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Robot Kinematics: 

 Forward and Inverse Kinematics 
 
 

Serdar Kucuk and Zafer Bingul 
 

1. Introduction       

Kinematics studies the motion of bodies without consideration of the forces or 
moments that cause the motion. Robot kinematics refers the analytical study of 
the motion of a robot manipulator. Formulating the suitable kinematics mod-
els for a robot mechanism is very crucial for analyzing the behaviour of indus-
trial manipulators. There are mainly two different spaces used in kinematics 
modelling of manipulators namely, Cartesian space and Quaternion space. The 
transformation between two Cartesian coordinate systems can be decomposed 
into a rotation and a translation. There are many ways to represent rotation, 
including the following: Euler angles, Gibbs vector, Cayley-Klein parameters, 
Pauli spin matrices, axis and angle, orthonormal matrices, and Hamilton 's 
quaternions. Of these representations, homogenous transformations based on 
4x4 real matrices (orthonormal matrices) have been used most often in robot-
ics. Denavit & Hartenberg (1955) showed that a general transformation be-
tween two joints requires four parameters. These parameters known as the 
Denavit-Hartenberg (DH) parameters have become the standard for describing 
robot kinematics. Although quaternions constitute an elegant representation 
for rotation, they have not been used as much as homogenous transformations 
by the robotics community. Dual quaternion can present rotation and transla-
tion in a compact form of transformation vector, simultaneously.  While the 
orientation of a body is represented nine elements in homogenous transforma-
tions, the dual quaternions reduce the number of elements to four. It offers 
considerable advantage in terms of computational robustness and storage effi-
ciency for dealing with the kinematics of robot chains (Funda et al., 1990). 
The robot kinematics can be divided into forward kinematics and inverse 
kinematics. Forward kinematics problem is straightforward and there is no 
complexity deriving the equations. Hence, there is always a forward kinemat-
ics solution of a manipulator. Inverse kinematics is a much more difficult prob-
lem than forward kinematics. The solution of the inverse kinematics problem 
is computationally expansive and generally takes a very long time in the real 
time control of manipulators. Singularities and nonlinearities that make the 
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problem more difficult to solve. Hence, only for a very small class of kinemati-
cally simple manipulators (manipulators with Euler wrist) have complete ana-
lytical solutions (Kucuk & Bingul, 2004). The relationship between forward 
and inverse kinematics is illustrated in Figure 1. 
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Figure 10. The schematic representation of forward and inverse kinematics. 

 
Two main solution techniques for the inverse kinematics problem are analyti-
cal and numerical methods. In the first type, the joint variables are solved ana-
lytically according to given configuration data. In the second type of solution, 
the joint variables are obtained based on the numerical techniques. In this 
chapter, the analytical solution of the manipulators is examined rather then 
numerical solution.  
There are two approaches in analytical method: geometric and algebraic solu-
tions. Geometric approach is applied to the simple robot structures, such as 2-
DOF planar manipulator or less DOF manipulator with parallel joint axes. For 
the manipulators with more links and whose arms extend into 3 dimensions or 
more the geometry gets much more tedious. In this case, algebraic approach is 
more beneficial for the inverse kinematics solution.  
There are some difficulties to solve the inverse kinematics problem when the 
kinematics equations are coupled, and multiple solutions and singularities ex-
ist. Mathematical solutions for inverse kinematics problem may not always 
correspond to the physical solutions and method of its solution depends on the 
robot structure. 
This chapter is organized in the following manner. In the first section, the for-
ward and inverse kinematics transformations for an open kinematics chain are 
described based on the homogenous transformation. Secondly, geometric and 
algebraic approaches are given with explanatory examples. Thirdly, the prob-
lems in the inverse kinematics are explained with the illustrative examples. Fi-
nally, the forward and inverse kinematics transformations are derived based 
on the quaternion modeling convention. 
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2. Homogenous Transformation Modelling Convention  

2.1. Forward Kinematics 

A manipulator is composed of serial links which are affixed to each other revo-
lute or prismatic joints from the base frame through the end-effector. Calculat-
ing the position and orientation of the end-effector in terms of the joint vari-
ables is called as forward kinematics. In order to have forward kinematics for a 
robot mechanism in a systematic manner, one should use a suitable kinematics 
model. Denavit-Hartenberg method that uses four parameters is the most 
common method for describing the robot kinematics. These parameters ai-1, 

1i−
α , di and θi are the link length, link twist, link offset and joint angle, respec-

tively. A coordinate frame is attached to each joint to determine DH parame-
ters. Zi axis of the coordinate frame is pointing along the rotary or sliding di-
rection of the joints. Figure 2 shows the coordinate frame assignment for a 
general manipulator. 
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Figure 2.  Coordinate frame assignment for a general manipulator. 

 
As shown in Figure 2, the distance from Zi-1 to Zi measured along Xi-1 is as-
signed as ai-1, the angle between Zi-1 and Zi measured along Xi is assigned as  

αi-1, the distance from Xi-1 to Xi measured along Zi is assigned as di and the an-

gle between Xi-1 to Xi measured about Zi is assigned as θi (Craig, 1989). 

The general transformation matrix T1i

i

−  for a single link can be obtained as fol-

lows. 



120       Industrial Robotics: Theory, Modelling and Control 

( ) ( ) ( ) ( )
iiiz1ix1ix

1i

i
dQRaDRT θα=

−−

−
 

 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
θθ

θ−θ

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
αα

α−α
=

−

−−

−−

1000

d100

0010

0001

1000

0100

00cs

00sc

1000

0100

0010

a001

1000

0cs0

0sc0

0001

i

ii

ii1i

1i1i

1i1i  

 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
αααθαθ

α−α−αθαθ

θ−θ

=
−−−−

−−−−

−

1000

dccscss

dsscccs

a0sc

i1i1i1ii1ii

i1i1i1ii1ii

1iii

 (1) 

 
 

where  Rx  and  Rz  present  rotation, Dx  and Qi  denote translation, and cθi and 

sθi are the short hands of cosθi and sinθi, respectively. The forward kinematics 
of the end-effector with respect to the base frame is determined by multiplying 

all of the T1i

i

−  matrices. 
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An alternative representation of Tbase

effector_end  can be written as  
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where rkj’s represent the rotational elements of transformation matrix (k and 
j=1, 2 and 3). px, py  and pz denote the elements of the position vector. For a six 
jointed manipulator, the position and orientation of the end-effector with re-
spect to the base is given by  
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where qi is the joint variable (revolute or prismatic joint) for joint i, (i=1, 2, .. 
.6). 
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Example 1. 
As an example, consider a 6-DOF manipulator (Stanford Manipulator) whose 
rigid body and coordinate frame assignment are illustrated in Figure 3. Note 
that the manipulator has an Euler wrist whose three axes intersect at a com-
mon point. The first (RRP) and last three (RRR) joints are spherical in shape. P 
and R denote prismatic and revolute joints, respectively. The DH parameters 
corresponding to this manipulator are shown in Table 1.  
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Figure 3. Rigid body and coordinate frame assignment for the Stanford Manipulator. 

 
i θi αi-1 ai-1 di 

1 θ1 0 0 h1 

2 θ2 90 0 d2 

3 0 -90 0 d3 
4 θ4 0 0 0 

5 θ5 90 0 0 

6 θ6 -90 0 0 

Table 1. DH parameters for the Stanford Manipulator. 
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It is straightforward to compute each of the link transformation matrices using 
equation 1, as follows. 
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The forward kinematics of the Stanford Manipulator can be determined in the 

form of equation 3 multiplying all of the T1i

i

−  matrices, where i=1,2, …, 6. In 

this case, T0

6  is given by 
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where 

 
)ssc)cccss(c(c)sccsc(sr 521421415642114611 θθθ+θθθ−θθθθ−θθθ+θθθ−=  

)sccsc(c)ssc)cccss(c(sr 421146521421415612 θθθ+θθθ−θθθ+θθθ−θθθθ=  

25142141513 scc)cccss(sr θθθ−θθθ−θθθ=  

)sss)sccsc(c(c)ssccc(sr 521142415641241621 θθθ−θθθ+θθθθ+θθθ−θθθ=  

)sss)sccsc(c(s)ssccc(cr 521142415641241622 θθθ−θθθ+θθθθ−θθθ−θθθ=  

21514241523 ssc)sccsc(sr θθθ−θθθ+θθθ−=  

64225452631 sss)sccsc(cr θθθ−θθθ+θθθ=  

42625452632 ssc)sccsc(sr θθθ−θθθ+θθθ−=  

5245233 sscccr θθθ−θθ=  

21312x scdsdp θθ−θ=  

21312y ssdcdp θθ−θ−=  

231z cdhp θ+=  

 

2.1.1 Verification of Mathematical model 

In order to check the accuracy of the mathematical model of the Stanford Ma-
nipulator shown in Figure 3, the following steps should be taken. The general 
position vector in equation 11 should be compared with the zero position vec-
tor in Figure 4.   
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Figure 4. Zero position for the Stanford Manipulator. 
 

The general position vector of the Stanford Manipulator is given by 
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In order to obtain the zero position in terms of link parameters, let’s set 

θ1=θ2=0° in equation 12.  
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All of the coordinate frames in Figure 3 are removed except the base which is 
the reference coordinate frame for determining the link parameters in zero po-
sition as in Figure 4. Since there is not any link parameters observed in the di-
rection of +x0 and -x0 in Figure 4, px=0. There is only d2 parameter in –y0 direc-
tion so py equals -d2. The parameters h1 and d3 are the +z0 direction, so pz 
equals h1+d3. In this case, the zero position vector of Stanford Manipulator are 
obtained as following 
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It is explained above that the results of the position vector in equation 13 are 
identical to those obtained by equation 14. Hence, it can be said that the 
mathematical model of the Stanford Manipulator is driven correctly. 
 

2.2. Inverse Kinematics 

The inverse kinematics problem of the serial manipulators has been studied 
for many decades. It is needed in the control of manipulators. Solving the in-
verse kinematics is computationally expansive and generally takes a very long 
time in the real time control of manipulators. Tasks to be performed by a ma-
nipulator are in the Cartesian space, whereas actuators work in joint space. 
Cartesian space includes orientation matrix and position vector. However, 
joint space is represented by joint angles. The conversion of the position and 
orientation of a manipulator end-effector from Cartesian space to joint space is 
called as inverse kinematics problem. There are two solutions approaches 
namely, geometric and algebraic used for deriving the inverse kinematics solu-
tion, analytically. Let’s start with geometric approach. 
 

2.2.1 Geometric Solution Approach 

Geometric solution approach is based on decomposing the spatial geometry of 
the manipulator into several plane geometry problems.It is applied to the sim-
ple robot structures, such as, 2-DOF planer manipulator whose joints are both 
revolute and link lengths are l1 and l2 shown in Figure 5a. Consider Figure 5b 
in order to derive the kinematics equations for the planar manipulator. 
 
The components of the point P (px and py) are determined as follows. 
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Figure 5. a) Planer manipulator; b) Solving the inverse kinematics based on trigo-
nometry. 

 
 

12211x
clclp θ+θ=  (15) 

 

12211y
slslp θ+θ=  (16) 

 

where 212112 ssccc θθ−θθ=θ  and 212112 sccss θθ+θθ=θ . The solution of 2θ can be 

computed from summation of squaring both equations 15 and 16.  
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Since 1sc 1
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=θ+θ , the equation given above is simplified as follows. 

 

])sccs[s]sscc[c(ll2llpp
212112121121

2

2

2

1

2

y

2

x
θθ+θθθ+θθ−θθθ++=+   

)ssccsssccc(ll2llpp
21121

2

21121

2

21

2

2

2

1

2

y

2

x
θθθ+θθ+θθθ−θθ++=+   

])sc[c(ll2llpp
1

2

1

2

221

2

2

2

1

2

y

2

x
θ+θθ++=+      

221

2

2

2

1

2

y

2

x
cll2llpp θ++=+  

 
and so 
 

21

2

2

2

1

2

y

2

x

2
ll2

llpp
c

−−+
=θ  (17) 
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=θ+θ  (i =1,2,3,……),  2sθ  is obtained as  
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Finally, two possible solutions for 2θ  can be written as 
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Let’s first, multiply each side of equation 15 by 1cθ  and equation 16 by 1sθ and 

add the resulting equations in order to find the solution of 1θ  in terms of link 

parameters and the known variable 2θ .  
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The simplified equation obtained as follows. 
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In this step, multiply both sides of equation 15 by 1sθ−  and equation 16 by 1cθ  

and then adding the resulting equations produce 
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The simplified equation is given by 
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Now, multiply each side of equation 20 by xp  and equation 21 by yp  and add 

the resulting equations in order to obtain 1cθ . 
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1sθ  is obtained as 
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As a result, two possible solutions for 1θ  can be written  
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Although the planar manipulator has a very simple structure, as can be seen, 
its inverse kinematics solution based on geometric approach is very cumber-
some.  
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2.2.2 Algebraic Solution Approach 

For the manipulators with more links and whose arm extends into 3 dimen-
sions the geometry gets much more tedious. Hence, algebraic approach is cho-
sen for the inverse kinematics solution. Recall the equation 4 to find the in-
verse kinematics solution for a six-axis manipulator.  
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To find the inverse kinematics solution for the first joint ( 1q ) as a function of 

the known elements of Tbase

effectorend− , the link transformation inverses are premul-

tiplied as follows.  
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, I is identity matrix. In this case the above equation 

is given by 
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To find the other variables, the following equations are obtained as a similar 
manner. 
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There are 12 simultaneous set of nonlinear equations to be solved. The only 
unknown on the left hand side of equation 18 is q1. The 12 nonlinear matrix 
elements of   right hand side are either zero, constant or functions of q2 
through q6. If the elements on the left hand side which are the function of q1 
are equated with the elements on the right hand side, then the joint variable q1 
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can be solved as functions of r11,r12, … r33, px, py, pz and the fixed link parame-
ters. Once q1 is found, then the other joint variables are solved by the same 
way as before. There is no necessity that the first equation will produce q1 and 
the second q2 etc. To find suitable equation for the solution of the inverse kine-
matics problem, any equation defined above (equations 25-29) can be used 
arbitrarily. Some trigonometric equations used in the solution of inverse kine-
matics problem are given in Table 2. 
 
 

. 
 Equations Solutions 

1 ccosbsina =θ+θ  ( )c,cba2tanA)b,a(2tanA 222
−+=θ m  

2 0cosbsina =θ+θ  )a,b(2tanA −=θ  or  )a,b(2tanA −=θ  

3 acos =θ and bsin =θ  ( )a,b2tanA=θ  

4 acos =θ  ( )a,a12tanA 2
−=θ m  

5 asin =θ  ( )2a1,a2tanA −=θ m  

Table 2.  Some trigonometric equations and solutions used in inverse kinematics 

 
 
 
Example 2. 
 
As an example to describe the algebraic solution approach, get back the in-
verse kinematics for the planar manipulator. The coordinate frame assignment 
is depicted in Figure 6 and DH parameters are given by Table 3.  

 
 
 

i θi αi-1 ai-1 di 

1 θ1 0 0 0  

2 θ2 0 l1 0 

3 0 0 l2 0 

 

 

 

Table 3. DH parameters for the planar manipulator. 
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l1

θ1

θ2

l2

X0,1

Y0,1

Z0,1

X2

Y2

Z2

X3

Y3

Z3

 
Figure 6. Coordinate frame assignment for the planar manipulator. 

 
The link transformation matrices are given by 
 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
θθ

θ−θ

=

1000

0100

00cs

00sc

T
11

11

0

1

 (30) 

 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
θθ

θ−θ

=

1000

0100

00cs

l0sc

T
22

122

1

2

 (31) 

 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

1000

0100

0010

l001

T

2

2

3

 (32) 

 
 
Let us use the equation 4 to solve the inverse kinematics of the 2-DOF manipu-
lator.  
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TTT
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T 2

3

1

2
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z333231

y232221

x131211

0

3
=
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⎦

⎤

⎢⎢
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⎡
=  (33) 

 

Multiply each side of equation 33 by 10

1T
−   

 

TTTTTT 2

3

1

2

0

1

10

1

0

3

10

1

−−
=  (34) 

 
where 
 

⎥⎦
⎤⎢⎣

⎡ −
=

−

1000

PRR
T 1

0T0

1

T0

110

1
 (35) 

 

In equation 35, T0

1 R  and 1

0 P denote the transpose of rotation and position vec-

tor of T0

1 , respectively. Since, ITT 0

1

10

1 =
− , equation 34 can be rewritten as fol-

lows. 
 

TTTT 2

3

1

2

0

3

10

1
=

−
 (36) 

 
Substituting the link transformation matrices into equation 36 yields   
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⎡

⎥⎥
⎥⎥
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θθ
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x131211
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 (37) 
 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
θ

+θ

=

⎥⎥
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⎤
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⎡
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θ+θ
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Squaring the (1,4) and (2,4) matrix elements of each side in equation 37  
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2

12212

22

211yx

2

y1

22

x1

2 lcll2clscpp2pspc +θ+θ=θθ+θ+θ        

2

22

211yx

2

y1

22

x1

2 slscpp2pcps θ=θθ−θ+θ  

 
and then adding the resulting equations above gives 
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Finally, two possible solutions for 2θ  are computed as follows using the fourth 

trigonometric equation in Table 2. 
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2
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llpp
,

ll2

llpp
12tanA m  (38) 

 

Now the second joint variable 2θ  is known. The first joint variable 1θ  can be 

determined equating the (1,4) elements of each side in equation 37 as follows. 
 

122y1x1
lclpspc +θ=θ+θ  (39) 

 
Using the first trigonometric equation in Table 2 produces two potential solu-
tions. 
 

)lcl,)lcl(pp(2tanA)p,p(2tanA
122

2

122x

2

yxy1
+θ+θ−+=θ m  (40) 

 
Example 3. 
 
As another example for algebraic solution approach, consider the six-axis Stan-
ford Manipulator again. The link transformation matrices were previously de-
veloped. Equation 26 can be employed in order to develop equation 41. The 
inverse kinematics problem can be decoupled into inverse position and orien-
tation kinematics. The inboard joint variables (first three joints) can be solved 
using the position vectors of both sides in equation 41. 
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