The Variation of Animals and Plants by Charles Darwin - HTML preview

PLEASE NOTE: This is an HTML preview only and some elements such as links or page numbers may be incorrect.
Download the book in PDF, ePub, Kindle for a complete version.

Chapter XXIII: Direct And Definite Action Of The External Conditions Of Life

SLIGHT MODIFICATIONS IN PLANTS FROM THE DEFINITE ACTION OF CHANGED CONDITIONS, IN SIZE, COLOUR, CHEMICAL PROPERTIES, AND IN THE STATE OF THE TISSUES — LOCAL DISEASES — CONSPICUOUS MODIFICATIONS FROM CHANGED CLIMATE OR FOOD, ETC — PLUMAGE OF BIRDS AFFECTED BY PECULIAR NUTRIMENT, AND BY THE INOCULATION OF POISON — LAND-SHELLS — MODIFICATIONS OF ORGANIC BEINGS IN A STATE OF NATURE THROUGH THE DEFINITE ACTION OF EXTERNAL CONDITIONS — COMPARISON OF AMERICAN AND EUROPEAN TREES — GALLS — EFFECTS OF PARASITIC FUNGI — CONSIDERATIONS OPPOSED TO THE BELIEF IN THE POTENT INFLUENCE OF CHANGED EXTERNAL CONDITIONS — PARALLEL SERIES OF VARIETIES — AMOUNT OF VARIATION DOES NOT CORRESPOND WITH THE DEGREE OF CHANGE IN THE CONDITIONS — BUD-VARIATION — MONSTROSITIES PRODUCED BY UNNATURAL TREATMENT — SUMMARY.

If we ask ourselves why this or that character has been modified under domestication, we are, in most cases, lost in utter darkness. Many naturalists, especially of the French school, attribute every modification to the "monde ambiant," that is, to changed climate, with all its diversities of heat and cold, dampness and dryness, light and electricity, to the nature of the soil, and to varied kinds and amount of food. By the term definite action, as used in this chapter, I mean an action of such a nature that, when many individuals of the same variety are exposed during several generations to any particular change in their conditions of life, all, or nearly all the individuals, are modified in the same manner. The effects of habit, or of the increased use and disuse of various organs, might have been included under this head; but it will be convenient to discuss this subject in a separate chapter. By the term indefinite action I mean an action which causes one individual to vary in one way and another individual in another way, as we often see with plants and animals after they have been subjected for some generations to changed conditions of life. But we know far too little of the causes and laws of variation to make a sound classification. The action of changed conditions, whether leading to definite or indefinite results, is a totally distinct consideration from the effects of selection; for selection depends on the preservation by man of certain individuals, or on their survival under various and complex natural circumstances, and has no relation whatever to the primary cause of each particular variation.

I will first give in detail all the facts which I have been able to collect, rendering it probable that climate, food, etc., have acted so definitely and powerfully on the organisation of our domesticated productions, that new sub-varieties or races have been thus formed without the aid of selection by man or nature. I will then give the facts and considerations opposed to this conclusion, and finally we will weigh, as fairly as we can, the evidence on both sides.

When we reflect that distinct races of almost all our domesticated animals exist in each kingdom of Europe, and formerly even in each district of England, we are at first strongly inclined to attribute their origin to the definite action of the physical conditions of each country; and this has been the conclusion of many authors. But we should bear in mind that man annually has to choose which animals shall be preserved for breeding, and which shall be slaughtered. We have also seen that both methodical and unconscious selection were formerly practised, and are now occasionally practised by the most barbarous races, to a much greater extent than might have been anticipated. Hence it is difficult to judge how far differences in the conditions between, for instance, the several districts in England, have sufficed to modify the breeds which have been reared in each. It may be argued that, as numerous wild animals and plants have ranged during many ages throughout Great Britain, and still retain the same character, the difference in conditions between the several districts could not have modified in a marked manner the various native races of cattle, sheep, pigs, and horses. The same difficulty of distinguishing between the effects of natural selection and the definite action of external conditions is encountered in a still higher degree when we compare closely allied species inhabiting two countries, such as North America and Europe, which do not differ greatly in climate, nature of soil, etc., for in this case natural selection will inevitably and rigorously have acted during a long succession of ages.

Prof. Weismann has suggested that when a variable species enters a new and isolated country, although the variations may be of the same general nature as before, yet it is improbable that they should occur in the same proportional numbers. After a longer or shorter period, the species will tend to become nearly uniform in character from the incessant crossing of the varying individuals; but owing to the proportion of the individuals varying in different ways not being the same in the two cases, the final result will be the production of two forms somewhat different from one another. In cases of this kind it would falsely appear as if the conditions had induced certain definite modifications, whereas they had only excited indefinite variability, but with the variations in slightly different proportional numbers. This view may throw some light on the fact that the domestic animals which formerly inhabited the several districts in Great Britain, and the half wild cattle lately kept in several British parks, differed slightly from one another; for these animals were prevented from wandering over the whole country and intercrossing, but would have crossed freely within each district or park.

From the difficulty of judging how far changed conditions have caused definite modifications of structure, it will be advisable to give as large a body of facts as possible, showing that extremely slight differences within the same country, or during different seasons, certainly produce an appreciable effect, at least on varieties which are already in an unstable condition. Ornamental flowers are good for this purpose, as they are highly variable, and are carefully observed. All floriculturists are unanimous that certain varieties are affected by very slight differences in the nature of the artificial compost in which they are grown, and by the natural soil of the district, as well as by the season. Thus, a skilful judge, in writing on Carnations and Picotees asks "where can Admiral Curzon be seen possessing the colour, size, and strength which it has in Derbyshire? Where can Flora's Garland be found equal to those at Slough? Where do high-coloured flowers revel better than at Woolwich and Birmingham? Yet in no two of these districts do the same varieties attain an equal degree of excellence, although each may be receiving the attention of the most skilful cultivators." The same writer then recommends every cultivator to keep five different kinds of soil and manure, "and to endeavour to suit the respective appetites of the plants you are dealing with, for without such attention all hope of general success will be vain." So it is with the Dahlia: the Lady Cooper rarely succeeds near London, but does admirably in other districts; the reverse holds good with other varieties; and again, there are others which succeed equally well in various situations. A skilful gardener states that he procured cuttings of an old and well-known variety (pulchella) of Verbena, which from having been propagated in a different situation presented a slightly different shade of colour; the two varieties were afterwards

multiplied by cuttings, being carefully kept distinct; but in the second year they could hardly be distinguished, and in the third year no one could distinguish them.

The nature of the season has an especial influence on certain varieties of the Dahlia: in 1841 two varieties were pre-eminently good, and the next year these same two were pre-eminently bad. A famous amateur asserts that in 1861 many varieties of the Rose came so untrue in character, "that it was hardly possible to recognise them, and the thought was not seldom entertained that the grower had lost his tally." The same amateur states that in 1862 two-thirds of his Auriculas produced central trusses of flowers, and such trusses are liable not to keep true; and he adds that in some seasons certain varieties of this plant all prove good, and the next season all prove bad; whilst exactly the reverse happens with other varieties. In 1845 the editor of the 'Gardener's Chronicle' remarked how singular it was that this year many Calceolarias tended to assume a tubular form. With Heartsease the blotched sorts do not acquire their proper character until hot weather sets in; whilst other varieties lose their beautiful marks as soon as this occurs.

Analogous facts have been observed with leaves: Mr. Beaton asserts that he raised at Shrubland, during six years, twenty thousand seedlings from the Punch Pelargonium, and not one had variegated leaves; but at Surbiton, in Surrey, one-third, or even a greater proportion, of the seedlings from this same variety were more or less variegated. The soil of another district in Surrey has a strong tendency to cause variegation, as appears from information given me by Sir F. Pollock. Verlot states that the variegated strawberry retains its character as long as grown in a dryish soil, but soon loses it when planted in fresh and humid soil. Mr. Salter, who is well known for his success in cultivating variegated plants, informs me that rows of strawberries were planted in his garden in 1859, in the usual way; and at various distances in one row, several plants simultaneously became variegated; and what made the case more extraordinary, all were variegated in precisely the same manner. These plants were removed, but during the three succeeding years other plants in the same row became variegated, and in no instance were the plants in any adjoining row affected.

The chemical qualities, odours, and tissues of plants are often modified by a change which seems to us slight. The Hemlock is said not to yield conicine in Scotland. The root of the Aconitum napellus becomes innocuous in frigid climates. The medicinal properties of the Digitalis are easily affected by culture. As the Pistacia lentiscus grows abundantly in the South of France, the climate must suit it, but it yields no mastic. The Laurus sassafras in Europe loses the odour proper to it in North America. Many similar facts could be given, and they are remarkable because it might have been thought that definite chemical compounds would have been little liable to change either in quality or quantity.

The wood of the American Locust-tree ( Robinia) when grown in England is nearly worthless, as is that of the Oak-tree when grown at the Cape of Good Hope. Hemp and flax, as I hear from Dr. Falconer, flourish and yield plenty of seed on the plains of India, but their fibres are brittle and useless. Hemp, on the other hand, fails to produce in England that resinous matter which is so largely used in India as an intoxicating drug.

The fruit of the Melon is greatly influenced by slight differences in culture and climate. Hence it is generally a better plan, according to Naudin, to improve an old kind than to introduce a new one into any locality. The seed of the Persian Melon produces near Paris fruit inferior to the poorest market kinds, but at Bordeaux yields delicious fruit. Seed is annually brought from Thibet to Kashmir and produces fruit weighing from four to ten pounds, but plants raised next year from seed saved in Kashmir give fruit weighing only from two to three pounds. It is well known that American varieties of the Apple produce in their native land magnificent and brightly-coloured fruit, but these in England are of poor quality and a dull colour. In Hungary there are many varieties of the kidney-bean, remarkable for the beauty of their seeds, but the Rev. M.J. Berkeley found that their beauty could hardly ever be preserved in England, and in some cases the colour was greatly changed. We have seen in the ninth chapter, with respect to wheat, what a remarkable effect transportal from the north to the south of France, and conversely, produced on the weight of the grain.

When man can perceive no change in plants or animals which have been exposed to a new climate or to different treatment, insects can sometimes perceive a marked change. A cactus has been imported into India from Canton, Manilla Mauritius, and from the hothouses of Kew, and there is likewise a so-called native kind which was formerly introduced from South America; all these plants belong to the same species and are alike in appearance, but the cochineal insect flourishes only on the native kind, on which it thrives prodigiously. Humboldt remarks that white men "born in the torrid zone walk barefoot with impunity in the same apartment where a European, recently landed, is exposed to the attacks of the Pulex penetrans." This insect, the too well-known chigoe, must therefore be able to perceive what the most delicate chemical analysis fails to discover, namely, a difference between the blood or tissues of a European and those of a white man born in the tropics. But the discernment of the chigoe is not so surprising as it at first appears; for according to Liebig the blood of men with different complexions, though inhabiting the same country, emits a different odour.

Diseases peculiar to certain localities, heights, or climates, may be here briefly noticed, as showing the influence of external circumstances on the human body. Diseases confined to certain races of man do not concern us, for the constitution of the race may play the more important part, and this may have been determined by unknown causes. The Plica Polonica stands, in this respect, in a nearly intermediate position; for it rarely affects Germans, who inhabit the neighbourhood of the Vistula, where so many Poles are grievously affected; neither does it affect Russians, who are said to belong to the same original stock as the Poles. The elevation of a district often governs the appearance of diseases; in Mexico the yellow fever does not extend above 924 metres; and in Peru, people are affected with the verugas only between 600 and 1600 metres above the sea; many other such cases could be given. A peculiar cutaneous complaint, called the Bouton d'Alep, affects in Aleppo and some neighbouring districts almost every native infant, and some few strangers; and it seems fairly well established that this singular complaint depends on drinking certain waters. In the healthy little island of St. Helena the scarlet-fever is dreaded like the Plague; analogous facts have been observed in Chili and Mexico. Even in the different departments of France it is found that the various infirmities which render the conscript unfit for serving in the army, prevail with remarkable inequality, revealing, as Boudin observes, that many of them are endemic, which otherwise would never have been suspected. Any one who will study the distribution of disease will be struck with surprise at what slight differences in the surrounding circumstances govern the nature and severity of the complaints by which man is at least temporarily affected.

The modifications as yet referred to are extremely slight, and in most cases have been caused, as far as we can judge, by equally slight differences in the conditions. But such conditions acting during a series of generations would perhaps produce a marked effect.

With plants, a considerable change of climate sometimes produces a conspicuous result. I have given in the ninth chapter the most remarkable case known to me, namely, that of varieties of maize, which were greatly modified in the course of only two or three generations when taken from a tropical country to a cooler one, or conversely. Dr. Falconer informs me that he has seen the English Ribston-pippin apple, a Himalayan oak, Prunus and Pyrus, all assume in the hotter parts of India a fastigiate or pyramidal habit; and this fact is the more interesting, as a Chinese tropical species of Pyrus naturally grows thus. Although in these cases the changed manner of growth seems to have been directly caused by the great heat, we know that many fastigiate trees have originated in their temperate homes. In the Botanic Gardens of Ceylon the appletree"sends out numerous runners under ground, which continually rise into small stems, and form a growth around the parent-tree.) The varieties of the cabbage which produce heads in Europe fail to do so in certain tropical countries. The Rhododendron ciliatum produced at Kew flowers so much larger and paler-coloured than those which it bears on its native Himalayan mountain, that Dr. Hooker would hardly have recognised the species by the flowers alone. Many similar facts with respect to the colour and size of flowers could be given.

The experiments of Vilmorin and Buckman on carrots and parsnips prove that abundant nutriment produces a definite and inheritable effect on the roots, with scarcely any change in other parts of the plant. Alum directly influences the colour of the flowers of the Hydrangea. Dryness seems generally to favour the hairiness or villosity of plants. Gärtner found that hybrid Verbascums became extremely woolly when grown in pots. Mr. Masters, on the other hand, states that the Opuntia leucotricha "is well clothed with beautiful white hairs when grown in a damp heat, but in a dry heat exhibits none of this peculiarity."Slight variations of many kinds, not worth specifying in detail, are retained only as long as plants are grown in certain soils, of which Sageretgives some instances from his own experience. Odart, who insists strongly on the permanence of the varieties of the grape, admits that some varieties, when grown under a different climate or treated differently, vary in a slight degree, as in the tint of the fruit and in the period of ripening. Some authors have denied that grafting causes even the slightest difference in the scion; but there is sufficient evidence that the fruit is sometimes slightly affected in size and flavour, the leaves in duration, and the flowers in appearance.

There can be no doubt, from the facts given in the first chapter, that European dogs deteriorate in India, not only in their instincts but in structure; but the changes which they undergo are of such a nature, that they may be partly due to reversion to a primitive form, as in the case of feral animals. In parts of India the turkey becomes reduced in size, "with the pendulous appendage over the beak enormously developed." We have seen how soon the wild duck, when domesticated, loses its true character, from the effects of abundant or changed food, or from taking little exercise. From the direct action of a humid climate and poor pasture the horse rapidly decreases in size in the Falkland Islands. From information which I have received, this seems likewise to be the case to a certain extent with sheep in Australia.

Climate definitely influences the hairy covering of animals; in the West Indies a great change is produced in the fleece of sheep, in about three generations. Dr. Falconer states that the Thibet mastiff and goat, when brought down from the Himalaya to Kashmir, lose their fine wool. At Angora not only goats, but shepherddogs and cats, have fine fleecy hair, and Mr. Ainsworth attributes the thickness of the fleece to the severe winters, and its silky lustre to the hot summers. Burnes states positively that the Karakool sheep lose their peculiar black curled fleeces when removed into any other country. Even within the limits of England, I have been assured that the wool of two breeds of sheep was slightly changed by the flocks being pastured in different localities. It has been asserted on good authority that horses kept during several years in the deep coal-mines of Belgium become covered with velvety hair, almost like that on the mole. These cases probably stand in close relation to the natural change of coat in winter and summer. Naked varieties of several domestic animals have occasionally appeared; but there is no reason to believe that this is in any way related to the nature of the climate to which they have been exposed.

It appears at first sight probable that the increased size, the tendency to fatten, the early maturity and altered forms of our improved cattle, sheep, and pigs, have directly resulted from their abundant supply of food. This is the opinion of many competent judges, and probably is to a great extent true. But as far as form is concerned, we must not overlook the more potent influence of lessened use on the limbs and lungs. We see, moreover, as far as size is concerned, that selection is apparently a more powerful agent than a large supply of food, for we can thus only account for the existence, as remarked to me by Mr. Blyth, of the largest and smallest breeds of sheep in the same country, of Cochin-China fowls and Bantams, of small Tumbler and large Runt pigeons, all kept together and supplied with abundant nourishment. Nevertheless there can be little doubt that our domesticated animals have been modified, independently of the increased or lessened use of parts, by the conditions to which they have been subjected, without the aid of selection. For instance, Prof. Rütimeyer37 shows that the bones of domesticated quadrupeds can be distinguished from those of wild animals by the state of their surface and general appearance. It is scarcely possible to read Nathusius's excellent 'Vorstudien'38 and doubt that, with the highly improved races of the pig, abundant food has produced a conspicuous effect on the general form of the body, on the breadth of the head and face, and even on the teeth. Nathusius rests much on the case of a purely bred Berkshire pig, which when two months old became diseased in its digestive organs, and was preserved for observation until nineteen months old; at this age it had lost several characteristic features of the breed, and had acquired a long, narrow head, of large size relatively to its small body, and elongated legs. But in this case and in some others we ought not

to assume that, because certain characters are lost, perhaps through reversion, under one course of treatment, therefore that they were at first directly produced by an opposite treatment.

In the case of the rabbit, which has become feral on the island of Porto Santo, we are at first strongly tempted to attribute the whole change—the greatly reduced size, the altered tints of the fur, and the loss of certain characteristic marks—to the definite action of the new conditions to which it has been exposed. But in all such cases we have to consider in addition the tendency to reversion to progenitors more or less remote, and the natural selection of the finest shades of difference.

The nature of the food sometimes either definitely induces certain peculiarities, or stands in some close relation with them. Pallas long ago asserted that the fat-tailed sheep of Siberia degenerate and lose their enormous tails when removed from certain saline pastures; and recently Erman states that this occurs with the Kirgisian sheep when brought to Orenburgh.

It is well known that hemp-seed causes bullfinches and certain other birds to become black. Mr. Wallace has communicated to me some much more remarkable facts of the same nature. The natives of the Amazonian region feed the common green parrot (Chrysotis festiva, Linn.) with the fat of large Siluroid fishes, and the birds thus treated become beautifully variegated with red and yellow feathers. In the Malayan archipelago, the natives of Gilolo alter in an analogous manner the colours of another parrot, namely, the Lorius garrulus, Linn., and thus produce the Lori rajah or King-Lory. These parrots in the Malay Islands and South America, when fed by the natives on natural vegetable food, such as rice and plaintains, retain their proper colours. Mr. Wallace has, also, recorded a still more singular fact. "The Indians (of S. America) have a curious art by which they change the colours of the feathers of many birds. They pluck out those from the part they wish to paint, and inoculate the fresh wound with the milky secretion from the skin of a small toad. The feathers grow of a brilliant yellow colour, and on being plucked out, it is said, grow again of the same colour without any fresh operation."

Bechstein does not entertain any doubt that seclusion from light affects, at least temporarily, the colours of cage-birds.

It is well known that the shells of land-mollusca are affected by the abundance of lime in different districts. Isidore Geoffroy Saint-Hilaire gives the case of Helix lactea, which has recently been carried from Spain to the South of France and to the Rio Plata, and in both countries now presents a distinct appearance, but whether this has resulted from food or climate is not known. With respect to the common oyster, Mr. F. Buckland informs me that he can generally distinguish the shells from different districts; young oysters brought from Wales and laid down in beds where "natives" are indigenous, in the short space of two months begin to assume the "native" character. M. Costa has recorded a much more remarkable case of the same nature, namely, that young shells taken from the shores of England and placed in the Mediterranean, at once altered their manner of growth and formed prominent diverging rays, like those on the shells of the proper Mediterranean oyster. The same individual shell, showing both forms of growth, was exhibited before a society in Paris. Lastly, it is well known that caterpillars fed on different food sometimes either themselves acquire a different colour or produce moths differing in colour.

It would be travelling beyond my proper limits here to discuss how far organic beings in a state of nature are definitely modified by changed conditions. In my 'Origin of Species' I have given a brief abstract of the facts bearing on this point, and have shown the influence of light on the colours of birds, and of residence near the sea on the lurid tints of insects, and on the succulency of plants. Mr. Herbert Spencer has recently discussed with much ability this whole subject on general grounds. He argues, for instance, that with all animals the external and internal tissues are differently acted on by the surrounding conditions, and they invariably differ in intimate structure. So again the upper and lower surfaces of true leaves, as well as of stems and petioles, when these assume the function and occupy the position of leaves, are differently circumstanced with respect to light, etc., and apparently in consequence differ in structure. But, as Mr. Herbert Spencer admits, it is most difficult in all such cases to distinguish between the effects of the definite action of physical conditions and the accumulation through natural selection of inherited variations

which are serviceable to the organism, and which have arisen independently of the definite action of these conditions.

Although we are not here concerned with the definite action of the conditions of life on organisms in a state of nature, I may state that much evidence has been gained during the last few years on this subject. In the United States, for instance, it has been clearly proved, more especially by Mr. J. A. Allen, that, with birds, many species differ in tint, size of body and of beak, and in length of tail, in proceeding from the North to the South; and it appears that these differences must be attributed to the direct action of temperature. With respect to plants I will give a somewhat analogous case: Mr. Meehan, has compared twenty-nine kinds of American trees with their nearest European allies, all grown in close proximity and under as nearly as possible the same conditions. In the American species he finds, with the rarest exceptions, that the leaves fall earlier in the season, and assume before their fall a brighter tint; that they are less deeply toothed or serrated; that the buds are smaller; that the trees are more diffuse in growth and have fewer branchlets; and, lastly, that the seeds are smaller—all in comparison with the corresponding European species. Now considering that these corresponding trees belong to several distinct orders, and that they are adapted to widely different stations, it can hardly be supposed that their differences are of any special service to them in the New and Old worlds; and if so such differences cannot have been gained through natural selection, and must be attributed to the long continued action of a different climate.

Galls. —Another class of facts, not relating to cultivated plants, deserves attention. I allude to the production of galls. Every one knows the curious, bright-red, hairy productions on the wild rose-tree, and the various different galls produced by the oak. Some of the latter resemble fruit, with one face as rosy as the rosiest apple. These bright colours can be of no service either to the gall-forming insect or to the tree, and probably are the direct result of the action of the light, in the same manner as the apples of Nova Scotia or Canada are brighter coloured than English apples. According to Osten Sacken's latest revision, no less than fifty-eight kinds of galls are produced on the several species of oak, by Cynips with its sub-genera; and Mr. B. D. Walsh states that he can add many others to the list. One American species of willow, the Salix humilis, bears ten distinct kinds of galls. The leaves which spring from the galls of various English willows differ completely in shape from the natural leaves. The young shoots of junipers and firs, when punctured by certain insects, yield monstrous growths resembling flowers and fir-cones; and the flowers of some plants become from the same cause wholly changed in appearance. Galls are produced in every quarter of the world; of several sent to me by Mr. Thwaites from Ceylon, some were as symmetrical as a composite flower when in bud, others smooth and spherical like a berry; some protected by long spines, others clothed with yellow wool formed of long cellular hairs, others with regularly tufted hairs. In some galls the internal structure is simple, but in others it is highly complex; thus M. Lacaze-Duthiers has figured in the common ink-gall no less than seven concentric layers, composed of distinct tissue, namely, the epidermic, sub-epidermic, spongy, intermediate, and the hard protective layer formed of curiously thickened woody cells, and, lastly, the central mass, abounding with starch-granules on which the larvæ feed.
Galls are produced by insects of various orders, but the greater number by species of Cynips. It is impossible to read M. Lacaze-Duthiers' discussion and doubt that the poisonous secretion of the insect causes the growth of the gall; and every one knows how virulent is the poison secreted by wasps and bees, which belong to the same group with Cynips. Galls grow with ext