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Model-Based Control for Industrial Robots:  

Uniform Approaches for Serial  
and Parallel Structures 

 

 

Houssem Abdellatif and Bodo Heimann 

 

1. Introduction 

Nowadays, there are still two major challenges for industrial robotics in auto-

mated production. These are enhancing manufacturing precision and reducing 

cycle-times. Beside the advances made in the classic robotics over the last dec-

ades, new technologies are emerging in the industrial field aiming more flexi-

ble high-speed and accurate manufacturing. Robots with parallel structures 

are attracting the attention of automation industry as an innovative product 

with high dynamic potentials. Such robots, like the tricpet are integrated 

nowadays by BMW, Volvo or Airbus in their manufacturing lines. Compared 

to each other, the classic serial (or open) chain robots and the parallel (or 

closed) chain robots have their specific benefits and suffer from own draw-

backs. The proposed chapter gives a comparison of the two types in the scope 

of their suitability for solving modern problems in industrial robotics. Addi-

tionally, appropriate approaches are proposed to remove drawbacks of classic 

industrial control solutions. Hereby, it is focussed on model-based strategies 

for ameliorating control accuracy at high dynamics and therefore to expose so-

lutions towards high-speed automation. 

One of the main purposes of the proposed chapter is to contribute to extending 

the state of the art in industrial robotics by the innovative class of parallel ro-

bots. Furthermore, classic and advanced model-based control approaches are 

discussed for both robot types. Uniform methodologies for both classes are 

given. It is focused on crucial issues for practical application in the industrial 

filed. 

The first aspect is surely the modelling of kinematics (see section 2) and dy-

namics (see section 3) for serial and parallel robots. Here, an opposite duality 

in formalism is shown. By appropriate choice of minimal coordinates and ve-

locities, the inverse dynamics of the two robot classes can be derived by the 

principle of virtual power. This yields computational highly efficient models 

that are well appropriate for real-time applications. Since the success of such 

feedforward control depends on the estimation quality of the model parame-
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ters, appropriate strategies for experimental identification are provided in sec-

tion 4. Thereby, two main categories of procedures are discussed: direct and 

indirect identification. The direct procedure tries to estimate model parameters 

from measurements achieved by one optimized trajectory. Indirect identifica-

tion uses standard Point-to-Point motions that are distributed within the work-

space. The choice of the method in praxis depends on the used control hard-

ware and sensors.  Each approach has own advantages and drawbacks for the 

here discussed two classes of robotic manipulators. 

In section 5, further enhancement of control accuracy are demonstrated by 

providing pre-correction techniques, like iterative learning control, training or 

nonlinear pre-correction. Such powerful tools are highly appropriate for 

manufacturing or automation tasks that are repeated over and over. Further-

more, it is advantageous not only due to the simple requirement of standard 

position-correction interface but because complex modeling of disturbances is 

not necessary. The methodology is exposed uniformly for serial and parallel 

robots. Practical issues and some differences are pointed out. Experimental re-

sults prove than the suitability and effectiveness of the proposed methods for 

the studied classes of robots. All proposed approaches are substantiated by 

experimental results achieved on three different robots: the Siemens Manutec-
r15, the KUKA KR15 and the prototype PaLiDA as a parallel robot. The chapter 

is closed with conclusions and an outlook on the possible future of industrial 

robotics. 

2. Kinematic Analysis  

To enable giving uniform approaches for serial and parallel robots, elementary 

assumptions and definitions at the formal level have to be revised. As men-

tioned in the introduction, we will concentrate on the case of industrial rele-

vant robotic systems, i.e. 6=n -DOF non redundant mechanisms. Both mecha-

nisms are supposed to have an actuated joints grouped in the vector aq , that 

defines the actuation space A. Additionally, passive joints are denoted by pq . 

Both vectors can be grouped in the joint vector [ ]TT

p

T

a qqq = that correspond 

consequently to the joint space Q. The operational or work-space W of an in-

dustrial robot is defined by the 6-dimensional pose vector x containing the po-

sition and orientation of the end-effector (EE) with respect to the inertial frame. 

Let the vector z  now denotes the generalized (or minimal) coordinates, which 

contains the independent coordinates that are necessary to uniquely describe 

the system. Its dimension coincides therefore with the number of DOF's (Mei-

rovitch, 1970; Bremer, 1988) and it defines the configuration space C. 

Already at this formal level, important differences between serial open-chain 

robots and parallel closed-chain robots are necessary to consider. For classic 

industrial robots, the case is quite simple and well known. Such systems do 
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not have passive joints, the actuated joints correspond to the minimal coordi-

nates, which yields the coincidence of almost all coordinate spaces: 

 

a aq q Q A and z q q C Q A.= ⇒ ≡ = = ⇒ ≡ ≡  

 

The case of 6-DOF parallel robot is more complicated. The pose vector x de-

fines uniquely the configuration of the system. Besides the robot contains pas-

sive joints (Merlet, 2000) 

 

a az x C W and q q ,  q z C Q A= ⇒ ≡ ≠ ≠ ⇒ ≠ ≠  

 

Consequently, more transformations have to be considered while operating 

parallel robots. A more serious issue in industrial praxis is that the configura-

tion of parallel robots can not be directly measured, since only the positions of 

actuated joints are available. It is than necessary to consider this limitation in 

control issues. To keep uniform handling of both robotic types, it is recom-

mended to focus on the configuration space defined by z . From this point of 

view the most important notions of kinematics are revisited in the following. 

The interested reader may be referred to standard books for deeper insight 

(Tsai, 1999; Sciavicco & Siciliano, 2000; Angeles, 2003; Merlet, 2000; Khalil & 

Dombre, 2002) 

2.1 Kinematic Transformations 

In robotics, the motion of each link is described with respect to one or more 

frames. It is though necessary to define specifications to transform kinematic 

quantities (positions, velocities and accelerations). Homogenous transforma-

tions are state of the art in robotics. Besides the fixed inertial frame ( )0KS  and 

the end-effector frame ( )EKS , each link i  is associated with body-fixed frame 

( )iKS . For efficient formulation and calculation of the homogenous transfor-

mations (given by 1i
i

−T ) between two adjacent links 1i −  and i , it is recom-

mended to use the modified DENAVIT-HARTENBERG-notation (or MDH), 

that yields unified formalism for open and closed-chain systems (Khalil & 

Kleinfinger, 1986; Khalil & Dombre, 2002). We obtain: 
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which is a function of the MDH-parameters iϑ , id , iα  and ia  (Khalil & Klein-

finger, 1986). The abbreviations xs  and xc  denote ( )xsin  and ( )xcos  respec-

tively. The matrix 1i

iR −  and the vector 
i 1

i 1 i

−

−( )r  define orientation and position 

of frame i  with respect to frame 1−i . The kinematics of any kinematic chain 

gives an analytic determination of the joint variables iϑ  (for revolute joints) 

and id  (for prismatic joints) as well as their time derivatives. The velocity iv)i(  

and angular velocity i)i( ω  of each link i  and the corresponding accelerations 

can be calculated recursively by the following equations: 
 

iz
i

i)i(i)i(i)i(i)i( d~ $ervv ++= −
−−

1

11 ω    (2) 

 

zi)i(izi
i

i)i(i)i(i)i(
i
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~dd~~~ eerrvv 1

1

11
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11 2 −
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−−
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−− ++++= ωωωω $$$$$$    (3) 

 

izi)i(i)i( ϑ$e+= −1ωω  (4) 

 

zizi)i(iι)i(i)i(
~ ee ϑϑ $$$$$ ++= −− 11 ωωω  (5) 

 

where [ ]T
100=

z
e . The Tilde-operator (

~

) defines the cross product 

.~ baba ×=  

2.2 Direct and Inverse Kinematics 

Industrial applications are characterized by being defined in the operational 

space W, whereas the robot is controlled in the actuation space A. It is there-

fore necessary to define and to calculate transformations between the two 

spaces. Calculating the resulting robot poses from given actuator positions 

correspond to the direct (or forward) kinematic transformation: 

 

 

 

Reciprocally, the inverse (or backward) kinematic transformation is used to 

obtain actuator positions from a given robot pose: 

 

( )xgqx

g

=→

→

a

AW:
 

 

We mentioned above, that only the minimal coordinates describe the system 

uniquely. Consequently, only the transformations having the argument set be-

( )q fa

: A W→

→ = a

f

x q
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ing the configuration space can be computed or given in a closed form. This 

fact explains, that the solution of the inverse problem is quite simple and 

available analytically for parallel robots ( )WC ≡ . Whereas the solution of the 

forward kinematics can be generally obtained only in a numerical way (Tsai, 

1999; Merlet, 2000). In contrast, the forward kinematics can be easily obtained 

for serial-chain robots ( )AC ≡ , whereas the inverse problem is generally cum-

bersome to solve. As it will be discussed in following sections, such system-

inherent properties have an important impact on the practical implementation 

of control. E.g. the well-known computed-torque feedback approach is not 

suitable for parallel robots, since the minimal coordinates xz =  can not be 

measured. 
 

For both robotic types the pose vector is defined as: 

 

[ ] ,zyx Tγβα=x  

 

where the end-effector position being [ ]T

E zyx=r  and its orientation  

[ ]Tγβα=π  being defined according to the Roll-Picth-Yaw (RPY) Euler-

convention (Tsai, 1999; Sciavicco & Siciliano, 2000). The homogeneous trans-

formation between ( )0KS  and ( )EKS  is given by 
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2.3 Differential Kinematics 

The differential kinematics maps the velocity of the end-effector into the veloc-

ity of the actuated joints aq$  and vice versa. It is necessary to relate a desired 

motion in the task-space to the necessary motion of the actuated joints. This is 

achieved by the jacobian matrix 
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or simply 

 

$ $
A ax = J q . (8) 



528       Industrial Robotics: Theory, Modelling and Control  

The analytical Jacobian AJ  relates the time derivative of the pose vector to the 

articulated velocities. Since the orientation vector π  is composed of pseudo-

coordinates, whose time derivative has no physical meanings (Bremer, 1988, 

Meirovitch, 1970) it is convenient to define the rotational velocities of the end-

effector in respect to the fixed frame: [ ]T

E zyx ωωω=ω , such that 
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and therefore the definition of the geometric jacobian matrix J: 

 

a

E

E
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By regarding eq. (7) it is obvious that the analytic derivation of the jacobian is 

only available, when the direct kinematic solution ( )aqf  is given in a closed 

form. This is the case for classic open-chain robots, whereas for parallel robots, 

the inverse jacobian 1−J  is available (Merlet, 2000). For such mechanisms, the 

jacobian is obtained by numerical inversion of its analytically available inverse 

(Merlet, 2000; Abdellatif et al., 2005a). The mobility of robots depends on the 

structure of the related jacobian that describes the velocity and also the force 

transmission between the operational space and the actuation space. It is well 

known, that singularities occur at configurations, when the jacobian loses its 

rank ( )( )0det =J . The study of singularities is omitted in this paper. The inter-

ested reader may be referred to standard and excellent literature in this area 

(Gosselin & Angeles, 1990; Sciavicco & Siciliano, 2000; Merlet, 2000; Bonev, 

2002). 

It is now necessary to define further quantities to describe the motion of ro-

botic manipulators. In analogy to the generalized coordinates, the generalized 

velocities are introduced (Meirovitch, 1970; Bremer, 1988) and are denoted by 

s$ . They always present a linear combination of the time-derivatives of the 

generalized coordinates z$ . The simplest case is when these combinations cor-

respond to the identity: 

 
= ⇒ =$ $ $ $s Iz s z  

 

This is the case of classic open-chain robots: aqs $$ = . For parallel manipulators, 

the end- effector’s velocities are chosen to be the generalized coordinates: 
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zxvs $$$ =≠= E . This formal property has also an important impact in the prac-

tice. The symbolic derivation of the Lagrangian equations of motions becomes 

very messy for parallel robots, such that its implementation in real-time con-

trol systems is very restrictive (Tsai, 1999). 

The last fundamental step of our revised kinematic analysis is the definition of 

limb's jacobians 
iTJ  and 

iRJ  that relate its translational and its angular veloci-

ties to the generalized velocities of the robot, respectively: 
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The use of the modified DENAVIT-HARTENBERG-notation allows also a re-

cursive calculation of the limb's jacobians: 
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The next subsection demonstrates the efficiency and uniformity of the pro-

posed method for deriving the kinematics of a serial and a parallel industrial 

robot. 

 

2.4 Application of the Kinematic Analysis of Industrial Robots 

2.4.1 Serial Manipulators: Case Study KUKA KR15 

 

The direct kinematics of serial-chain robots is straight forward. The transfor-

mation matrix can be calculated by starting from the base and evaluating the 

single 1−i
iT . By solving 
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we obtain the pose vector x . The jacobian is also joint-wise simple to obtain: 
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This can be deduced by using the MDH-notation and the recursive formulae 

given above. Although the solution of the inverse kinematics is generally hard 

to obtain for open-chain mechanisms, industrial robots are characterized by 

simple geometry, such that a closed-form solution exists. This is the case here, 

where the three last revolute joint axes intersect at a common point (spherical 

wrist) (Sciavicco & Siciliano, 2000). 

2.4.2 Parallel Manipulators: Case Study PaLiDA 

The general method of calculating the inverse kinematics of parallel robots is 

given by splitting the system into a set of subchains. The structure is opened 

and separated into "legs" and an end-effector-platform. Hereby the enclosure 

constraints have to be calculated, which are the vectors connecting jA  with jB  

 

[ ] .zyx E
)(jjj

A

B
j

j jj BA rRrrr E

0

E

0

E

0T ++−==  (14) 

 

Thus, every chain can now be regarded separately as a conventional open-

chain robot with a corresponding end-effector position at j

j

A

Br . MDH-

Parameters are defined for each subchain and the direct kinematics is solved 

as described above. Since we consider non-redundant mechanisms, the result-

ing serial chains are very simple, such that a closed form solution always ex-

ists. For the studied case PaLiDA, the definition of the MDH-parameters and 

frames are depicted in Figure 2. The solution of the full inverse kinematics is 

obtained by  
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which are quite simple equations. The differential kinematics can be deduced 

analytically for the inverse problem by the inverse jacobian: 
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Figure 1. Definition of the MDH Coordinate systems and parameter for the KUKA KR 
15 

 

Many methods are proposed in the literature for calculating the inverse jaco-

bian. We propose here the most straight-forward way in our case. Every single 

chain j  corresponds to the thj raw of the inverse jacobian: 
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The velocities of the points jB  can be obtained by simply differentiating the 

constraint equation (14): 
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By using the recursive laws given by eq. (3-5) the complete inverse kinematics 

of the subchains can be solved, yielding velocities and accelerations of each 

limb and moreover a functional relationship between 
jaq  and 

jBv  that is 

needed for (19). 
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i iϑ  id  ia  iα  

1 2
πα −i 0 0 2
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3 0 il  0 2
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Figure 2. Definition of the MDH-parameters for a serial subchain of the hexapod 

PaLiDA 

 

As conclusions, we can retain that the formal differences between parallel and 

serial robots have to be taken into account. A unified approach can be given if 

the notions of minimal coordinates and velocities are kept in mind. The MDH-

notation provide the same procedure when solving kinematics for both robotic 

types. For parallel robots it is sufficient to formulate the constraint equations. 

Hereafter the mechanism is separated into serial subchains that can be treated 

exactly as any other open-chain manipulator. 

3. Efficient Formulation of Inverse Dynamics 

Model-based and feedforward control in industrial robotics requires computa-

tional efficient calculation of the inverse dynamics, to fulfill real-time require-

ments of standard control systems. The real-time calculation of the desired ac-

tuator forces aQ  depends on the used approach for the derivation of the 

inverse Model. For the sake of clarity we concentrate first on rigid-body dy-

namics. The corresponding equations of motions for any manipulator type can 

be derived in the following four forms: 

 

( )sszBQ $$$,,aa =  (21) 

 

( ) ( )szNqzMQ $$$ ,+= aaa  (22) 

 

( ) ( ) ( )zgszcqzMQ aaaaa ++= $$$ ,  (23) 

 

( ) minaa psszAQ $$$ ,,=  (24) 
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where aQ  being the vector of actuation forces. The massmatrix is denoted by 

M . The vectors c  and g  contain the centrifugal and Coriolis, and the gravita-

tional terms, respectively. The vector N  includes implicitly c  and g . Ana-

logically, the vector ( )sszB $$$ ,,  includes implicitly all terms of rigid-body dy-

namics. We notice here, that the index ‘a’ is used to distinguish the quantities 

that are related to the actuation space. A trivial but very important remark is 

that all model forms have in common, that the inputs are always given in the 

configuration space by z , s$  and s$$ , whereas the outputs are always given in 

the actuation space: aQ . Although, equations (21-24) yield exactly the same re-

sults, they are very different to derive and to calculate. Although eq. (23) is the 

most computational intensive form, it is very reputed in robotics because it is 

highly useful for control design and planning. The case of open-chain manipu-

lators is easier. The coincidence of configuration space with the actuation space 

allows a straight-forward implementation of the Lagrangian formalism for its 

derivation. This is not the case for the parallel counterpart, where the same 

formalism leads to messy symbolic computation or in the worst case to non-

closed form solution (Tsai, 1999). Therefore, we focus in the following on the 

most efficient1 form (21) that can be derived uniformly for parallel and serial 

robots. 

 

3.1 Derivation of the Rigid-Body Dynamics 

The suggested approach is the Jourdainian principle of virtual power that pos-

tulates power equality balances with respect to the forces in different coordi-

nate spaces (Bremer, 1988). For instance, a power balance equation is obtained 

as  
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where τ  is the vector of the generalized forces. Equation (25) means that the 

virtual power resulting in the space of generalized velocities is equal to the ac-

tuation power. The power balance can be applied for rigid-body forces: 
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1 Parameterlinear equations of motions (24) are actually more computational efficient. 

Since they are derived from (21), they are discussed later on. 
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The generalized forces are computed as the summation of the power of all KN  

limbs: 
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with gva −=
ii SS
$  being the absolute acceleration of the thi  link’s center of 

gravity iS . The velocity of the center of gravity, the mass and the inertia-tensor 

with respect to iS  are denoted by 
iSv$ , im  and )( iS

iI  , respectively. To be able of 

using the recursion calculation of kinematic quantities (2-5, 11), eq. (27) is 

transformed to 
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with is  being the vector of the thi  body’s first moment2 

[ ] i

Si
rs )i(iiiii msss

zyx
== T  ( i

Si
r : location of iS  with respect to the limb-fixed 

coordinate frame) and )i(
i)i( I  being the inertia tensor about the same coordinate 

frame. 

 

It is obvious, that the calculation of rbτ  requires the quantities of motions of all 

bodies. The latter can be obtained by applying the kinematic analysis as al-

ready explained in the former section 2. The transformation of the generalized 

forces into the actuation space according to (2) is trivial for the case of serial 

robots ( )aqs $$ ≡  
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For parallel manipulators, the numerical calculation of the jacobian is neces-

sary (see also section 2.3): 
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The inverse dynamics presented by (28) is already highly computational effi-

cient. It can be implemented in real-time within nowadays standard control 

systems for parallel as well as for serial ones. Such model can be further opti-

mized and transformed into a linear form with respect to the minimal dynamic 

parameters minp . 

3.2 Minimalparameter Form of the Equations of Motion 

By transforming the dynamics into form (24), two main advantages result. At 

one hand, regrouping the parameters will further reduce the calculation bur-

den and at the other hand, one obtains the set of identifiable parameters of the 

robotic system. We focus now on the dynamic parameters presented by im , is  

and iI . To regroup such parameters, the definition of two new operators ( )∗.  

and ( )◊.  are required first: 
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The inverse dynamics (28) can be written as 
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which is now linear in respect to the parameter set rbp , that groups all physical 

parameters of all limbs of the robot. Since each limb contributes with 1 mass 

parameter, 3 first-moment parameters and 6 inertiatensor elements, we obtain 
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for the robot the number of ( ) KN×++ 631  physical parameters. The contribu-

tion of each single parameter to the dynamics is presented by the correspond-

ing column of the matrix iH . The dimension of rbp  has to be reduced for more 

computational efficiency and identifiability of the dynamics model. In the field 

of robotics, many researches have been achieved on this subject, especially for 

serial robots (Khalil & Kleinfinger, 1987; Gauier & Khalil, 1990; Fisette et al., 

1996). Recently the problem was also addressed for parallel mechanisms 

(Khalil & Guegan, 2004; Abdellatif et al., 2005a). Generally, the procedure con-

sists in a first step of grouping the parameters for the open chains. Afterwards, 

one looks for further parameter reduction that is due to eventually existing 

closed kinematic loops. In Praxis, the first step is common for serial and paral-

lel robots. For the latter, the structure is subdivided in single serial chains. The 

second step is achieved of course, only for parallel robots.  

The matrices iH  in (30) can be grouped for single serial kinematic chains, such 

that a recursive calculation: 

 

iiii KLHH += −1  (31) 

 

can be achieved. The matrices iL  and  iK  are given in (Khalil & Dombre, 2002; 

Grotjahn & Heimann, 2000). The first step considers in eliminating all parame-

ters jprb,  that correspond to a zero row jh  of H , since they do not contribute to 

the dynamics. The remaining parameters are then regrouped to eliminate all 

linear dependencies by investigating H . If the contribution of a parameter jprb,  

depends linearly on the contributions of some other parameters ∗
kjp,,p

j rb,1rb,
… , 

the following equation holds 

 

∑
=

=
k

l
ljljj a

1

hh  (32) 

 

Then jprb,  can be set to zero and the regrouped parameters new,lrb, jp  can be ob-

tained by 

 
∗+= jljjj papp rb,lrb,new,lrb,  (33) 

 

The recursive relationship given in (31) can be used for parameter reduction. If 

one column or a linear combination of columns of iL  is constant with respect 

to the joint variable and the corresponding columns of iK  are zero columns, 

the parameters can be regrouped. This leads to the rules which are formulated 

in (Gautier & Khalil, 1990; Khalil & Dombre, 2002) and in (Grotjahn & 
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Heimann, 2000). The use of MDH-notation is a benefit for applying the reduc-

tion rule in an analytical and a straight-forward manner. For revolute joints 

with variable iϑ , the other MDH-parameters are constant. This means that the 
th9 , the th10  and the sum of the st1  and th4  columns of iL  and iK  comply 

with the mentioned conditions. Thus, the corresponding parameters 
yyiI , 

xi
s  

and im  can be grouped with the parameters of the antecedent joint 1−i . For 

prismatic joints however, the moments of inertia can be added to the carrying 

antecedent joint, because the orientation between both links remain constant. 

For a detailed insight, it is recommended to consider (Khalil & Dombre, 2002) 

and (Grotjahn & Heimann, 2000). 

In the case of parallel robots, where the end-effector platform closes the kine-

matic loops, further parameter reduction is possible. The velocities of the plat-

form joint points jB  and those of the terminal MDH-frames of the respective 

leg are the same. The masses can be grouped to the inertial parameter of the 

EE-platform according to steiner's laws (Khalil & Guegan, 2004; Abdellatif et 

al., 2005a). 

3.3 Integration of friction and motor inertia effects 

For further accuracy enhancement of the inverse dynamics models, the effects 

of friction and motor inertia should be considered. Especially the first category 

is important for control applications (Grotjahn & Heimann, 2002; Armstrong-

Hélouvry, 1991; Bona & Indri, 2005). The general case is considered, when fric-

tion is modeled in all active as well as in passive joints. The friction is given in 

the joint space Q, usually as nonlinear characteristics ( ) ( )iif qfqQ
i

$$ =  with re-

spect to the joint velocity, i.e. 

 

( ) ( ) iiif qrqrqQ
iii
$$$

21 sign +=  (34) 

 

The joint losses have to be mapped into the actuation (or control) space. Uni-

formly to the rigid-body dynamics, the Jourdainian principle of virtual power 

is recommended. The power balance for friction can be derived as 
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 (35) 

 

that means: the friction dissipation power in all joints (passive and active) has 

to be overcome by an equivalent counteracting actuation power. From the lat-

ter equation it is clear that the case of classic open-chain robots is restrictive, 

when the joint-jacobian aqq $$ ∂∂  is equal to the identity matrix. In the more 

general case of parallel mechanisms, friction in passive joints should not be 
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neglected like it is almost always assumed in control application for such ro-

bots (Ting et al., 2004; Cheng et al., 2003). The compensation of friction is sim-

pler and more accurate for serial robots, since it can be achieved directly in all 

actuated joints. For the parallel counterpart, the compensation of the physical 

friction fQ  is only possible indirectly via the projected forces fa,Q  to account 

for passive joints. Since the latter are usually not equipped with any sensors, 

friction compensation in parallel robots is less accurate, which is one of the 

typical drawbacks of such robotic systems. 

By using friction models that are linear with respect to the friction coefficients, 

like (34) it is more or less easy to derive a linear form of (36). The following re-

lationship results: 

 
( ) ff , pszAQ $=fa,  (36) 

 
where the friction coefficients are grouped in a corresponding parameter vec-

tor fp . 

The inertial effects of drives and gears can be also considered and integrated in 

the dynamics with standard procedures like described in (Sciavicco & Sicili-

ano, 2000; Khalil & Dombre, 2002). One of the advantages provided by parallel 

robots is the fact, that the motors are mainly installed on the fixed platform, 

such that they do not contribute to the dynamics. This issue remains - at least 

for industrial application – exclusive for conventional serial manipulators, 

where the motors are mounted on the respective limbs. 

3.4 Example: Minimal rigid-body parameters 

The illustrative example of minimal rigid-body parameters is considered to 

give an interesting comparison between serial and parallel manipulators in 

terms of dynamics modeling. The above described uniform approach is ap-

plied for the 6-DOF robots KUKA KR15 and PaLiDA. According to the nota-

tions defined in the former section, the minimal parameters are derived for 

both systems. The results are illustrated in Table 1. Despite higher structural 

complexity, the minimal parameters of the parallel robot are less numerous 

and complex than those of the serial one. The single sub-chains of a parallel 

robot are usually identical and have simple structure, which yields identical 

and simple-structured parameters for the different chains. The kinematic cou-

pling yields a further parameter reduction as the example demonstrates for 

6p - 10p . The inertial effects of the limbs directly connected to the moving plat-

form are counted to the dynamics of the end-effector by taking 

[ ]T

jjj BzByBx
E

)E( rrr=
jBr  into account (see also eq. (14)). The derivation of mini-

mal parameters is of a major interest, since they constitute the set of identifi-
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able ones (Gautier & Khalil, 1990). Following section discusses the experimen-

tal identification of parameters and the implementation of identified inverse 

models in control. 
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Table 1. Minimal rigid-body parameter set for the 6-DOF robots KUKA KR15 and PaLiDA. 
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