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1. Introduction 

With the remarkable progresses in robotics, mobile robots can be used in many applications 
including exploration in unknown areas, search and rescue, reconnaissance, security, 
military, rehabilitation, cleaning, and personal service. Mobile robots should carry their own 
energy source such as batteries which have limited energy capacity. Hence their 
applications are limited by the finite amount of energy in the batteries they carry, since a 
new supply of energy while working is impossible, or at least too expensive to be realistic. 
ASIMO, Honda’s humanoid robot, can walk for only approximately 30 min with its 
rechargeable battery backpack, which requires four hours to recharge (Aylett, 2002). The 
BEAR robot, designed to find, pick up, and rescue people in harm’s way, can operate for 
approximately 30 min (Klein et al., 2006). However, its operation time is insufficient for 
complicated missions requiring longer operation time. Since operation times of mobile 
robots are mainly restricted by the limited energy capacity of the batteries, energy 
conservation has been a very important concern for mobile robots (Makimoto & Sakai, 2003; 
Mei et al., 2004; Spangelo & Egeland, 1992; Trzynadlowski, 1988; Zhang et al., 2003). Rybski 
et al. (Rybski et al., 2000) showed that power consumption is one of the major issues in their 
robot design in order to survive for a useful period of time. 
Mobile robots usually consist of batteries, motors, motor drivers, and controllers. Energy 
conservation can be achieved in several ways, for example, using energy-efficient motors, 
improving the power efficiency of motor drivers, and finding better trajectories (Barili et al., 
1995; Mei et al., 2004; Trzynadlowski, 1988; Weigui et al., 1995). Despite efficiency 
improvements in the motors and motor drivers (Kim et al., 2000; Leonhard, 1996), the 
operation time of mobile robots is still limited in their reliance on batteries which have finite 
energy. We performed experiments with mobile robot called Pioneer 3-DX (P3-DX) to 
measure the power consumption of components: two DC motors and one microcontroller 
which are major energy consumers. Result shows that the power consumption by the DC 
motors accounts for more than 70% of the total power. Since the motor speed is largely 
sensitive to torque variations, the energy dissipated by a DC motor in a mobile robot is 
critically dependent on its velocity profile. Hence energy-optimal motion planning can be 
achieved by determining the optimal velocity profile and by controlling the mobile robot to 
follow that trajectory, which results in the longest working time possible. 
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The total energy drawn from the batteries is converted to mechanical energy by driving 
motors, which is to induce mobile robot’s motion with some losses such as armature heat 
dissipation by the armatures in the motors. The DC motor is most widely used to produce 
mechanical power from electric power. It converts electric power into mechanical power 
during acceleration and cruise. Moreover, during deceleration, mechanical energy can be 
converted back to electrical energy (Electro-Craft, 1977). However, the motor is not an ideal 
energy converter, due to losses caused by the armature resistance, the viscous friction, and 
many other loss components. Many researchers have concentrated on minimizing losses of a 
DC motor (Trzynadlowski, 1988; Angelo et al., 1999; Egami et al., 1990; El-satter et al., 1995; 
Kusko & Galler, 1983; Margaris et al., 1991; Sergaki et al., 2002; Tal, 1973). They developed 
cost function in terms of the energy loss components in a DC motor in order to conserve 
limited energy. The loss components in a DC motor include the armature resistance loss, 
field resistance loss, armature iron loss, friction and windage losses, stray losses, and brush 
contact loss. Since it is difficult to measure all the parameters of the loss components, its 
implementation is relatively complex. To overcome this problem, some researches 
considered only the armature resistance loss as a cost to be minimized (Trzynadlowski, 
1988; Tal, 1973; Kwok & Lee, 1990). However, loss-minimization control is not the optimal in 
terms of the total energy drawn from the batteries. 
Control of wheeled mobile robot (WMR) is generally divided into three categories (Divelbiss 
& Wen, 1997). 

• Path Planning: To generate a path off-line connecting the desired initial and final 
configurations with or without obstacle avoidance. 

• Trajectory Generation: To impose a velocity profile to convert the path to a trajectory. 

• Trajectory Tracking: To make a stable control for mobile robots to follow the given 
trajectory. 

 

Figure 1. Traditional overall scheme of WMR control 

Trajectory means a time-based profile of position and velocity from start to destination 
while paths are based on non-time parameters. Fig. 1 shows the overall control architecture 
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of WMR system (Choi, 2001). Finding a feasible trajectory is called trajectory planning or 
motion planning (Choset et al., 2005). 
Trajectory planning (motion planning) is a difficult problem since it requires simultaneously 
solving the path planning and velocity planning (trajectory generation) problems (Fiorini & 
Shiller, 1998). Most of the paths of WMR consist of straight lines and arcs. The pioneering work 
by Dubins (Dubins, 1957) and then by Reeds and Shepp (Reeds & Shepp, 1990) showed that 
the shortest paths for car-like vehicle were made up of straight lines and circular arcs. Since 
these paths generate discontinuities of curvature at junctions between line and arc segment, a 
real robot would have to stop at each curvature discontinuity. Hence frequent stops and 
turnings cause unnecessary acceleration and deceleration that consume significant battery 
energy. In order to remove discontinuity at the line-arc transition points, several types of arcs 
have been proposed. Clothoid and cubic spirals provide smooth transitions (Kanayama & 
Miyake, 1985; Kanayama & Harman, 1989). However, these curves are described as functions 
of the path-length and it is hard to consider energy conservation and dynamics of WMR. Barili 
et al. described a method to control the travelling speed of mobile robot to save energy (Barili 
et al., 1995). They considered only straight lines and assumed constant acceleration rate.  Mei 
et al. presented an experimental power model of mobile robots as a function of constant speed 
and discussed the energy efficiency of the three specific paths (Mei et al., 2004; Mei et al., 2006). 
They did not consider arcs and the energy consumption in the transient sections for 
acceleration and deceleration to reach a desired constant speed. 
In this book chapter, we derive a minimum-energy trajectory for differential-driven WMR that 
minimizes the total energy drawn from the batteries, using the actual energy consumption 
from the batteries as a cost function. Since WMR mainly moves in a straight line and there is 
little, if any, rotation (Barili et al., 1995; Mei et al., 2005), first we investigate minimum-energy 
translational trajectory generation problem moving along a straight line. Next we also investigate 
minimum-energy turning trajectory planning problem moving along a curve since it needs turning 
trajectory as well as translational trajectory to do useful actions. To demonstrate energy 
efficiency of our trajectory planner, various simulations are performed and compared with 
loss-minimization control minimizing armature resistance loss. Actual experiments are also 
performed using a P3-DX mobile robot to validate practicality of our algorithm. 
The remainder of the book chapter is organized as follows. Section 2 gives the kinematic and 
dynamic model of WMR and energy consumption model of WMR. In Section 3, we 
formulate the minimum-energy translational trajectory generation problem. Optimal control 
theory is used to find the optimal velocity profile in analytic form. Experimental 
environment setup to validate simulation results is also presented. In Section 4, we 
formulate the minimum-energy turning trajectory planning problem and suggest iterative 
search algorithm to find the optimal trajectory based on the observation of the cost function 
using the solution of Section 3. Finally, we conclude with remarks in Section 5. 

2. WMR Model 

2.1 Kinematic and Dynamic Model of WMR 

It is well known that a WMR is a nonholonomic system. A full dynamical description of 
such nonholonomic mechanical system including the constraints and the internal dynamics 
can be found in (Campion et al., 1991). Yun (Yun, 1995; Yun & Sarkar, 1998) formulated a 
dynamic system with both holonomic and nonholonomic constraints resulting from rolling 
contacts into the standard control system form in state space. Kinematic and dynamic 
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modeling of WMRs has been addressed by several researches. A systermatic procedure for 
kinematic model derivation can be found in (Alexander & Maddocks, 1989; Muir & 
Neuman, 1987). Campion et al. (Campion et al., 1996) have given a general and unifying 
presentation of the modeling issue of WMR with an arbitrary number of wheeles of various 
types and various motorizations. They have pointed out the structural properties of the 
kinematic and dynamic models taking into account the restriction to the robot mobility 
induced by constraints. 
Unlike car-like robot (Jiang et al., 1996; Laumond et al., 1994; Laumond et al., 1998), we 
assumed that a WMR has a symmetric structure driven by two identical DC motors, as 

shown in Fig. 2. Define the posture (position x , y  and orientation ┠ ) as 

( ) ( ) ( ) ( )= ⎡ ⎤⎣ ⎦T
t x t y t ┠ tP , the translational velocity of a WMR as v , and its rotational 

velocity as ω . Then the WMR’s kinematics is defined by 

 

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥
= =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

$
$
$

cos 0

, sin 0

0 1
P P

x ┠
v

y ┠
ω

┠
T T  (1) 

 

Figure 2. Structure of WMR 

Assume that two identical DC motors have the same armature resistance aR , back-emf 

constant bK , and gear ratio n . To simplify dynamics, we ignore the inductance of the 

armature circuits because the electrical response is generally much faster than the 

mechanical response. Letting sV  be the battery voltage, the armature circuits of both motors 

are described as 

 = −a s bR V K ni u w  (2) 

where ⎡ ⎤= ⎣ ⎦TR Li ii  is the armature current vector, ⎡ ⎤= ⎣ ⎦TR Lω ωw  is the angular velocity 

vector of the wheeles, and ⎡ ⎤= ⎣ ⎦TR Lu uu  is the normalized control input vector.  

Superscripts R and L correspond to right and left motors, respectively.  
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In addition, the dynamic relationship between angular velocity and motor current, 
considering inertia and viscous friction, becomes (Yun & Yamamoto, 1993) 

 + =v t

d
F K n

dt
J

w
w i  (3) 

where vF  is the viscous friction coefficient and equivalent inertia matrix of motors J is 

= TJ S MS , which is 2x2 symmetric.  

From Eqs. (2) and (3), we obtain the following differential equation. 

 + =$w Aw Bu  (4) 

where 

− ⎛ ⎞⎡ ⎤
= = +⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

2
1 2 1

2 1

t b
v

a

a a K K n
F

a a R
A J , −⎡ ⎤

= =⎢ ⎥⎣ ⎦
1 2 1

2 1

s t

a

b b V K n

b b R
B J  

Define a state vector as [ ]=
T

v ωz . Then v  and ω  are related to Rω  and Lω  by 

 
⎡ ⎤⎡ ⎤

= = =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
R

q qL

v ω
ω ω

z T T w , 
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
/2 /2

/2 /2q

r r

r b r b
T  (5) 

Using the similarity transformation, from Eqs. (4) and (5), we obtain the following equation 

 + =$z Az Bu  (6) 

where 

1 21

1 2

0 0

0 0
v

q q
ω

┨ a a

┨ a a
−

+⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦A T AT  

( ) ( )
( ) ( )

1 1 1 2 1 2

2 2 1 2 1 2

/2 /2

/2 /2q

┚ ┚ r b b r b b

┚ ┚ r b b b r b b b

+ +⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦B T B  

The overall dynamics of a WMR is shown in Fig. 3, where 2I  is the 2x2 unit matrix. 

 

Figure 3. Block diagram of WMR 

2.2 Energy Consumption of WMR 

The energy drawn from the batteries is converted to mechanical energy to drive motors and 
losses such as the heat dissipation in the armature resistance. In a WMR, energy is 
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dissipated by the internal resistance of batteries, amplifier resistance in motor drivers, 
armature resistance, and viscous friction of motors. Fig. 4 shows a simplified circuit diagram 
of a WMR system. 

 

Figure 4. Circuit diagram of batteries, motor drivers, and motors of WMR 

A pulse width modulated (PWM) controller is the preferred motor speed controller because 
little heat is generated and it is energy efficient compared to linear regulation (voltage  
control) of the motor. We assume that an H-bridge PWM amplifier is used as a motor driver, 

and this is modeled by its amplifier resistance RAMP and PWM duty ratio Ru  and Lu . In our 

robot system, P3-DX, internal resistance of battery (CF-12V7.2) is approximately 22mΩ and 
power consumption by the motor drivers is 0.2W. Since internal resistance of battery is 

much smaller compared with armature resistance of motor (710mΩ) and the power 
consumption by the motor drivers is much smaller than that of motors (several watts), they 
are ignored here. Hence the total energy supplied from the batteries to the WMR, EW, is the 
cost function to be minimized and is defined as 

 T T
W sE dt V dt= =∫ ∫i V i u  (7) 

where 
TR LV V⎡ ⎤= ⎣ ⎦V  is the input voltage applied to the motors from the batteries, and 

/
TR L

sV u u⎡ ⎤= = ⎣ ⎦u V . 

As there is a certain limit on a battery’s output voltage, WMR systems have a voltage 
constraint on batteries: 

 max maxRu u u− ≤ ≤ , max maxLu u u− ≤ ≤  (8) 
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From Eqs. (2) and (5), EW can be written in terms of the velocity and the control input as 

 ( )1 2
T T T

W qE k k dt−= −∫ u u z T u  (9) 

where 2
1 /s ak V R=  and 2 /b s ak K nV R= . 

From Eqs. (2) and (3), the cost fuction EW becomes 

 1 1T T T T T Tb b
W a v q q q q

t t

K K
E R dt F dt dt

K K
− − − −= + +∫ ∫ ∫i i z T T z z T J T z$  (10) 

Note that the first term, ( )T
R aE R dt= ∫ i i , is the energy dissipated by the armature resistance 

in the motors and the cost function of loss-minimization control considering only the 

armature resistance loss. The second term, 1T Tb
F v q q

t

K
E F dt

K
− −⎛ ⎞

=⎜ ⎟⎝ ⎠∫z T T z , corresponds to the 

velocity sensitive loss due to viscous friction. The last term, 1T T Tb
K q q

t

K
E dt

K
− −⎛ ⎞

=⎜ ⎟⎝ ⎠∫z T J T z$ , is the 

kinetic energy stored in the WMR and will have zero average value when the velocity is 
constant or final velocity equal to the initial velocity. This means that the net contribution of 
the last term to the energy consumption is zero. 

3. Minimum-Energy Translational Trajectory Generation 

A mobile robot’s path usually consists of straight lines and arcs. In the usual case, a mobile 
robot mainly moves in a straight line and there is little, if any, rotation (Barili et al., 1995; 
Mei et al., 2005). Since the energy consumption associated with rotational velocity changes is 
much smaller than the energy consumption associated with translational velocity changes, 
we investigate minimum-energy translational trajectory generation of a WMR moving along 
a straight line. Since the path of WMR is determined as a straight line, this problem is 
reduced to find velocity profile minimizing energy drawn from the batteries. 

3.1 Problem Statement 

The objective of optimal control is to determine the control variables minimizing the cost 
function for given constraints. Because the rotational velocity of WMR, ω , is zero under 

translational motion constraint, let ( ) ( ) 0 0
T

t x t= ⎡ ⎤⎣ ⎦P  be the posture and 

( ) ( ) 0
T

t v t= ⎡ ⎤⎣ ⎦z  be the velocity at time t . Then the minimum-energy translational trajectory 

generation problem investigated in this section can be formulated as follows. 

Problem: Given initial and final times 0t  and ft , find the translational velocity ( )v t  and the 

control input ( )u t  which minimizes the cost function 

( )
0

1 2

ft
T T T

W q
t

E k k dt−= −∫ u u z T u  
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for the system described by Eq. (6) subject to 

(1) initial and final postures: ( ) [ ]0 0 0 0
T

t x=P  and ( ) 0 0
T

f ft x⎡ ⎤= ⎣ ⎦P , 

(2) initial and final velocities: ( ) [ ]0 0
T

st v=z  and ( ) 0
T

f ft v⎡ ⎤= ⎣ ⎦z , and 

(3) satisfying the batteries’ voltage constraints, maxu  

As time is not critical, a fixed final time is used. 

3.2 Minimum-Energy Translational Trajectory 

Without loss of generality, we assume that the initial and final velocities are zero, and the 
initial posutre is zero. Then the minimum-energy translational trajectory generation problem can 
be written as 

 minimize ( )1 2
0

ft
T T

W qE k k dt−= −∫ u u zT u  (11) 

 subject to       = − +z Az Bu$  (12) 

 ( ) ( ) [ ]0 0 0
T

ft= =z z  (13) 

 
0

0 0
ft T

f P fP dt x⎡ ⎤= = ⎣ ⎦∫ T z  (14) 

 
max max

max max

R

L

u u u

u u u

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
≤ = ≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎣ ⎦ ⎣ ⎦ ⎣ ⎦u  (15) 

We used the Pontryagin’s Maximum Principle to find the minimum-energy velocity profile 
that minimizes Eq. (11) while satisfying the constraints in Eqs. (13) – (15) for the system, 
with Eq. (12). Let the Largrange multiplier for the posture constraint, Eq. (14), be 

T

x y ┠┙ ┙ ┙⎡ ⎤= ⎣ ⎦α . Defining the multipler function for Eq. (12) as, [ ]
T

v ωλ λ=λ , the 

Hamiltonian H  is 

 ( )1 2 /T T T T T T
q p f fH k k t−= − − + + − +u u z T u α T z α λ Az BuP  (16) 

The necessary conditions for the optimal velocity *z  and the control input *u  are 

 1
1 2/ 2 0T

qH k k −∂ ∂ = − + =u u T z B λ  (17) 

 2/ T T T
q PH k −∂ ∂ = − − − = −z T u T α A λ λ$  (18) 

 /H∂ ∂ = − + =λ Az Bu z$  (19) 

From Eqs. (17) – (19), we obtain the following differential equation. 

 1 12

1 1

1
0

2
T T T T T T T

q P

k

k k
− − − −⎛ ⎞

− − + =⎜ ⎟⎝ ⎠z BB A B B A BB T B A z BB T α$$  (20) 
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As TBB  and A  are diagonal matrices, Eq. (20) is reduced to quadratic differential form as 
follows.  

 0T T T
P− + =z Q Qz R T α$$  (21) 

where 12

1

T T T T
q

k

k
− −= −Q Q A A BB T B A , 

1/ 0

0 1/
v

ω

τ
τ

⎡ ⎤
= ⎢ ⎥⎣ ⎦Q , and 

1

0

02

T
v

ω

┟
┟k

⎡ ⎤
= = ⎢ ⎥⎣ ⎦

B B
R . Here 

( ) ( )2
1 2 / /v v v t b aτ J J F F K K n R= + +  denotes the mechanical time constant for translation and 

( ) ( )2
1 2 / /ω v v t b aτ J J F F K K n R= − +  denotes the mechanical time constant for rotation of WMR. 

Since we ignore energy dissipation associated with rotational velocity changes and consider 
only a WMR moving along a straight line (i.e., rotational velocity is zero), the optimal 

velocity *z  becomes 

 ( )
( )

( )

* / /
1 2*

* 0

v vt τ t τ
vv t C e C e K

t
ω t

−⎡ ⎤ ⎡ ⎤+ +
= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦z  (22) 

where 

/

1 / /

1f v

f v f v

t τ

vt τ t τ
e

C K
e e

−

−

−
=

−
, 

/

2 / /

1 f v

f v f v

t τ

vt τ t τ
e

C K
e e

−

−
=

−
, 

( )
( ) ( )

/ /

/ / / /
2 2

f v f v

f v f v f v f v

t τ t τ
f

v t τ t τ t τ t τ
v f

x e e
K

τ e e t e e

−

− −

−
=

− − + −
 

To investigate the properties of the minimum-energy velocity profile, the minimum-energy 
translational velocity profile, Eq. (22), is shown in Fig. 5 as velocity per unit versus time per 

unit, where the reference velocity is taken as the /f fx t  ratio and the reference time / ft t  for 

various /v fk τ t=  (the ratio of translational mechanical time constant per displacement time) 

using the parameters shown in Table 1. 
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Figure 5. Minimum-Energy velocity profiles for incremental motion at various /v fk τ t=  
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Parameter Value Parameter Value 

aR  0.71Ω tK  0.023Nm/A 

bK  0.023V/(rad/s) n  38.3 

cm  13.64Kg ωm  1.48Kg 

sV  12.0V maxu  1.0 

vF  0.039Nm/(rad/s) r  0.095m 

b 0.165m 
1 2

2 1

J J

J J

⎡ ⎤
= ⎢ ⎥⎣ ⎦J  

0.0799 0.0017

0.0017 0.0799

⎡ ⎤⎢ ⎥⎣ ⎦  

Table 1. Parameters of the WMR, P3-DX 

This shows that for k  close to zero the minimum-energy velocity profile resembles a widely 

used trapezoidal velocity profile, whereas for values of 0.2k >  the profile rapidly converges 

to a parabolic profile instead of the widely used trapezoidal profile. As shown in Fig. 5, the 
minimum-energy velocity profile has a symmetric form for the minimum-energy translational 
trajectory generation problem, of Eqs. (11) – (15) as follows.  

 ( )
( ) ( )( ) ( )

( )( ) ( )

*
sinh / sinh / sinh /

2 1 cosh / sinh /

f v f v vf

fv
f v f v

v

t τ t t τ t τx
v t

tτ
t τ t τ

τ

− − −
=

− +

 (23) 

Eq. (23) means that the minimum-energy velocity profile depends on the ratio of the 

mechanical time constant vτ  and the displacement time ft . 

3.3 Simulations and Experiments 

3.3.1 Simulations 

Several simulations were performed to evaluate the energy saving of the minimum-energy 

control optimizing the cost function WE  of Eq. (11); these were compared with two results 

of other methods: loss-minmization control (Trzynadlowski, 1988; Tal, 1973; Kwok & Lee, 

1990) optimizing energy loss due to armature resistance of a DC motor, ( )T
R aE R dt= ∫ i i , and 

the fixed velocity profile of commonly used trapezoidal velocity profile optimizing the cost 

function WE  of Eq. (11). 

Table 3.2 shows the simulation results of the energy saving for various displacements fx  

and displacement time ft . Minimum-Energy denotes the mnimum-energy control 

optimizing the cost fucntion WE , Loss-Minimization denotes the loss-minimization control 

optimizing the cost function RE , and TRAPE denotes the trapezoidal velocity profile 

optimizing the cost fuction WE . Values in parenthesis represent percentage difference in the 

total energy drawn from the batteries with respect to that of minimum-energy control. It 
shows that minimum-energy control can save up to 8% of the energy drawn from the 
batteries compared with loss-minimization control and up to 6% compared with energy-
optimal trapezoidal velocity profile. Because the minimum-energy velocity profile of Eq. 
(23) resembles a trapezoid for a sufficiently long displacement time, the energy-optimal 

www.intechopen.com



Minimum-Energy Motion Planning for Differential-Driven Wheeled Mobile Robots 

 

203 

trapezoidal velocity profile converges to minimum-energy velocity profile and is a near 
energy-optimal velocity profile for a longer displacement time. However, it expends more 
energy when frequent velocity changes are required due to obstacles. 

Constraints Total Energy Drawn from the Batteries WE  (J) 

ft  fx  Minimum-Energy Loss-Minimization TRAPE 

2.0s 1.0m 7.26 7.38 (1.65%) 7.70 (6.06%) 

5.0s 3.0m 19.07 20.26 (6.24%) 19.57 (2.62%) 

10.0s 5.0m 24.26 26.22 (8.08%) 24.57 (1.27%) 

20.0s 10.0m 46.56 49.38 (6.06%) 46.85 (0.62%) 

30.0s 15.0m 68.92 71.91 (4.34%) 69.20 (0.41%) 

Table 2. Comparison of energy saving for various ft  and fx  

Compared with loss-minimization control, minimum-energy control has a significant 
energy saving for a displacement time greater than 2s. For a further investigation, we 
performed a careful analysis of two optimization problems: minimum-energy control and 

loss-minimization control. Fig. 6 shows the simulations for various time constants vτ  that 

were performed  for tf = 10.0s and xf = 5.0m. As the energy-optimal velocity profile depends 

on = /v fk τ t , as shown in Fig. 5, the mechanical time constant affects the velocity profiles of 

the two optimization problems with different cost functions. 
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Figure 6. Cost function plot with respect to mechanical time constant τ  

Applying the Pontryagin’s Maximum Princple to optimize the cost function, the mechanical 

time constants are ( ) ( )= + + 2
1 2 / /v v v t b aτ J J F F K K n R  for minimum-energy control and 

( )= +1 2 /v vτ J J F  for loss-minimization control. Fig. 6 shows the change of the cost function 

with respect to various mechanical time constant τ . 

From Eq. (2), decreasing the armature current increases the value of the back-emf and the 
motor speed. Because the mechanical time constant of minimum-energy control less than 
that of loss-minimization control, the armature current in minimum-energy control quickly 
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decreases, as shown in Fig. 7(c) during acceleration and deceleration. Hence minimum-
energy control can accelerate and decelerate at a higher acceleration rate as shown in Fig. 
7(a). Corresponding control inputs are shown in Fig. 7(b) and energy consumptions for each 
case are shown in Fig. 7(d). 
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Figure 7. Simulations of minimum-energy control and loss-minimization control for tf = 
10.0s and xf = 5.0m, (a) Optimal velocity profile, (b) Corresponding control inputs, (c) 
Armature current change, (d) Comparison of energy consumption 

Table 3 shows the ratio of consumed energy for each energy component of Eq. (10) with 
respect to total energy drawn from the batteries during the entire process for minimum-
energy control. Note that the kinetic energy acquired at start up is eventually lost to the 
whole process when the final velocity is equal to the initial velocity, as shown in Table 3. 

tf xf EW(%) ER (%) EF (%) EK (%) 

2.0s 1.0m 7.26 2.30 (31.68%) 4.96 (68.32%) 0.00 (0.00%) 

5.0s 3.0m 19.07 2.35 (12.32%) 16.72 (87.68%) 0.00 (0.00%) 

10.0s 5.0m 24.26 1.82 (7.50%) 22.44 (92.50%) 0.00 (0.00%) 

20.0s 10.0m 46.56 2.51 (5.39%) 44.05 (94.61%) 0.00 (0.00%) 

30.0s 15.0m 68.92 3.26 (4.73%) 65.66 (95.27%) 0.00 (0.00%) 

Table 3. Ratio of energy consumption of each energy component for minimum-energy 
control 
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Since most of the battery energy is dissipated by the armature resistance for a short 
displacement time, the minimum-energy control does not have significant energy savings 
for a short displacement time but shows significant energy savings for a long displacement 
time, as shown in Table 2. 
Fig. 8 shows the power consumption for each energy component of minimum-energy 
control and loss-minimization control for the constraints given in Fig. 7. It shows that the 
minimum-energy control requires greater energy consumption than loss-minimization 
control during accleleration, whereas minimum-energy control consumes less energy after 
accleration. It means that even though the minimum-energy control requires larger energy 
consumption than loss-minimization control druing acceleration, it consumes less energy 
after acceleration. During deceleration a certain amount of energy is regenerated and stored 
in the batteries: 0.94J for minimum-energy control and 0.62J for loss-minimization control. 
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Figure 8. Comparison of power consumption for each energy component, (a) Minimum-
energy control, (b) Loss-minimization control 

3.3.2 Experimental Environment Setup 

 

Figure 9. The Pioneer 3-DX robot with a laptop computer 
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To validate the energy saving of the proposed minimum-energy control, we performed 
experiments with an actual robot. We use a commercial mobile robot, P3-DX. Fig. 9 is a 
picture of P3-DX with a laptop computer. 
The robot is powered by rechargeable batteries with 12V and has two DC motors with 
encoders driving two wheels. The maximum translational velocity is approximately 1.2m/s. 
A Renesas SH2-7144 RISC microcontroller is used to control motors and it communicates 
with PC client through RS232 serial port. The microcontroller is managed by an Advanced 
Robot Control and Operations Software (ActiveMedia, 2006). 

Current Sensing Circuit

P3-DX

RSENSE

SH2 Microcontroller

Motors Encoders

Laptop Computer

(Linux with RTAI)

+

-
Active LPF

MSP430

Microcontroller
ADC

RS232 (115K)

RS232 (115K)

USB –  Serial

Converter

MSP430

Microcontroller

 

Figure 10. Experimental environment setup 

Fig. 10 shows our experimental environment setup. The laptop computer is used to control 
the robot and to measure the current drawn from the batteries for calculating energy 
consumption. The robot is controlled by acceleration rate and desired velocity as control 
commands, and robot’s velocity profile is piecewise linear. Since the velocity profiles of 
minimum-energy and loss-minimization control are nonlinear, we approximated them to 
piecewise linear velocity profile with 10ms sampling time. The laptop computer is 
connected to the robot through a serial port with 115Kbps baud rate, and sends a set of 
acceleration rate and desired velocity of approximated piecewise linear velocity profile to 
the robot every control period of 10ms, and receives a Standard Information Packet 
(ActiveMedia, 2006) including velocity and position from the robot every 10ms. Since it is 
difficult to control every 10ms in Windows or general Linux, we adopted Real-Time 
Application Interface (RTAI), one of Linux real-time extension, as an operating system of the 
laptop computer for real-time control (Lineo, 2000). 
To measure the drawn energy from the batteries, we sense high side battery current using 
bi-directional current sensing circuit as shown in Fig. 10. We monitor the current through 
RSENSE using LT1787 current sense amplifiers with 1.25V reference and filter output of 
amplifier to obtain average output with unity gain Sallen-Key 2nd order active low pass 
filter with 1KHz cut-off frequency and unity damping ratio. Then MSP430 microcontroller 
samples the filtered output with 200Hz sampling rate using 12-bit ADC and transmits 
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sampled array data to the laptop computer energy 10ms. Since the measured current 
includes current drawn by microcontroller as well as current drawn by motors, we subtract 
the measured current when the robot is in initial stop state to obtain the current drawn by 
motor driving. Fig. 11 shows the bi-directional battery current sensing hardware. 

 
(a) 

 
(b) 

Figure 11. Battery current sensing hardware, (a) Bi-directional current sensing circuit, (b) 
MSP430 microcontroller with 12-bit ADC for data acquisition with USB-to-Serial converter 

3.3.3 Experiments 

We performed experiments for the constraints in Table 2 and compared with loss-
minimization control. To calculate energy consumption, we calculated the armature current 
and the applied voltages of each motor using the ratio of the armature current between two 
motors since we can only measure the batteries’ current of P3-DX. The ratio of the armature 
currents can be obtained from Eqs. (3) and (5) using measured velocity of WMR as follows. 

 
( ) ( ) ( )

( ) ( ) ( )
1 2 1 2

1 2 2 1

R
v

L
v

J J v b J J ω F v bωi┩
i J J v b J J ω F v bω

+ + − + +
= =

+ + − + −

$ $
$ $

 (24) 

Since battery current is = +B R Li i i , the armature current of two motors are 

 
1

R B┩
i i

┩
=

+
, =

+

1

1
L Bi i

┩
 (25) 

and applied voltages of two motors is obtained from Eq. (2). Then we can calculate the 
drawn energy from the batteries, Eq. (7). 
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Figs. 12 and 13 show the experimental results that were performed for tf = 10.0s and xf = 
5.0m compared with simulation results. Actual velocity of the robot follows well desired 
velocity. Since we ignore the armature inductance of the motor, armature current change 
and power consumption has slightly different change during accleration and deceleration. 
However, they show the similar overall response. 
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Figure 12. Experimental results of minimum-energy control for tf = 10.0s and xf = 5.0m, (a) 
Velocity profile, (b) Armature current change, (c) Power consumption, (d) Energy 
consumption 
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Figure 13. Experimental results of loss-minimization control for tf = 10.0s and xf = 5.0m, (a) 
Velocity profile, (b) Armature current change, (c) Power consumption, (d) Energy 
consumption 

Table 4 shows the experimental results for energy savings for various displacements xf and 
displacement time tf. Values in parenthesis represent percentage difference in the total 
energy drawn from the batteries with respect to that of minimum-energy control. 
Experimental results revealed that the minimum-energy control can save up to 11% of the 
energy drawn from the batteries compared with loss-minimization control. 
Since we ignore the inductance of the motors and there can be errors in modelling and 
measuring the energy drawn from the batteries for experiments is slightly different to that 
of simulations. However, we can see that the minimum-energy control can save the battery 
energy compared with loss-minimization control in both experiments and simulations. 
Table 4 also shows that the percent of energy savings difference between minimum-energy 
control and loss-minimization control has a similar tendency with that of simulation results 
in Table 2. 
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