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1. Introduction 

Metamaterials possessing various peculiar features have recently attracted an increasing 
amount of attention in the electromagnetics community. Their unexpected properties have 
opened up a number of different research directions that are geared towards the 
enhancement of the performance of microwave components, and overcoming current 
limitations. In this Chapter, the fundamental model properties of metamaterials and 
metamaterial based structures are demonstrated to study the renovated wave propagation. 

2. Causality in the resonance behavior of metamaterials 

Great of interest has been devoted to split ring resonator (SRR) which composes the 
essential part of left-handed materials [1-3]. Inherently bianisotropic, SRR metamaterials can 
be obtained by doping a host isotropic medium with two concentric rings separated by a 
gap, both having splits at opposite sides. As a result, besides the electric and magnetic 
coupling, the incident field also induces the magnetoelectric coupling [4,5]. Therefore, this 
kind of artificial magnetic media needs a careful control of the SRR orientation relative to 
the incident wave as well as the SRR design. Otherwise, the electromagnetic response is 
significantly more complicated. Smith et al. explored the electromagnetic characterization of 
the symmetric and asymmetric SRR plane [6]. Vasundara et al. presented the effects of gap 
orientation on the properties of SRR metamaterials with measured scattering parameters [7]. 
Aydin et al. investigated the influence of periodicity, misalignment, and disorder on the 
magnetic resonance gap of SRRs [8]. Gay-Balmaz et al. studied experimentally and 
numerically the electromagnetic resonances in individual and coupled SRRs [9]. Katsarakis 
et al. discovered the electric coupling to the magnetic resonance of SRRs under certain 
orientation [10]. Correspondingly, several analysis modals are employed to unravel the 
resonance property in the SRR transmission spectra, such as the physical intuition initiated 
by Pendry et al. [11], lumped element equivalent circuit model proposed by Martin et al. 
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[12], and improved by Aznar et al. [13]. Meanwhile, lots of numerical simulations as well as 
experimental verifications are carried out for the metamaterial design [14-16]. Especially, 
Simovski et al. clarified the physical meaning of local constitutive parameters of 
metamaterials [17], and discussed Bloch material parameters of magneto-dielectric 
metamaterials [18]. 
A rigorous full wave analysis of bianisotropic SRR metamaterials is presented here for 
different electromagnetic field polarization and propagation directions. An alternative 
physical explanation is gained by revealing the fact that imaginary wave number leads to 
the SRR resonance. The field distribution over SRRs is then expanded into Floquet modes 
[19,20] to examine the transmission properties through metamaterials under arbitrary 
incident waves. Evanescent Floquet modes are proved to engender the resonance behavior 
which accords with the full wave analysis. 

2.1 Full wave analysis of the SRR metamterials 
To account for the magnetoelectric coupling in Maxwell’s equations, SRR metamaterials can 
be described by the constitutive relations [21] 

 0 0( )ε ε κ= ⋅ + ⋅ZD E H   (1a) 

 0

0

1
( )μ κ μ= − ⋅ + ⋅T

Z
B E H                                (1b) 

where 0 0 0μ ε=Z , ε and μ are the relative electric permittivity and relative magnetic 

permeability tensors, κ is the magnetoelectric coupling dimensionless tensor.  
 

 

Fig. 1. The SRR unit cell 

For axes fixed to the SRR as shown in Fig. 1, only certain components of ε , μ and κ tensors 

are of significance without losses [4,5]  
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Fig. 2. Six orientations of SRR relative to different electromagnetic field polarization and 
propagation direction 

0ω is the resonance frequency, and a, b, c, d in Fig. 1 are related to the geometry of the SRR. 

For other SRR orientations, the ε , μ and κ tensors just need a coordinates transformation. 

Introducing a normalized magnetic field 0= Zh H , from Maxwell’s curl equation for source 

free regions together with (1), (2), one may write 

 i ' ε κ− ∇ × = ⋅ + ⋅h E h                                    (3a) 

 i ' κ μ∇ × = − ⋅ + ⋅E E h
T                                  (3b) 

where 0'∇ = ∇ k . 
For the case in Fig. 2a, where magnetic field H is perpendicular to the SRR plane and 
incident E is parallel to the gapbearing sides of SRR. One obtains 
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 ( )κ β ε+ = −yx x yy yh E                                   (4a) 

 ( )κ β μ− =yx y xx xE h                                   (4b) 

The normalized wave number of the TEM wave satisfies 

 2 2β μ ε κ= +xx yy yx                                    (5)                          

Ref. [4] concluded the same results by considering the bianisotropy role in SRR 

metamaterials. At given frequencyω , only those modes having 2 0μ ε κ+ >xx yy yx will 

propagate. Those modes with 2 0μ ε κ+ <xx yy yx will lead to an imaginary β , meaning that all 

field components will decay exponentially away from the source of excitation. Since 2 0κ <yx , 

this SRR orientation will achieve the resonance stop band when the constitutive parameters 

are single negative, including 0ε >yy , 0μ <xx case, as well as 0ε <yy , 0μ >xx case. When the 

constitutive parameters are double negative or double positive with the 

condition 2μ ε κ<xx yy yx , the resonance stop band will also occur.  
For the case in Fig. 2b, where incident E is perpendicular to the SRR plane, and magnetic 

field H is parallel to the gapbearing sides of SRR, one obtains 

 β ε=y xx xh E                                        (6a)                          

 β μ=x yy yE h                                        (6b)                          

The normalized wave number satisfies 

 2 1β ε μ= =xx yy                                        (7)                          

which indicates that metamaterials with this SRR orientation has little influence to do with 

TEM waves of such electromagnetic field polarization and propagation direction. 

Meanwhile, there is no resonance stop band. 

Through the similar analysis, metamaterials with the six SRR orientations can be re-

categorized into three groups according to Maxwell’s equations. The ones shown in Fig. 2a, 

2b are one group, so do those in Fig. 2c, 2d, as well as those in Fig. 2e, 2f. The wave numbers 

for the other four cases are listed in Table 1. The case in Fig. 2c has been studied in Ref. [10],  

 

SRR 
orientation 

Fig. 2c Fig. 2d Fig. 2e Fig. 2f 

2β  ε μyy xx  ε μxx yy  ε μyy xx  ε μxx yy  

ε  
2

2 2
0( )

ωε ω ω= + −yy

b
a  ε =xx a  ε =yy a  1ε =xx  

μ  1μ =xx  1μ =yy  
2
0

2 2
0

1
( )

ωμ ω ω= + −xx

c
 1μ =yy  

Table 1. Wave numbers for the SRR metamaterials shown in Fig2. c ~ Fig2. f. 
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where the authors identified the SRR with its outer ring at low frequencies, and illustrated 

the simulated currents to explain the resonance phenomenon. Here we can see it more 

clearly that ε yy becomes less than zero when frequency ω  is larger than the resonance 

frequency 0ω , leading to the imaginary wave number β , thus the resonance stop band is 

achieved. Also Fig. 2e case has the chance to become resonance when 0μ <xx , and there is 

no resonance stop band for the Fig. 2d and Fig. 2f case.  
From the analysis above we can easily conclude that imaginary wave number actually leads 

to the SRR resonance. Such result has been noted by Simovski et al. in their previous work 

when studied the metamaterial parameters [17,18]. Here we provide an alternative means of 

characterizing the resonance of SRR metamaterials. 

2.2 Floquet modes analysis of the SRR metamterials 

Consider an electromagnetic wave to be incident on the SRR metamaterial plane with each 

element distributed periodically along x̂ and ŷ direction as shown in Fig. 3.  
 
 

  

                                    (a)                                                                              (b) 

Fig. 3. Geometry of SRR metamterial plane with incident plane wave (a) Front view (b) Side 
view 

The electromagnetic fields near the SRR elements must satisfy the periodicity requirements 

imposed by Floquet’s theorem. Thus the scattered and the transmitted fields can be 

expanded as [20] 

 
2

( )
1

( )
+∞ +∞

= =−∞ =−∞
=∑ ∑ ∑ ψS T mpq mpq mpq

m p q

R BE                          (8) 

 

where mpqR  and mpqB stand for the reflection and the transmission coefficients respectively. 

The TE and TM vector mode functions mpqψ  can be written as  

 1 1/2

1
ˆ ˆ( )

( )
ϕ= −pq pq

pq pq

x y pq pq

v u

d d t t
x yψ       TE-Floquet mode                     (9a) 
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 2 1/2

1
ˆ ˆ( )

( )
ϕ= +pq pq

pq pq

x y pq pq

u v

d d t t
x yψ       TM-Floquet mode                    (9b) 

The dominant modes have 0= =p q  and the higher order modes have 0≠p  or 0≠q . And  

 ˆ ˆ ˆexp( ( ))ϕ γ= − + +pq pq pq pqi u vx y z                            (10) 

Suppose the incidence wave in the direction of ( , )θ φ  with the wave number k , one has 

 sin cos 2 /θ φ π= +pq xu k p d                              (11a)                          

 sin sin 2 /θ φ π= +pq yv k q d                              (11b) 

 

2 2 1/2 2 2

2 2 1/2 2 2

( ) ,                   for 

                       for 

γ = − >
= − <

pq pq pq

pq pq

k t k t

-i (k t ) k t
                        (11c) 

with 

 2 2 2= +pq pq pqt u v                                    (12) 

It is known that a homogenous electromagnetic wave can always be decomposed into a 
combination of two plane waves with E-field perpendicular or parallel to the incident plane 
corresponding to the TE- and TM-Floquet modes. Therefore, the effects of any incident wave 

of either polarization at arbitrary angle ( , )θ φ  will be easily examined for the SRR resonance 

behavior. 

The modal propagation constant γ pq is positive real for the propagating modes and is 

negative imaginary for the evanescent modes. Since the resonance of SRR metamaterials is 

often manifested by a dip in the transmitted curves, let’s see the S parameters for the SRR 

metamaterial plane. 

 
2

11 2 2

(1 )

1

−= −
mpq pqmpq

mpq pq

R T
S

R T
, 

2

21 2 2

(1 )

1

−= −
pq mpqmpq

mpq pq

T R
S

R T
                        (13) 

with the reflection coefficients 1≤mpqR  and propagation factor exp( i )γ= −pq pqT z . 

Apparently, 21S decreases while pqT  gets smaller. When γ pq becomes pure imaginary, all the 

field components will decay exponentially from the source of excitation, leading to the dip 

in transmitted ( 21S ) curves. This reveals the fact that evanescent Floquet modes actually 

engender the resonance behavior which exactly accords with the full wave analysis. 

Consider the SRR metamaterials with the orientation in Fig. 2a, the dimensions of the SRR 

defined in (2) are 0.84 mm=a , 1.17 mm=b , 0.33 mm= =c d , and the dielectric substrate 

with 4.8ε =r  is 1.6 mm thick. The SRR metamaterial plane is 3.63 mm in ẑ direction with 

element period 5.6 mm=dx , 5 mm=dy along x̂ and ŷ direction. Fig. 4 shows the 

resonance behavior for a plane wave incident in the XoZ plane ( 0φ = c ). With E field 

perpendicular to the incident plane, the resonance only happens in the TE-Floquet modes. 
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The resonant frequency 8.2 GHz  hardly changes, while the resonance intensity is sensitive 

to the incident angle. One knows that an H component perpendicular to the SRR plane will 

induce a circular current flow inside the SRRs, which in turn produces just above the 

resonance frequency a large magnetic dipole moment antiparallel to cosθ⊥ =H H , leading 

to a negative μ . As the SRR orientation shown in Fig. 2a, the E-field parallel to the gap 

bearing also introduces the electric resonance, thus the SRR resonance behavior becomes 

more complicated as the variation of incident angle. As shown in Fig. 4a, when 40θ = c , the 

resonance intensity is of most significance. When 0θ = c  and 20θ = c , one obtains the almost 

equal resonance intensity. When 60θ = c , the resonance is much weaker. In addition, the 

bandwidth increases a little as the incidence angle increases. The phases of 11S and 21S for 

the SRR metamaterials are given in Fig. 4b. When 0θ = c , one finds that the phase of 11S  goes 

to zero and 21S has an extremely sharp change at the resonance point, which makes the 

metamaterials can be characterized as a magnetic conductor in this region. However, this 

does not hold true for the most significant resonance intensity when 40θ = c , since it is not 

merely engendered by H component.  
 
 

  
                                               (a)                                                                              (b) 
 

Fig. 4. Transmitted TE-Floquet modes for the SRR metamaterials with the orientation in Fig. 
2a (a) magnitudes (b) phases 

The graph in Fig. 5 shows the resonance behavior for a plane wave incident in the YoZ plane 

( 90φ = c ). With E-field parallel to the incident plane, the resonant behavior this time only 

happens in the TM-Floquet modes. Similar to the resonance behavior in Fig. 4a, the 

resonance frequency 8.2 GHz stays the same but the resonance intensity changes with the 

incidence angle. When 60θ = c , the resonance intensity is of most significance. When 

20θ = c and 40θ = c , one obtains the almost equal and weakest resonance. The intermediate 

resonance intensity is obtained when 0θ = c . The bandwidth decreases a little as the 

incidence angle increases. In Fig. 5b the phases of S parameters are illustrated. One finds 

that metamaterials can still be characterized as a magnetic conductor when 0θ = c , while the 

phase of 11S and 21S are more complex when 60θ = c . 
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                                               (a)                                                                              (b) 

Fig. 5. Transmitted TM-Floquet modes for the SRR metamaterials with the orientation in Fig. 
2a (a) magnitudes (b) phases 

Table 2 demonstrates the transmission factor for TE- and TM-Floquet modes at the 

resonance frequency 8.2 GHz . As is shown, T  turns smaller when the resonance intensity 

becomes more significant. And it is the fact that T  turns smaller because the evanescent 

modes play more important role, therefore one can conclude that metamaterial resonance is 

engendered by the evanescent Floquet modes. 
 

0θ = c  

100
11 0.4117 i( 0.9080)= − + −S
100
21 0.0614 i( 0.0466)= − + −S  

0.0424=T  
TE-Floquet mode 

0φ = c  
40θ = c  

100
11 0.7535 i( 0.6571)= + −S

100
21 0.0001 i(0.0193)= +S  

0.0147=T  

0θ = c  

200
11 0.4117 i( 0.9080)= − + −S
200
21 0.0614 i( 0.0466)= − + −S  

0.0424=T  
TM-Floquet mode

90φ = c  
60θ = c  

200
11 0.6596 i( 0.8780)= + −S
200
21 0.0019 i( 0.0222)= + −S  

0.0126=T  

Table 2.  Transmission factor for TE- and TM-Floquet modes at the resonance 

frequency 8.2 GHz  

For the other two resonance cases in Fig. 2c ( 1.6 mm thick in ẑ direction with 3.63mm=dx , 

5 mm=dy ) and Fig. 2e ( 5 mm thick in ẑ direction with 5.6 mm=dx , 3.63 mm=dy ), Fig. 

6 shows the resonance behavior for a plane wave incident in the XoZ plane ( 0φ = c ) and 

similar results hold true for the wave incident in the YoZ plane ( 90φ = c ). The electric 

resonance for Fig. 2c case shown in Fig. 6a has the most significance resonance intensity 

when 30θ = c at 8.6 GHz . On the other hand, the magnetic resonance for Fig. 2e case shown 

in Fig. 6b demonstrates the general downward trend with the incident angle 8.8 GHz , 

which has its most significant intensity when 0θ = c , and weakest when 60θ = c . 
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                                                (a)                                                                              (b) 

Fig. 6. Transmitted TE-Floquet modes for the SRR metamaterials with (a) the orientation in 
Fig. 2c (b) the orientation in Fig. 2e 

3. Propagation features of waveguides structures with SRR metamaterials 

Waveguiding structures based on metamaterial media have recently been considered by 
several research groups showing how the presence of one or both negative constitutive 
parameters may give rise to unexpected and interesting propagation properties [22]-[29]. 
The absence of fundamental mode and sign-varying energy flux in the negative refractive 
index waveguide are revealed [25]. Rectangular waveguide filled with anisotropic single 
negative metamaterials are shown to support backward-wave propagation [26]. Moreover, 
Results for isotropic double negative metamaterial H waveguides are reported, including 
backward propagation, mode bifurcation and coupling effects [27]. The use of single 
negative metamaterials as the embedding medium for nonradiative dielectric (NRD) 
waveguides is examined [28]. Unimodal surface wave propagation in metamaterial NRD 
waveguides is obtained [29]. However, the presented literatures almost focus on the 
negative effects of both permittivity and permeability to the metamaterial based 
waveguides, whereas magnetoelectric coupling of the bianisotropic effects may lead to more 
dramatically unexpected features in the waveguiding structures. 
With the consideration above, metamaterial loaded waveguiding structures are investigated 
to explore the different dispersion properties of guided waves. It is shown that transverse 
magnetic and transverse electric waves with non-cutoff frequency and enhanced bandwidth 
become into existence under certain circumstances in metamaterial parallel plate waveguide 
and rectangular waveguide. When doping uniaxial bianisotropic SRR metamaterials into 
NRD waveguides and H waveguides, both longitudinal-section magnetic (LSM) and 
longitudinal-section electric (LSE) waves are capable of propagating very slowly due to 
metamaterial bianisotropic effects. Particularly, some abnormal higher-order LSM and LSE 
modes with negative slope of the phase constant versus frequency may appear when 
metamaterials are double negative. Such modes will eventually lead to the leakage. 
Fortunately, for other modes, leakage can be reduced due to the magnetoelectric coupling. 
Particularly, when the metamaterials are of single negative parameters, leakage elimination 
can be achieved. 
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3.1 Parallel plate waveguides and rectangular waveguides 

Geometry of parallel plate waveguide and rectangular waveguides filled with SRR 
metamaterials are shown in Fig. 7. The strip width W in Fig. 7(a) is assumed to be much 
greater than the separation l between the two plates, so that fringing fields and any x-
variation can be ignored. And it is standard convention to have the longest side of the 
rectangular waveguide along the x -axis, so that >u v in Fig. 7(b). 
 

z
xW

l

y

 

(a) 

o
u x

y

v

z  

(b) 

Fig. 7. Geometry of parallel plate waveguide and rectangular waveguide filled with SRR 
metamaterials 

According to Fig. 2, metamaterial waveguide with different SRR orientations are illustrated 
in Fig. 8. For Fig. 8(a), one can express the following coupled equations for the longitudinal 
fields:  

 

2 2
' '2 2 2

2
' '2 2 2

( )

               ( )

εε εβ ε μ β μ ε κ
β β κ

β ε μ β μ ε κ

∂ + ∂ −− − +
− −= + ∂− − +

yyxx
x y zz z

xx yy xx yy

x y z

xx yy xx yy

E

i
h

                     (14a) 
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2 2
' '2 2 2

2
' '2 2 2

( )

                ( )

μμ μβ μ ε κ β ε μ
β β κ

β ε μ β μ ε κ

∂ + ∂ −− + −
− −= + ∂− − +

yyxx
x y zz z

xx yy xx yy

x y z

xx yy xx yy

h

i
E

                     (14b) 

3.1.1 Non-cutoff frequency modes 

For the parallel plate waveguides, TM waves are characterized by 0=zh and a nonzero 

zE field which satisfies the reduced wave Eq. (14a), with ' 0∂ =x , 

 2 2 2
'[ ( )] 0

ε μ ε κ βε∂ + − − =zz
y xx yy z

yy

E   (15) 

where 

 2 2 2 2 2 2
0 0( )

εβ μ ε κ ε= = − − yy

z xx yy c

zz

k k k k                           (16) 

and 
π=c

n
k

l
, ( 0, 1, 2= An ) is the cutoff wave number constrained to discrete values. 

 
 

 

Fig. 8. Metamaterial waveguide with different SRR orientations 

Observe that for 0=n , the TM0 mode is actually identical to the TEM mode shown in Fig. 

2(a), therefore, this TM0 mode has a cutoff phenomenon while SRR resonance. However, 
from (16) one knows that TM mode has the chance to propagate with no cutoff frequency 

when 0ε <yy  and 2 0μ ε κ− >xx yy , as shown in Fig. 9. Similar results hold true for the TE 

modes in Fig. 8(b), and TM modes in Fig. 8(c), which are corresponding to the resonance 
cases in the Fig. 2. 

For the rectangular waveguides, one can see that if 0κ ≠ , decoupling of zE and zh occurs 

only when ' 0∂ ≡x or ' 0∂ ≡y , therefore we only consider TEmn modes with 0=m or 0=n , 

since neither m nor n can be zero for TM modes in a rectangular waveguide. When ' 0∂ ≡y , 

one has the following decoupled equation and boundary condition for TEm0 modes from Eq. 

(14b) 

2 2

2
'( ) 0

β μ ε κ μμ
− +∂ − =xx yy

x zz z

xx

h                           (17) 

where 
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                                        (a) TM1                                                                                                     (b) TM2 

Fig. 9. The none cutoff frequency TM modes in parallel plate waveguide with SRR 
metamaterials 3ε = −yy , 1ε =zz , 1μ = −xx , 1κ = , 8 mm=l  

 2 2 2 2 2 2
0 0( )

μβ μ ε κ μ= = − − xx
z xx yy c

zz

k k k k                           (18) 

Akin to the modes in the parallel plate waveguide, none-cutoff frequency modes also exist 
under certain condition. 

3.1.2 Enhanced bandwidth of single mode operation 

For the parallel plate waveguides, the TE modes in Fig. 8(a), characterized by 0=zE and a 

nonzero zh field which satisfies the reduced wave Eq. (14b), with ' 0∂ =x . Through the 

similar derivation, one can obtain 

 
2

=c

nc
f

l
        ( 1≥n )                                (19) 

The TM modes in Fig. 8(b), and TE modes in Fig. 8(c) corresponding to the non-resonance 

cases in the Fig. 2 achieve the identical cutoff frequencies 
2

=c

nc
f

l
, which is the maximum 

value for ordinary TM and TE waves, promising a bandwidth enhancement for single-mode 
operation in material containing waveguide. 
For the rectangular waveguides, one can see that TE0n modes in Fig. 8(a) and Fig. 8(c) 

achieve the cutoff frequency of 
2

=c

nc
f

v
, TEm0 modes in Fig. 8(b) obtains the cutoff frequency 

of 
2

=c

nc
f

u
, which are equal to the ones of air containing rectangular waveguide, promising 

a bandwidth enhancement for single-mode operation in material containing waveguide. 

3.2 Nonradiative dielectric waveguides and H waveguides 

Consider the particular case of SRR metamaterials where two sets of SRR microstructures with 
different orientations are included in NRD waveguides and H waveguides as shown in Fig. 10. 
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Fig. 10. Configuration of NRD waveguide and H waveguide with SRR metamaterials 

 

Fig. 11. Spatial orientation of SRRs in the host isotropic medium 

The relative orientation of these two ensembles is in Fig. 11 and the ε , μ and κ tensors in 

Eq. (1) have the following uniaxial form [30] 

 
1

2

2

0 0

0 0

0 0

ε
ε ε

ε
⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

,
1

2

2

0 0

0 0

0 0

μ
μ μ

μ
⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

, 

0 0 0

i 0 0

0 0

κ κ
κ

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥−⎣ ⎦
                  (20) 

where 

 1ε ∝ a , 
2 2 2
0

2 2 2
0

( )
1

( )

ω ω ωε ς ω ω
− +∝ + −

a b
                           (21a) 

 1 1μ ∝ , 
2 2 2
0

2 2 2
0

( )

( )

ω ω ωμ ξ ω ω
− +∝ + −

c
                            (21b) 

 0
2 2
0( )

ω ωκ ω ω∝ −
d

                                    (21c) 

ς ,ξ  reflect the different changes of ε and μ components in ˆ ˆyy and ˆˆzz direction. Therefore, 

1
ε and 1μ are always positive, whereas

2
ε and 2μ can be negative in certain frequency band.  
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For the full wave analysis of the NRD waveguides and H waveguides modal properties, the 
eigenvalue problem is solved in the complex plane so as to examine the leakage property of 

H waveguides. The LSM modes are characterized by 0=xh with nonzero yh as the 

supporting field which satisfies 

 2 2 2 ' 22 2
' ' 2 2

1 1

( )
ε εε μ κε ε∂ + ∂ = − − −x y y y z yh h k h                        (22) 

where '
0 iβ α= = −z z z zk k k  is the complex normalized longitudinal wave number. All other 

field components can be expressed as 

 ''

1
i= − ∂z y y

z

h h
k

                                  (23a) 

 2 ' 2
''

1

1
( )ε= − ∂ −x y y z y

z

E h k h
k

                             (23b) 

 ' ' ''
2

1
( )κε= ∂ ∂ − ∂y y x y y y

z

E h h
k

                            (23c) 

 '

2

1
i ( )κε= − ∂ −z x y yE h h                                (23d) 

Express yh  as a product of two separate variable functions in the form 

 '( ') ( ')exp( i ')= −y zh f x g y k z                                (24) 

such that 

 2 ' 2
' ( ') ( ') 0∂ + =x xf x k f x                                  (25a) 

 2 ' 2
' ( ') ( ') 0∂ + =y yg y k g y                                  (25b) 

where '
0/=x xk k k  and '

0/=y yk k k  are the complex normalized transverse wave numbers. 

Substituting back into Eq. (22), the normalized wave numbers can be expressed 

 ' 2 ' 2 ' 2 22
1 2 2

1

( )
ε ε μ κε+ + = −x y zk k k                              (26a) 

 ' 2 ' 2 ' 2
0 1+ + =x y zk k k                                   (26b) 

One has ' '
1 1 1iβ α= = −x x x xk k  for ' '<x q , while for ' '>x q , one should take 

' '
0 0 0iβ α= = −x x x xk k . Apply the boundary conditions on the perfectly electric conductor 

planes to other field components, one can write 

 '( ') sin( ')= yg y G k y         ( 1, 2, 3,= An )                        (27)                          
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where G is the amplitude constant, and '

'

π=yk n
s

 with 0' =s k s . The n  index gives the 

number of half waves along y . And 

 

'
1 0

' '
2 1 1

'
3 0

exp[ ( ' ')] ' '

( ') [cos( ') sin( ')] ' '

exp[ ( ' ')] ' '

⎧ + < −⎪= + − < <⎨⎪ − − <⎩

x

x x

x

F k x q x q

f x F k x R k x q x q

F k x q q x

                     (28) 

Enforcing the continuity conditions at both ' '= ±x q , the modal equation for the LSM modes 

can be finally derived 

 ' ' ' ' ' ' 2
1 1 0 2 1 1 0 2[ cot( ') ][ tan( ') ] 0ε ε κ+ − + =x x x x x xk k q k k k q k                     (29) 

the order of eigensolution of Eq. (29) gives the m index ( 0,1,2,= Am ) appearing in LSMmn. 

From the similar derivation, the LSE modes can be defined as  

 ' ' ' ' ' ' 2
1 1 0 2 1 1 0 2[ cot( ') ][ tan( ') ] 0μ μ κ+ − + =x x x x x xk k q k k k q k                     (30) 

 

and the normalized transverse wavenumber in the slab should be given by 

 ' 2 ' 2 ' 2 22
1 2 2

1

( )
μ ε μ κμ+ + = −x y zk k k                             (31) 

instead of Eq. (26a). Hereafter, we only consider the LSM modes, and the following results 
hold true for the LSE modes. 

3.2.1 Slow wave propagation 

Figure 12(a) presents the operational diagram for LSM modes, the real part of the 

longitudinal wave number βz decreases gradually as the magnetoelectric coupling turns 

larger in the case that 2ε  and 2μ  are of positive values. Maximum κ  is achieved under the 

cutoff condition ' 0=zk . 

 ' 2 ' 22
max 2 2 1

1

εκ ε μ ε= − −y xk k                            (32) 

Since the guide wavelength defined as 
2πλ β=g

z

 becomes smaller when longitudinal wave 

number increases, the corresponding phase velocity λ=v T of the modes will be much 
slower. From Eq. (21), one can see that in the frequency that ω  is far larger than the 

resonance frequency 0ω , both positive 2ε  and 2μ  as well as smaller absolute value of κ  can 

be obtained, thus slow wave propagation will appear. 

In Fig. 12(b), one can see that βz  shows a general upward trend when the magnetoelectric 

coupling becomes significant in the case that 2ε  and 2μ  are both negative. Minimum value 

for κ  with the cutoff condition ' 0=zk  can be obtained, 
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                                           (a)                                                                             (b)                                 

Fig. 12. Relationship of βz  and magnetoelectric coupling κ in nonradiative dielectric 

waveguide with SRR metamaterials  

(a) 1 1ε = , 2 3ε = , 2 2.5μ = , 35 GHz=f , 00.4λ=s , 00.6λ=q  

(b) 1 1ε = , 2 3ε = − , 2 2.5μ = − , 35 GHz=f , 00.4λ=s , 00.6λ=q  
 

 

Fig. 13. Variation of the βz  with frequency f  for the dominant LSM01 (conventional NRD 

waveguide with 4ε =r , 1μ =r , 4 mm=s , 5 mm=q ; double negative metamaterial NRD 

waveguide with  1 1ε = , 2 4ε = − , 2 1μ = − , 5 and 10κ = , 4 mm=s , 5 mm=q ) 

 ' 2 ' 22
min 2 2 1

1

εκ ε μ ε= + −y xk k                             (33) 

From Eq. (21), 2ε  and 2μ have the chance to become negative when ω  is little larger than 

the resonance frequency 0ω . Meanwhile, the magnetoelectric coupling κ has the absolute 
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value which can be infinitely large within this frequency band. Therefore, the guided waves 

are able to propagate very slowly, and even approach zero velocity. 

Besides, we should stress that when the magnetoelectric coupling vanishes, Eq. (29) and Eq. 

(30) become a product of two elementary modal equations, which is similar to those of 

conventional NRD waveguides and H waveguides. Fig. 13 shows that the operational 

diagram for LSM01 modes in a conventional NRD waveguide and a NRD waveguide with 

SRR metamaterials. Since there exists minimum value for magnetoelectric couplingκ in the 

double negative case, we choose 5 and 10κ =  to make sure that LSM01 propagates. As can 

be seen within [ ]30 GHz, 31 GHz , the longitudinal wave number of LSM01mode in NRD 

waveguide with SRR metamaterials is always larger than that of the conventional one, thus 

traveling more slowly, which indicates that NRD waveguide with SRR metamaterials allows 

more number of wavelength to propagate within the same length, providing feasibility of 

miniaturization for NRD waveguide.  
Let’s further consider the power flow of LSM01 modes in the NRD waveguide with SRR 
metamaterials. The time-average power passing a transverse cross-section of the NRD 
waveguide is 

 

' '

01 ' ' ' 0

' '

' ' ' 0

2 2
2 0

1

1
ˆRe ' '

2
1

     Re ' '
2

' ' 1
      [ ( ) ]

2 2

λ βε β

∗
=− =

∗
=− =

= × ⋅
= ±
= ± +

∫ ∫
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l s

x l y

l s

x yx l y

z

z

P E h zdy dx

E h dy dx

F G s l

s

                          (34) 

 

 

Fig. 14. Energy flow of  LSM01 mode varied with longitudinal wave number in the NRD 
waveguide with SRR metamaterials 

For 2ε  and 2μ are both positive, we choose ‘+’, and for the double negative metamaterial 

case, we choose ‘-’. As we all know, the double negative metamaterials have the negative 

wave number, which leads to the positive Poynting vector in Eq. (34). With the choice of 
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