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1. Introduction 

Over many millennia of human history, mankind has been interested in how events change 

in time, namely their dynamics. However, the time resolution of recording individual steps 

has been limited to direct sensory perception such as the eye’s ability (0.1 sec. or so) to 

recognize the motion, until 1800 AD when the technical revolution occurred following the 

industrial revolution. A famous motion picture of a galloping horse by E. Muybridge in 1878 

is a good example of the technological development in time-resolved measurement. By this 

time, the nanosecond time resolution has been achieved; however, it took another century to 

break the nanosecond barrier as shown in Fig.1. The Advent of a laser has paved ways to 

ever shorter time resolution: in the 1980’s, the picosecond barrier was broken and the 

femtosecond science and technology has rapidly progressed in the 1990’s; at the turn of the 

21st century, the femtosecond barrier has been broken (Hantschel et al., 2001), opening up 

the era of attosecond science and technology. The current shortest duration of a pulse 

achieved is 80 attoseconds around 100 eV of photon energy (Goulielmakis et al., 2008).  

Femtosecond science and technology have allowed us to explore various ultrafast 

phenomena in physical (Siders et al., 1999), chemical (Zewail, 2000) and biological (Vos et 

al., 1999) systems. A great number of ultrafast atomic motions in biology, chemistry, and 

physics have been investigated with optical probes. In physics, the nature of atomic re-

arrangements during phase transitions and the relation between amorphous, liquid and 

crystalline states has been interest (Afonso et al., 1996; Huang et al., 1998). Along with much 

interest in spintronics during the last decade, efforts have been made to understand spin 

dynamics in various pure and complex magnetic systems. In chemistry, the real time 

observation of atomic motions in chemical reactions has been long thought for. Femtosecond 

optical and IR technology has served this purpose in excellent ways. Femtosecond pulses 

have pumped molecules to create wavepackets. The observation of the motion of the 

wavepackets using femtosecond pulse probe or other methods has provided rich 

information on chemical reactions (Zewail, 2000). The various chemical bonds such as 

covalent, ionic, dative, metallic, hydrogen and van der Waals bonds have been studied in 

the varying complexity of molecular systems from diatomics to proteins and DNA. All of  
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Fig. 1. Evolution of techniques for real-time observation of microscopic processes (Krausz et 
al., 2009). 

these successful applications of femtosecond optical technology to follow reaction dynamics 
in chemistry have led to the award of Nobel prize to Prof. Zewail in 1999 who has initiated 
femtochemistry in the 1990’s.  There are also many fundamental biological processes taking 
place in femtosecond time scale. Good examples are photo-induced isomerizations (Gai et 
al., 1998) and ligand dissociations (Perutz et al., 1998). Femtosecond optical pulses have been 
used for the investigation of these processes.  
During the last several years, isolated attosecond pulses have been successfully exploited to 
control the localization of electron under chemical reaction (Kling et al., 2006), observe inner 
shell transitions in atoms (Drescher et al., 2002), and electron tunneling across Coulomb 
barrier (Uiberacker et al., 2007), electron transport in condensed matter (Cavalieri et al., 2007).  
The demand on and the emphasis to the understanding of the ultrafast phenomena and the 
control of them is ever increasing. The Department of Energy of the United States of 
America asked the Basic Energy Science Advisory Committee (BESAC) to identify grand 
challenges in science to be pursued in the 21st century. The BESAC has identified 5 grand 
challenges in their report, the summary of which has been published in the July issue of 
Physics Today in 2008 (Fleming & Ratner, 2008).  The first of the grand challenges is to 
control material properties at the level of electronic motion.  The report recommended the 
development of attosecond and femtosecond metrology to measure and control electron 
dynamics.  
Optical or ultraviolet light allows one to probe the dynamical changes of excited electronic 
states in a sample. This is the core of interest in many research topics such as electron-hole 
dynamics in solids, or excitation transfer in photosynthesis, bond breaking in chemical 
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reactions. However, no or partial information on structure can be obtained if the process 
under investigation involves the structural changes.  
X-ray imaging or diffraction has the potential to provide a global picture of structural 
changes in the fields of atomic and molecular physics, plasma physics, material science, 
chemistry and life science (Bloembergen, 1999; http://tesla.desy.de/new_pages 
/TDR_CD/PartV/fel.html). Since x-ray photons are scattered from all the electrons in a 
sample, the intensity of diffraction is directly related to the electronic density. Since the 
structural changes occur in the time scale of 100 fs or so, following the charge re-
arrangement, the electronic density measured in this time scale closely reflects the atomic 
structure. On the other hand, attosecond x-ray pulse will enable us to follow even faster 
motions of electrons in intra-atomic or intra-molecular processes, which has not been 
achieved yet because of the lack of such sources.  
Femtosecond time-resolved x-ray diffraction experiments have been used to study structural 
processes such as the observation of atomic structure and dynamics [18], the investigation of 
ultrafast phase transition in solid (Gaffney & Chapman, 2008) and time-resolved 
biomolecular imaging (Sokolowski-Tinten et al., 2003). These results are very impressive 
and of landmark: however, there are still many phenomena yet to be explored and a variety 
of attosecond and femtosecond X-ray sources yet to be further developed. They comprise a 
great challenge to the scientific community. 
 

 

Fig. 2. Currently-available ultrafast light sources are plotted in terms of photon energy and 
pulse duration. 

Figure 2 shows ultrafast sources available currently or in the immediate future. It is 
conspicuous that there is no source available in keV or higher energies faster than 10 fs. In 
fact, for wider exploration and manipulation of electron dynamics in a vast spectrum of 
natural phenomena, attosecond or a few fs keV pulses are demanded. 
Several schemes have been proposed and/or demonstrated to generate an ultrashort keV x-
ray pulse: the relativistic Doppler shift of a backscattered laser pulse by a relativistic electron 
beam (Sprangle et al., 1992; Hartemann, 1998; Esarey et al., 1993a; Chung et al., 2009), the 
harmonic frequency upshift of a laser pulse by relativistic nonlinear motion of electrons 
(Vachaspati, 1962; Brown & Kibble, 1964; Esarey et al,, 1992; Chen et al., 1998, 2000; Ueshima 
et al, 1999; Kaplan & Shkolnikov, 2002; Banerjee et al., 2002; Lee et al., 2003a, 2003b, 2005, 
2008; Phuoc et al., 2003; Kim et al., 2009), high order harmonic generation in the interaction 
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of intense laser pulse with solids (Linde et al., 1995, 1996, 1999; Norreys et al., 1996; Lichters 
et al., 1996; Tarasevitch et al., 2000) and x-ray laser using inner shell atomic transitions (Kim 
et al., 1999, 2001).  
Ultrafast high-intensity X-rays can be generated from the interaction of high intensity 
femtosecond laser via Compton backscattering (Hartemann et al., 2005), relativistic 
nonlinear Thomson scattering (Ueshima et al., 1999; Kaplan & Shkolnikov 2002; Banerjee et 
al., 2002) and laser-produced betatron radiation (Phuoc et al., 2007). In synchrotron facilities, 
electron bunch slicing method has been adopted for experiments (Schoenlein, 2000; Beaud et 
al., 2007). Moreover, X-ray free electron lasers (Normile, 2006) were proposed and have been 
under construction. The pulse duration of these radiation sources are in the order of a few 
tens to hundred fs. There are growing demands for new shorter pulses than 10 fs.  
The generation of intense attosecond or femtosecond keV lights via Thomson scattering (Lee 

et al., 2008; Kim et al., 2009) is attractive, because the radiation is intense and quasi-

monochromatic. This radiation may be also utilized in medical (Girolami et al., 1996) and 

nuclear physics (Weller & Ahmed, 2003) area of science and technology.  

When a low-intensity laser pulse is irradiated on an electron, the electron undergoes a 

harmonic oscillatory motion and generates a dipole radiation with the same frequency as 

the incident laser pulse, which is called Thomson scattering. As the laser intensity increases, 

the oscillatory motion of the electron becomes relativistically nonlinear, which leads to the 

generation of harmonic radiations. This is referred to as relativistic nonlinear Thomson 

scattered (RNTS) radiation. The RNTS radiation has been investigated in analytical ways 

(Esarey et al., 1993a; Chung et al., 2009; Vachaspati, 1962; Brown et al., 1964; Esarey & 

Sprangle, 1992; Chen et al., 1998; Ueshima et al., 1999; Chen et al., 2000; Kaplan & 

Shkolnikov, 2002; Banerjee et al., 2002). Recently, such a prediction has been experimentally 

verified by observing the angular patterns of the harmonics for a relatively low laser 

intensity of 4.4x1018 W/cm2 (Lee et al., 2003a, 2003b). Esarey et al. (Esarey et al., 1993a) has 

investigated the plasma effect on RNTS and presented a set of the parameters for generating 

a 9.4-ps x-ray pulse with a high peak flux of 6.5x1021 photons/s at 310 eV photon energy 

using a laser intensity of 1020 W/cm2. Ueshima et al. (Ueshima et al., 1999) has suggested 

several methods to enhance the radiation power, using particle-incell simulations for even a 

higher intensity. Kaplan and Shkolnikov et al. ( Kaplan & Shkolnikov, 2002) proposed a 

scheme for the generation of zeptosecond (10-21 sec) radiation using two counter-

propagating circularly polarized lasers, named as lasertron. 

Recently, indebted to the development of the intense laser pulse, experiments on RNTS 

radiation have been carried out by irradiating a laser pulse of 1018–1020 W/cm2 on gas jet 

targets (Kien et al., 1999; Paul et al., 2001; Hertz et al., 2001). A numerical study in the case of 

single electron has been attempted to characterize the RNTS radiation (Kawano et al., 1998) 

and a subsequent study has shown that it has a potential to generate a few attosecond x-ray 

pulse (Harris & Sokolov, 1998). Even a scheme for the generation of a zeptosecond x-ray 

pulse using two counter propagating circularly polarized laser pulses has been proposed 

(Kaplan & Shkolnikov, 1996). 

In this chapter, we concern RNTS in terms of the generation of ultrafast X-ray pulses. The 

topics such as fundamental characteristics of RNTS radiations, coherent RNTS radiations, 

effects of the high-order fields (HOFs) under a tight-focusing condition, and generation of 

an intense attosecond x-ray pulse will be discussed in the following sections. 
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2. Fundamental characteristics of RNTS radiations 

In this section, the dynamics of an electron under an ultra-intense laser pulse and some 
fundamental characteristics of the RNTS radiations will be discussed (Lee et al., 2003a, 
2003b). 

2.1 Electron dynamics under a laser pulse 
The dynamics of an electron irradiated by a laser field is obtained from the relativistic 
Lorentz force equation: 

 ( ) ( )L L

e

d e
E B

dt m c
γβ β= − + ×G G G G

, (1) 

The symbols used are: electron charge (e), electron mass (me), speed of light (c), electric field 

( LE
G

), magnetic field ( LB
G

), velocity of the electron divided by the speed of light ( βG ), and 

relativistic gamma factor ( 21 / 1γ β= − ). It is more convenient to express the laser fields 

with the normalized vector potential, /L e La eE m cω= GG
, where Lω  is the angular frequency of 

the laser pulse. It can be expressed with the laser intensity LI  in W/cm2 and the laser 

wavelength Lλ  in micrometer as below:  

 108.5 10 L La Iλ−= × . (2) 

Eq. (1) can be analytically solved under a planewave approximation and a slowly-varying 
envelope approximation, which lead to the following solution (Esarey et al., 1993a): 
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where ( )1o o ozq γ β= −  and the subscript ⊥  denotes the direction perpendicular to the 

direction of laser propagation (+z). The subscript, ‘o’ denotes initial values. When the laser 

 

 

Fig. 3. Dynamics of an electron under a laser pulse: Evolution of (a) transverse and (b) 
longitudinal velocities, and (c) peak values on laser intensities. The initial velocity was set to 
zero for this calculation. Different colors correspond to different ao ‘s in (a) and (b). 
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intensity is low or 1a << , the electron conducts a simple harmonic oscillation but as the 

intensity becomes relativistic or 1a ≥ , the electron motion becomes relativistically 

nonlinear. Figure 3 (a) and (b) show how the electron’s oscillation becomes nonlinear due to 

relativistic motion as the laser intensity exceeds the relativistic intensity. One can also see 

that the drift velocity along the +z direction gets larger than the transverse velocity as 1a ≥  

[Fig. 3 (c)]. 

2.2 Harmonic spectrum by a relativistic nonlinear oscillation 
 

 

Fig. 4. Schematic diagram for the analysis of the RNTS radiations 

Once the dynamics of an electron is obtained, the angular radiation power far away from the 

electron toward the direction, n̂  [Fig. 4] can be obtained through the Lienard-Wiechert 

potential (Jackson, 1975) 

 
( ) ( ) 2dP t

A t
d

=Ω
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 (5) 
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where t’ is the retarded time and is related to t by 

 
( )ˆ '

'
x n r t

t t
c

− ⋅= +
G

. (7) 

Then the angular spectrum is obtained by 

 ( )2 2

2
d I

A
d d

ωω =Ω
G

, (8) 

where ( )A ωG
 is the Fourier transform of ( )A t

G
. These formulae together with Eq. (1) are used 

to evaluate the scattered radiations. Under a planewave approximation, the RNTS spectrum 

can be analytically obtained (Esarey et al., 1993a). Instead of reviewing the analytical 

process, important characteristics will be discussed along with results obtained in numerical 

simulations. 
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Figure 5 shows how the spectrum is changed, as the laser intensity gets relativistic. The 
spectra were obtained by irradiating a linearly-polarized laser pulse on a counter-propagating 
relativistic electron with energy of 10 MeV, which is sometimes called as nonlinear Compton 
backscattering. One can see that higher order harmonics are generated as the laser intensity 
increase. It is also interesting that the spacing between harmonic lines gets narrower, which is 
caused by Doppler effect (See below). The cut-off harmonic number has been numerically 
estimated to be scaled on the laser intensity as 3~ a  (Lee et al., 2003b). 
 

 

Fig. 5. Spectra of RNTS in a counter-propagating geometry for different laser intensities, 
ao=0.1, 0.8, 1.6, and 5 from bottom. (The spectrum for ao=0.1 is hardly seen due to its lower 
intensity.)  

 

Fig. 6. Red-shift of harmonic frequencies on laser intensity. The spectra were obtained at the 

direction of 90oθ =  and 0oφ =  from an electron initially at rest. The vertical dotted lines 

indicate un-shifted harmonic lines. For this calculation, a linearly polarized laser pulse with 
a pulse width in full-with-half-maximum (FWHM) of 20 fs was used. 

As shown in Fig. 6, the fundamental frequency, 1
sω  shifts to the red side as the laser 

intensity increases. This is caused by the relativistic drift velocity of the electron driven by 

Lv B× GG
 force. Considering Doppler shift, it can be obtained as (Lee et al., 2006) 

 
( )

( ) ( )( )
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In the case of an electron initially at rest ( 1oγ = , 0oβ = ), this leads to the following formula 

 ( )
1

2

1

1 1 cos
4

s

oL a

ω
ω θ

=
+ −

. (10) 

Note that the amount of the red shift is different at different angles. The dependence on the 
laser intensity can be stated as follows. As the laser intensity increases, the electron’s speed 
approaches the speed of light more closely, which makes the frequency of the laser more 
red-shifted in the electron’s frame. No shift occurs in the direction of the laser propagation. 
The parasitic lines in the blue side of the harmonic lines are caused by the different amount 
of the red-shift due to rapid variation of laser intensity. 
The angular distributions of the RNTS radiations show interesting patterns depending on 
harmonic orders [Fig. 7]. The distribution in the forward direction is rather simple, a dipole 
radiation pattern for the fundamental line and a two-lobe shape for higher order harmonics. 
There is no higher order harmonic radiation in the direction of the laser propagation. In the 
backward direction, the distributions show an oscillatory pattern on θ  and the number of 

peaks is equal to the number of harmonic order. Thus there is no even order harmonics to 

the direction of 180oθ = . 

 

 

Fig. 7. Angular distributions of the RNTS harmonic radiations from an electron initially at 
rest.  This was obtained with a linearly polarized laser pulse of 1018 W/cm2 in intensity, 20 fs 
in FWHM pulse width. The green arrows in the backward direction indicate nodes. 

For a laser intensity of 1020 W/cm2 (ao=6.4), the harmonic spectra from an electron initially at 
rest are plotted in Fig. 8 for different laser polarizations. In the case of a linearly polarized 
laser, the electron undergoes a zig-zag motion in a laser cycle. Thus the electron experiences 
severer instantaneous acceleration than in the case of a circularly polarized laser, in which 
case the electron undergoes a helical motion. This makes RNTS radiation stronger in 
intensity and higher in photon energy in the case of a linearly polarized laser. The most 
different characteristics are the appearance of a large-interval modulation in the case of a 
linear polarization denoted as ‘1’ in Fig. 8 (a). This is also related with the zig-zag motion of 
the electron during a single laser cycle. During a single cycle, the electron’s velocity becomes 
zero instantly, which does not happen in the case of the circular polarization. Thus a double 
peak radiation appears in a single laser cycle as shown in Fig. 9 (a). Such a double peak 
structure in the time domain makes the large-interval modulation in the energy spectrum. In 
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both cases, there are modulations with small-interval denoted by ‘2’ in the Fig. 8 (a) and (b). 
This is caused by the variation of the laser intensity due to ultra-short laser pulse width. 
Such an intensity variation makes the drift velocity different for each cycle then the time 
interval between radiation peaks becomes different in time domain, which leads to a small-
interval modulation in the energy spectrum. 
 

 

Fig. 8. RNTS spectra from an electron initially at rest on laser polarizations: (a) linear and (b) 
circular. The laser intensity of 1020 W/cm2 (ao=6.4) and the FWHM pulse width of 20 fs were 
used. Note that harmonic spectra are deeply modulated. See the text for the explanation. 

 

Fig. 9. Temporal shape of the RNTS radiations on polarizations with the same conditions as 
in Fig. 8: (a) linear and (b) circular polarization. The figures on the right hand side are the 
zoom-in of the marked regions in green color. 

The temporal structure or the angular power can be seen in Fig. 9. As commented above, in 
the case of the linear-polarization, it shows a double-peak structure. One can also see that 
the pulse width of each peak is in the range of attosecond. This ultra-short nature of the 
RNTS radiation makes RNTS deserve a candidate for as an ultra-short intense high-energy 
photon source. The pulse width is proportional to the inverse of the band width of the 
harmonic spectrum, and thus scales on the laser intensity as 3~ −

a  (Lee et al., 2003b). The 

peak power is analytically estimated to scale 5~ a (Lee et al., 2003b). 

www.intechopen.com



 Advances in Solid-State Lasers: Development and Applications 

 

518 

The zig-zag motion of an electron under a linearly polarized laser pulse makes the radiation 

appears as a pin-like pattern in the forward direction as shown in Fig. 10 (a). However the 

radiation with a circularly polarized laser pulse shows a cone shape [Fig. 10 (b)] due to the 

helical motion of the electron. The direction of the peak radiation, pθ  was estimated to be 

2 2 /p oaθ ≈  (Lee et al., 2006). 
 

 

Fig. 10. Angular distributions of the RNTS radiations for different polarizations (a) linear 
and (b) circular polarization. The laser intensity of 1020 W/cm2 (ao=6.4) and the FWHM pulse 
width of 20 fs are used as in Fig. 8. 

3. Coherent RNTS radiations 

In the previous section, fundamental characteristics of the RNTS radiation are investigated 
in the case of single electron. It was also shown that the RNTS radiation can be an ultra-
short radiation source in the range of attosecond. To maintain this ultra-short pulse width or 
wide harmonic spectrum even with a group of electrons, it is then required that the 
radiations from different electrons should be coherently added at a detector. In the case of 
RNTS radiation, which contains wide spectral width, such a requirement can be satisfied 
only if all the differences in the optical paths of the radiations from distributed electrons to a 
detector be almost the same. This condition can be practically restated: all the time intervals 
that scattered radiations from different electrons take to a detector, inttΔ  should be 

comparable with or less than the pulse width of single electron radiation, radtΔ  as shown in 

Fig. 11. In the following subsections, two cases of distributed electrons, solid target and 
elelctron beam will be investigated for the coherent RNTS radiations. 
 

 

Fig. 11. Schematic diagram for the condition of coherent RNTS radiation.  
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3.1 Solid target 

In the case of a solid target for distributed electrons (Lee et al, 2005), the time intervals that 

radiations take to a detector can be readily obtained with the following assumptions as the 

first order approximation: (1) plane wave of a laser field, (2) no Coulomb interaction 

between charged particles, thus neglecting ions, and (3) neglect of initial thermal velocity 

distribution of electrons during the laser pulse. With these assumptions, the radiation field ( )if t
G

 by an electron initially at a position, ir
G

, due to irradiation of an ultra-intense laser 

pulse propagating in the +z direction can be calculated from that of an electron initially at 

origin, ( )of t
G

 by considering the time intervals between radiations from the electron at ir
G

 

and one at origin,  itΔ , 

 
ˆ

'i i

n r
t t

c

⋅Δ = Δ −
G

, (11) 

where ' /i it z cΔ =  is the time which the laser pulse takes to arrive at the i-th electron from 

origin: ( ) ( )i o if t f t t= − ΔG G
. Then all the radiation fields from different electrons are summed 

on a detector to obtain a total radiation field, ( )F t
G

 as 

 ( ) ( )o i
i

F t f t t= − Δ∑ GG
. (12) 

The condition for a coherent superposition in the z-x plane can now be formulated by 

setting Eq. (11) to be less than or equal to the pulse width of single electron radiation, radtΔ . 

This leads to the following condition [See Fig. 12]: 

 ( )tan
sin 2

radc t
z xξ ξ

Δ− ≤ . (13) 

Equation (13) manifests that RNTS radiations are coherently added to the specular direction 
of an incident laser pulse off the target, if the target thickness, Thk is restricted to 

 
sin

rad
hk

c t
T ξ

Δ≤ . (14) 

 

 

Fig. 12. Schematic diagram for a coherent RNTS condition with an ultrathin solid target. 
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Since the incident angle of the laser pulse can be set arbitrarily, one can set θ  to the 

direction of the radiation peak of single electron, pθ . For a linearly polarized laser with an 

intensity of 4x1019 W/cm2, and a pulse duration of 20 fs FWHM, 27 o
pθ = and 5radtΔ =  

attosecond for a single electron. Equation (14) then indicates that the target thickness should 

be less than 7 nm. With these laser conditions, harmonic spectra were numerically obtained 

to demonstrates the derived coherent condition [Fig. 13]. 

The spectra in Fig. 13 (a) were obtained for a thick cylindrical target of 1 μm in thickness and 

radius, and 1018 cm-3 in electron density under the normal incidence of a laser on its base. 

The spectrum in Fig. 13 (b) is for the case of oblique incidence on an ultra-thin target of 7 nm 

in thickness, 5 μm in width, 20 μm in length, 1016 cm-3 in electron density, and 13.5oξ = , 

which were obtained with Eqs. (13) and (14). From Fig. 13 (b), which corresponds to the 

condition for coherent RNTS radiation, one can find that the spectrum from thin film (a 

group of electrons) has almost the same structure as that from a single electron radiation 

[Inset in Fig. 13 (b)] in terms of high-energy photon and a modulation. On the other hand, in 

the case of Fig. 13 (a), the harmonic spectra show much higher intensity at low energy part, 

which is caused by an incoherent summation of radiations. 

 

 

Fig. 13. RNTS spectra obtained under (a) incoherent and (b) coherent conditions. In (a), the 
spectra obtained in three different directions are plotted, while (b) were obtained in the 
specular direction. One can see that the spectrum in the coherent condition is very similar 
with that obtained from single electron calculation (inset of (b)). 
 

 

Fig. 14. (a) Temporal shape and (b) angular distribution in the case of the coherent condition 
[Fig. 13 (b)]. 
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The temporal shape at the specular direction for the case of coherent condition [Fig. 13 (b)] is 
plotted in Fig. 14 (a), which shows an attosecond pulse. The direction-matched coherent 
condition also leads to a very narrow angular divergence as shown in Fig. 14 (b). It should 

be mentioned that with a thick cylinder target, the radiation peak appears at 0oθ = , because 

the dipole or fundamental radiation becomes dominant in that direction. 

3.2 Electron beam 
Exploiting a solid target for a coherent RNTS radiation may involve a complicated plasma 
dynamics due to an electrostatic field produced by a charge separation between electrons 
and ions. Instead, an idea using an electron beam has been proposed (Lee et al., 2006). 
 

 

Fig. 15. Schematic diagram for the analysis of a coherent RNTS radiation with an electron 
beam. 

Following similar procedure in the previous section, the RNTS harmonic spectrum can be 

obtained with that from an electron at center and its integration over initial electron 

distributions with phase relationships as  

 ( )( ) ( ) , expc o o o

o

A A dV f r i
ωω ω β δ ω

⎛ ⎞≈ ⎜ ⎟⎜ ⎟⎝ ⎠∫G G GG
, (15) 

where ( )cA ωG
 is the angular spectral field from the central electron. The ( ) ( )ˆ ˆ/ 1 / 1o o oz ok n z n rδ β β= − ⋅ − − ⋅G G

 represents the phase relations between scattered 

radiations due to different initial conditions of the electrons. The distribution function can 

be assumed to have a Gaussian profile with cylindrical symmetry: 

 ( ) ( ) ( )22 22 2 2

3 2 2 2 2 2 22 2
''

, exp exp
2 2 2 22

ox oy o bo o o
o o

b b

x yN z
f r

R LR L ββ

β β γ γβ β σ γ σπ σ σ ΓΓ

⎡ ⎤+ −⎡ ⎤+ ⎢ ⎥= − − × − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
GG

, (16) 

where the following parameters are used: the number of electrons (N), radius (R), length (L), 

fractional energy spread (σ Γ ), and divergence ( 'βσ ). bγ  is the relativistic gamma factor of 

the beam, and bβ  its corresponding velocity divided by the speed of light. In the above 

formula, the beam velocity and the axis of the spatial distribution of the beam have the same 

directions and directed to +z, but below, the direction of the beam velocity ( ˆ
bn ) and the axis 

of the beam ( ˆ
gn ) are allowed to have different directions, as shown in Fig. 15. The 

integration of Eq. (15) by taking the first order of ( b oβ β−G G
) in δ  leads to the following 

formula for the coherent spectrum: 
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 ( ) ( ) ( )cA NF Aω ω ω≈G G
, (17) 

 ( ) ( )( )⎥⎦⎤⎢⎣
⎡ ++−+≈ 22

22

2

22 12
exp

1

1
βω QQ

lk

k

lk
F r

, (18) 

 ( )2 2 2 2 2 2
r gz gx gyQ L N R N N= + + , (19) 

 ( ) ( )2
2 2 2 2 2 2 2 2 2 2

gx gz gz g z gy g z gzQ k R T L N n N n N R n L nβ θ θ⎡ ⎤= − + +⎢ ⎥⎣ ⎦ , (20) 

with /k cω=  and the other parameters being 

 ( )2 2 2 2 2 2
gz g zl T L n R n θ= + , (21) 

 ( ) ( )2
2

2 2 2 2 2
'2

21 1

b
bz bx by

bz
b

T N N Nβ
β σ σβ γ

Γ
⎛ ⎞⎛ ⎞ ⎜ ⎟= + +⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎜ ⎟⎝ ⎠ −⎝ ⎠

, (22) 

 ( )ˆ ˆ
s s bN M n p z= ⋅ −G I

, (23) 

 ˆ ˆ ˆT
s s s sM n n nθ ϕ⎡ ⎤= ⎣ ⎦

I
, (24) 

 
ˆ1

1
b r

b

bz

n
p

β
β

− ⋅= −
G

. (25) 

In Eqs. (23) and (24), the subscript, ‘s’ represents either ‘g’ or ‘b’. ˆ
sn θ  and ˆ

sn ϕ  are two unit 

vectors perpendicular to ˆ
sn . Equation (18) or the coherent factor, ( )F ω  shows that, as the 

beam parameters get larger, the coherent spectrum disappears from high frequency.  

This manifests that the phase matching condition among electrons is severer for high  

frequencies. 

For the radiation scattered from an electron beam to be coherent up to a frequency cω , the 

above coherent factor ( )F ω , should be almost 1, or the exponent should be much smaller 

than 1 in the desired range of frequency. In the z-x plane, 0gyN = ; then, this leads to the 

following relations, one for the angular relation: 

 ( ) ( )1 cos
sin sin 0

1 cos
b b

gx g g

b b

N
β θ θθ θ θ β θ

− −= − + =− , (26) 

and the other for the restriction on the electron beam parameters: 

 
2 2 2 2

2 2

1 sin
1

1

c g

c gz

c

k R T
k LN

k l

θ+ <+ . (27) 
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Eq. (26) also shows why the direction of the beam velocity ( bθ ) is set to be different from the 

axis of the beam distribution ( gθ ); otherwise, gxN  cannot be zero. The physical meaning of 

Eqs. (26) and (27) is that time delays between electrons should be less than the pulse width 

generated by a single electron as commented in the previous section. This equation can be 

used to find gθ  for given bθ  and θ  which can be set to the optimal condition obtained from 

the single electron calculation. For the realization of the coherent condition, the most 

important things are the length of the electron beam (L) and the condition to minimize gzN . 

To minimize gzN , θ  should be near 0o but not 0o at which only dipole radiation appears. 

From single electron calculation, it has been found that when 0o
bθ ≈  or in the case of a co-

propagation (laser and electron beam propagate near the same direction), such a condition 

can be fulfilled. 
 

 

Fig. 16. Coherent RNTS radiation spectra for different beam parameters: (a) beam length and 
(b) other beam parameters. For better view, only envelops are plotted. 

From the single electron calculation (the radiation from an electron of γo = 20 under 
irradiation of a circularly polarized laser of ao = 5), it has been found that the peak radiation 
appears at 0.78oθ =  when 1.125o

bθ = . The insertion of these data into Eq. (26) and (27) 
leads to 6.43o

gθ =  and the beam length being restricted to a few nanometers. Coherent 
RNTS spectra for different electron beam parameters are plotted in Fig. 16. As expected, one 
can see that the coherent spectral intensity decreases at high frequencies as the beam length 
increases. These calculations show that the coherent conditions for the beam length and 
beam divergence are most stringent. However, with a moderate condition, the broadening 
of the coherent spectrum is still enough to generate about a 100-attosecond pulse. 

4. Effects of the high-order laser fields under tight-focusing condition 

Paraxial approximation is usually used to describe a laser beam. However, when the focal 
spot size gets comparable to the laser wavelength, it cannot be applied any more. This is the 
situation where the RNTS actually takes place. A tightly-focused laser field and its effects on 
the electron dynamics and the RNTS radiation will be discussed in this section. 

4.1 Tightly focused laser field 

The laser fields propagating in a vacuum are described by a wave equation. The wave 
equation can be evaluated in a series expansion with a diffraction angle, 0 / rw zε = , where 

0w  is beam waist and rz  Rayleigh length. It leads to the following formulas for the laser 
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fields having linear polarization in the x-direction (zeroth-order) and propagating in the +z 
direction (Davis, 1979; Salamin, 2007),  

 
(28)

 
(29)

 
(30)

 (31)

 
(32)

 
(33)

The laser fields are written up to the 5th order in ε . In above equations, 

( ) ( ) ( )2 2/ / exp /o oE E w w g t z c r w= − − , 2
0 1 ( / )rw w z z= + , 2

0 /rz wπ λ= , 0/ξ x w= , 

0/ υ y w= , / rǇ z z= , and 2 2 2 ρ ξ υ= + . ( )/g t z c−  is a laser envelop function. nC  and nS  

are defined as 

 

0

0

cos( ); 0,1,2,3 ,

sin( ),

n

n G

n

n G

w
C n n

w

w
S n

w

ψ ψ
ψ ψ

⎛ ⎞= + =⎜ ⎟⎝ ⎠
⎛ ⎞= +⎜ ⎟⎝ ⎠

…
. (34) 

where 2
0 /2 Gt kz kr Rψ ψ ω ψ= + − − +  and 2 /rR z z z= + . 0ψ  is a constant initial phase and k 

is the laser wave number, 2 /π λ . Gψ  is the Gouy phase expressed as 

 1tanG

r

z

z
ψ −= . (35) 

The zeroth order term in ε  is a well known Gaussian field. One can see when ε  cannot be 
neglected: when the focal size gets comparable to the laser wavelength, a field longitudinal 
to the propagation direction appears and the symmetry between the electric and the 
magnetic fields is broken.  
Because ǆ is proportional to 1/w0, the high order fields (HOFs) become larger for smaller 
beam waist. Figure 17 shows that Ey and Ez get stronger as wo decreases. The peak field 
strengths of Ey and Ez amount to 2.6% and 15% of Ex at wo = 1 Ǎm, respectively. In the case of 
a counter-interaction between an electron and a laser pulse, HOFs much weaker than the 
zeroth-order field does not affect the electron dynamics. However, when the relativitic 
electron is driven by a co-propagating laser pulse, weak HOFs significantly affect the 
electron dynamics and consequently the RNTS radiation. 
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Fig. 17. The strength of laser electric fields against the beam waist size are plotted in unit of 
the normalized vector potential. The laser field is evaluated at (wo/2, wo/2, 0) with the zeroth-
order laser intensity of a0 = 2.2. 

4.2 Dynamics of an electron electron with a tightly focused laser 
 

 

Fig. 18. Two interaction schemes between a relativistic electron and a laser pulse:  
(a) counter-propagation and (b) co-propagation. 

The dynamics of a relativistic electron under a tightly-focused laser beam is investigated by 

the Lorentz force equation [Eq. (1)]. One can consider two extreme cases of interaction 

geometry as shown in Fig. 18. The counter-propagation scheme, or Compton back-scattering 

scheme is usually adopted to generate monochromatic x-rays. It has been shown in the 

previous section that the co-propagation scheme is more appropriate to generate the 

coherent RNTS radiation. For such schemes, the effect of HOFs will be investigated. 

In the z-x plane, 0y zE B= = , then the Lorentz force equation for γ  and xβ  (transverse 

velocity) in the case of the counter-propagation scheme ( ˆ1zβ ≈ −G
),  can be approximated as, 

 0
H

x odd

d
a a

d

γ βτ ≈ − , (36) 

 
( ) ( )02x H H

even even

d
a a b

d

γβ
τ ≈ + + , (37) 

where Ltτ ω= , 0a  is the zeroth-order laser field in unit of the normalized potential. H
odda  is 

odd HOFs of electric field (or longitudinal electric fields). H
evena  and H

evenb  are even HOFs of 

electric and magnetic fields, respectively [see Eqs. (28)-(33)]. From above equations, γ  can 

be analytically obtained considering only the first HOF as 
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