, p. 152.
17. 'Gardener's Chronicle,' 1866, p. 612. For the Phalænopsis, see ibid., 1867, p. 211.
18. 'Mémoires . . . des Végétaux,' 1837, tom. ii. p. 170.
19. 'Journal of Horticulture,' July 23rd, 1861, p. 311.
20. 'Nouvelles Archives du Muséum,' tom. i. p. 137.
21. Hugo von Mohl, 'The Vegetable Cell,' Eng. translat., 1852, p. 76.
22. The Rev. H. H. Dombrain, in 'Journal of Horticulture,' 1861, June 4th, p. 174; and June 25th, p. 234; 1862, April 29th, p. 83.
23. 'Transact. Linn. Soc.,' vol. xxiii. 1861, p. 360.
24. 'Die Getreidearten,' 1845, s. 208, 209.
25. 'Gardener's Chronicle,' 1850, p. 198.
26. Quoted in 'Gardener's Chronicle,' 1866, p. 74.
27. 'Ueber den Begriff der Pflanzenart,' 1834, s. 14.
28. 'Domesticated Animals,' 1845, p. 351.
29. Bechstein, 'Naturgeschichte Deutschlands,' B. iv. 1795, s. 31.
30. 'Proc. Entomolog. Soc. of Philadelphia,' Oct. 1863, p. 213.