The Minimum You Need to
Know

About Mono and Qt

Roland Hughes

Logikal Solutions

Copyright © 2011 by Roland Hughes
All rights reserved
Printed and bound in the United States of America

ISBN-13 978-0-9823580-8-5
This book was published by Logikal Solutions for the author. Neither Logikal Solutions nor the author shall be

held responsible for any damage, claim, or expense incurred by a user of this book and the contents presented
within or provided for download at http://www.theminimumyouneedtoknow.com.

These trademarks belong to the following companies:

Trademark Owner
Borland Borland Software Corporation
C# Microsoft Corporation
DEC Digital Equipment Corporation
Hewlett Packard Corporation
DEC BASIC Hewlett Packard Corporation
Eclipse Eclipse Foundation
Firefox Mozilla Foundation
HP Hewlett Packard Corporation
IBM International Business Machines, Inc.
Java Sun Microsystems, Inc.
Oracle Corporation
KUbuntu Canonical Ltd.
Linux Linus Torvals
Lotus Symphony International Business Machines, Inc.
Mac Apple Inc.
MySQL Oracle
Netware Novell, Inc.
OpenVMS Hewlett Packard Corporation
OpenOffice Sun Microsystems, Inc.
OpenSuSE Novell, Inc.
Oracle Oracle Corporation
0S/2 International Business Machines, Inc.
RMS Hewlett Packard Corporation
RDB Hewlett Packard Corporation
SourceForge SourceForge, Inc.
Ubuntu Canonical Ltd.
Unix Open Group
VAX Hewlett Packard Corporation

Windows Microsoft Corporation

http://www.theminimumyouneedtoknow.com/

Trademark Owner
Zinc Application Professional Software Associates, Inc.
Framework

All other trademarks inadvertently missing from this list are trademarks of their respective owners. A best effort
was made to appropriately capitalize all trademarks which were known at the time of this writing. Neither the
publisher nor the author can attest to the accuracy of any such information contained herein. Use of a term in this
book should not be regarded as affecting the validity of any trademark or service mark.

Additional Books by Roland Hughes

You can always find the latest information about this book series by visiting
http://www.theminimumyouneedtoknow.com. Information regarding upcoming and
out-of-print books may be found by visiting http://www.logikalsolutions.com and clicking
the “upcoming and out of print books” link. At the time of this writing, Logikal Solutions
and Roland Hughes offer the following books either in print or as eBooks.

The Minimum You Need to Know About Logic to Work in IT

ISBN-13 978-0-9770866-2-7

Pages: 154
Covers logic, flowcharting, and pseudocode. If you only learned OOP, you
really need to read this book first.

The Minimum You Need to Know To Be an OpenVMS Application Developer

ISBN-13 978-0-9770866-0-3

Pages: 795

Includes CD-ROM
Covers DCL, logicals, symbols, command procedures, BASIC, COBOL,
FORTRAN, C/C++, Mysql, RDB, MMS, FMS, RMS indexed files, CMS,
VMSPhone, VMSMAIL, LSE, TPU, EDT, SORT, and many other topics. This
book was handed out by HP at a technical boot camp because the OpenVMS
engineering team thought so highly of it.

The Minimum You Need to Know About Java on OpenVMS, Volume 1

ISBN-13 978-0-9770866-1-0

Pages: 352

Includes CD-ROM
Covers using Java with FMS and RMS indexed files. There is a lot of JNI
coding. We also cover calling OpenVMS library routines, building with MMS
and storing source in CMS.

http://www.logikalsolutions.com/
http://www.theminimumyouneedtoknow.com/

The Minimum You Need to Know About Service Oriented Architecture

ISBN-13 978-0-9770866-6-5

Pages: 370

The National Best Books 2008 Award Winner — Business: Technology/Computer
Covers accessing your MySQL, RDB, and RMS indexed file data silos via Java
and port services from a Linux or other PC front end. Also covers design and
development of ACMS back end systems for guaranteed execution applications.

The Minimum You Need to Know About Java and xBaseJ

ISBN-13 978-0-9823580-3-0

Pages: 186
This book is available only as a free PDF. It's source files are available on
SourceForge and on the book's Web page. This book is meant to provide a
much needed tutorial for the Open Source xBasel library. If you have some
fundamental Java skills this book can have you developing your own xBasel
applications in a matter of hours. The xBase] library was used by the author to
create the FuelSurcharge project on SourceForge.

The Minimum You Need to Know About Qt and Databases

ISBN-13 978-0-9823580-5-4

Pages: 474
This book is meant to provide a much needed tutorial on using Qt with various
IDEs and database tools. Most of the books on the market do a great job
showing you most of the GUI features of Qt, but are sadly lacking when it comes
to explaining how to use Qt with databases. It is not uncommon to find at most
one chapter in your favorite Qt book and to learn it is woefully inadequate for
the task at hand. This book is meant to solve those problems. While Qt attempts
to shield you from many underlying database differences, this book will prove
that it is only partially successful and you still have to design your application
around the limitations of your chosen database.

Infinite Exposure

ISBN-13 978-0-9770866-9-6

Pages: 471
A novel about how the offshoring of IT jobs and data centers will lead to the
largest terrorist attack the free world has ever seen and ultimately to nuclear
war.

There are a number of reviews of this book available on-line. The first 18
chapters are also being given away for free at BookHabit, ShortCovers, Sony's
eBook store, and many other places. If you can't decide you like it after the first
18 chapters, Roland really doesn't want to do business with you.

John Smith: Last Known Survivor of the Microsoft Wars

ISBN-13 978-0-9823580-6-1
A post apocalypse novel which some might consider the sequel to Infinite Exposure. If I
do my job correctly, it should piss just about everyone off.

Source Code License

This book is being offered to the public freely, as is the source code. Please leave
comments about the source of origin in place when incorporating any portion of the code
into your own projects or products.

Users of the source code contained within this book agree to hold harmless both the author
and the publisher for any errors, omissions, losses, or other financial consequences which
result from the use of said code. This software is provided “as is” with no warranty of
any kind expressed or implied.

Visit http://www.theminimumyouneedtoknow.com to find a download link if you don't
want to retype or cut and paste code from this book into your own text editor.

http://www.theminimumyouneedtoknow.com/

Table of contents

Introduction

Why This Book?

I had to ask myself this very question when starting to write this book. Actually, an
author should really ask that question about every book they write but it was particularly
important for this book. There are oceans of books on C#. There are ponds of books
covering Mono. There are various Web sites devoted to the promotion and support of
Mono and its various Open Source off-shoots. Why should I write a book on it?

Believe it or not, I came up with a pretty good answer. Most of the books out there
fall into one of the following categories:

* Rah-Rah Microsoft, don't bother teaching anything
* Language syntax bible which might be great for reference, but not for teaching.

* Me-Too regurgitation of the stuff available for free on-line by professional
authors who have to crank out at least six books per year to earn a living.

Those of you who have followed this series know that my books never fall into those
three categories. I've spent over 20 years in the world of IT with most of my years as a
real consultant. The difference between someone who calls themselves a consultant and
a real consultant can easily be seen on their resumes. Scan back over the past 20+ years
and you will see the people who call themselves consultants have worked at no more
than three companies. Once in the door they latch on like a parasite and try to become
indispensable so they can milk the site for all it's worth. A real consultant will rarely
spend more than 18 months at any single client site, but they will be called back to sites
multiple times over the years. In short, a real consultant travels from client site to client
site picking up information about additional ways of doing things rather than doing
things the same way for 20+ years.

12 Introduction

Why is the definition of a consultant important? That's simple. Most of the books
out there on Mono/C# weren't written by real consultants. They were written by people
who call themselves consultants. While many will claim to have over 20 years of
experience in the field, most of them will have one year of experience repeated 20 times
rather than have traveled all over and done many things. You don't have to dig deep in
their backgrounds to find out if the book you are about to buy is a waste of cash or not,
simply flip to the section on connecting to a database. (That's right, there will be only
one and it might not even consume an entire chapter.) Flip through the beginning and
very end of that section. At any point do they point out directly connecting an
application across the Internet or from outside of a secured internal network is a really
bad idea? 1If the answer to that question is “yes”, the book you are looking at was
written by a veteran; “no” means your book was written by a commercial author or
someone with less than one year of real experience no matter how many years it was
repeated.

Yes, we will cover that topic yet again because I seem to be the only one writing
about it and the rest of the IT world seems to be appearing on “60 Minutes” trying to
explain why you shouldn't go to prison for writing the system which lead to this month's
largest identity theft.

Why this book? Because I lived when this happened and Microsoft sure as hell
didn't invent C#. I'm tired of seeing books anoint Microsoft for inventing something
they just renamed, bought, or in this case, mostly stole.

Why this book? Because Microsoft is quickly disappearing from desktop and back
office environments. Companies which made the mistake of betting on them need
someone to show them alternatives now, before it is too late.

Why this book? Because most developers cannot learn an OOP tool from either a
syntax reference manual or a marketing brochure. I'm going to continue doing what this
series does and has been acclaimed for, redeveloping applications with different tools so
developers can straddle technologies.

Introduction 13

Why OpenSuSE?

It is true that I've used Ubuntu and KUbuntu for other books in this series. While
that set of Linux distros may be the most famous, they've taken some shortcuts to target
the now disappearing NetBook market which has established a sunset date for Ubuntu as
well. There is a real problem with their distribution methodology which is forcing some
incredibly bad design decisions into that distro. If you mandate that your initial “live”
version fit on a single CD instead of a DVD, you are going to make an awful lot of bad
decisions due to that initial bad decision.

OpenSuSe comes on a DVD, or a thumb drive, and in other methods which allow for
much more than just a single CD's worth of storage. Because of this you don't see a
different release of OpenSuSE for each potential Linux desktop. Not only are these
desktops all available on your initial installation media, they are actually tested together.
I cannot tell you the number of times I was using one flavor of Ubuntu but needed
something written for one of the other flavors to make my life easier, then had lots of
things stop working correctly once the other 700MEG was downloaded to support the
other desktop. When you posted a support issue, you were quite honestly told “don't do
that” and the issue was closed.

Another reason we are using OpenSuSE instead of Ubuntu is that the support people
actually care. I have wasted hundreds of hours in email arguments with the supposed
powers that be in Ubuntu land pointing out massive technical flaws due primarily to
their genetic inability to grasp technical topics. Quite recently one of these cerebral
giants told me they were going to simply close without comment bug reports I was filing
about their forcing all things Qt to use database plug-ins instead of compiled in
connections “because plug-ins were more secure.” The English language simply does
not have the ability to accurately describe the depth of that stupidity, and this was the
person in charge! Definitely promoted to their level of inability! 1 didn't ask them, but
they sure sounded like an MBA from Keller! That level of incompetence is the norm for
graduates of that school in my experience.

14 Introduction

For those of you who do not comprehend the security hole Open Source plug-ins
create, imagine if some Russian mafia family, or Chinese Triad, or some other organized
crime entity takes it upon themselves to write a custom version of each plug-in for each
release. The custom version adds the “feature” of logging all table layouts and I/O to the
“temp” directory, then queuing a task at program exit to transmit this information to a
server of theirs somewhere on the Web.

The crime family then “donate” a lot of time to various Open Source projects
loading these plug-ins into the distributions. Nobody notices any difference because
they have only added a logging and delayed transmit feature. The crime family ends up
with every record written to every database using those plug-ins on every system
containing them. Yes, they end up with a lot of chicken recipies and music catalogs, but,
eventually they start getting the records for various Open Source competitors to
Quicken, QuickBooks, Seible, etc. Now they have current balance and account
information and possibly even identies. All that is necessary to stop this from happening
is to statically compile in the database connectivity. Organized crime must then
infiltrate each Open Source package they want data from instead of any package that
could be installed on your computer. Points of failure now reduced from billions to one.

In short, we are using OpenSuSE because it has matured and, regrettably, it has
close ties to Microsoft. You might remember that Novell cut a deal which let Microsoft
sell SuSE servers and gave Novell a big chunk of cash. Part of that cash went to Novell
producing a bunch of classes providing Linux services to Mono Core libraries. I'm
currently using a 64-bit version of OpenSuSE 11.4 both to do this development and to
write this book. It is by far the stablest and best thought out version of Linux I have ever
used. It doesn't currently have the “fan base” of Ubuntu, but the “shine” of Ubuntu's
initial “just works” marketing campaign is starting to wear off now that many people are
encountering things which don't work.

Speaking of things which don't work, I tried to make it an entire month with Fedora
14 before moving to the latest OpenSuSE. I realize Fedora has its fans, but, nothing
worked that I really needed and Fedora's desire to force my disks into some LVM

Introduction 15

configuration really irked me.

If you want a more believable explanation, how about this? Ubuntu has begun
ignoring its user base in order to cling to some early marketing decisions. Fedora 14 is a
train wreck. OpenSuSE was the last end wuser desktop on this list:
http://www.ultraedit.com/products/uex.html I have seen that exact same list for other

commercial products as well. Yes, there will always be hundreds of Linux distros, but
there will only be a handful companies spending actual dollars for commercial products.
At this point in time it looks like OpenSuSE will be the survivor three years down the

road.

How C# Really Came About

A long time ago there was a company named Sun Microsystems (now owned by
Oracle Corporation.) Like many computer companies of the day it had proprietary
computer hardware and operating systems. Unlike most computer companies of its day,
it had direct involvement with embedded systems and to some extent video games. The
embedded systems market was becoming an expensive pauper's child and some high
minded individuals at Sun looked to solve this problem. Indeed, they could not achieve
their vision of Internet connected appliances unless they could create a prepackaged and
ready to program embedded computer for only a couple of dollars.

Embedded systems are so prevalent in today's world that most of you cannot
imagine life without them. That coffee maker which you program to start brewing at
some point in the morning has an embedded system in it. That DVD player and the
remote control for it? Yep, both of them. If you happen to drive a car which was
built-in the past ten years it has somewhere between dozens and hundreds of self
contained embedded systems on board.

Let's consider for a moment the DVD player that retails for $40 in the U.S. That
thing most likely has a production cost of less than $8, including all packaging. How do
I figure that? Most retailers purchase inventory via a distributor, not direct from the
manufacturer and both of them will expect at least a $10 cut of that $40 list which leaves

http://www.ultraedit.com/products/uex.html

16 Introduction

about $12 per unit profit for the manufacturer, less shipping costs, warranty claims, and
returns.

Just how much do you think they actually spent on the embedded systems in both
the player and the remote control? It was pennies. Some little geek had to spend months
of their lives burning ROMs, continually shrinking the footprint of an “application”
which continually was getting new features added. He/she wasn't coding with a high
level language, but working in the assembler language for the chosen CPU trying to
squeeze everything to the cheapest CPU and smallest chip count. If someone in
purchasing got a “better deal” on a different CPU, the little geek had to start over.

The original concept was an embedded Java processor. Almost everything on a
single chip on a little card with connector pins for serial, parallel, network, and possibly
even some display type device (normally LED connections.) The unit would come in
several different flavors and sizes. It would contain both flash ROM and actual memory
so that it could be updated on the fly. The production cost would be driven down by

selling billions of units.

Yes, the current embedded system model would still be cheaper, but this model
would be both cheap and fast. Code would be transportable between devices so instead
of taking 6-10 months to develop the next version programmers could have it to the
testing group in 6-10 days. The presence of Internet capabilities, not to mention all of
that RAM meant features which were once science fiction could easily be implemented.
Rather than simply displaying some cryptic flashing lights or a fault code, your washing
machine could signal the manufacturer it needed repair and what parts it needed. It
would send along its serial number and the message would actually get to the service
department of the vendor who sold it and the service department would call you to
schedule an appointment.

Introduction 17

Laugh all you want about my washing machine description. Some high end luxury
cars already have this feature. There have even been television commercial pitching this
feature to consumers. Just how do you think OnStar works? You've all seen those TV
commercials where emergency personnel are dispatched automatically when the vehicle
determines it was involved in a collision with airbags deployed. There is a series of
embedded systems all communicating together making that happen.

While it is true we have yet to get such a washing machine, we have gotten other
science fiction products. With the embedded system in a DVR you can now pause live
TV and start it back up again. Your DVR can even connect to a video on demand
service and download movies for you to watch. Do I even need to mention all of the
things your cell phone can do now, besides make a phone call?

Of course, the first cut of Java, which was to be the language processed by the
virtual machine in the embedded device, got written on Unix, then Linux, then a lot of
other platforms. Sun wanted to test it and get it adopted, so they made it free for
downloading. Specifications were published for JVMs so anyone could develop a JVM
for their favorite platform, but Sun also developed the JVM for many platforms. Of
course, it was the built-in Internet classes and the ability to work within Web browsers
that caused Java development to go off on a major tangent adding feature after feature.

Eventually, bloat became so bad that multiple editions of Java had to be released:

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

» HTML (Free /Available to everyone)

» PDF /TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

» Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

@
Free-eBooks

http://www.free-ebooks.net/

