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1. Introduction

1.1 General Introduction

In a wide variety of industrial applications, an increasing demand exists to improve the re-
liability and availability of electrical systems. Popular examples include systems in aircraft,
electric railway traction, power plant cooling or industrial production lines. A sudden failure
of a system in these examples may lead to cost expensive downtime, damage to surrounding
equipment or even danger to humans. Monitoring and failure detection improve the relia-
bility and availability of an existing system. Since various failures degrade relatively slowly,
there is a potential for fault detection followed by corrective maintenance at an early stage.
This avoids the sudden, total system failure which can have serious consequences.
Electric machines are a key element in many electrical systems. Amongst all types of electric
motors, induction motors are a frequent example due to their simplicity of construction, ro-
bustness and high efficiency. Common failures occurring in electrical drives can be roughly
classified into:

Electrical faults: stator winding short circuit, broken rotor bar, broken end-ring, inverter fail-
ure

Mechanical faults: rotor eccentricity, bearing faults, shaft misalignment, load faults (unbal-
ance, gearbox fault or general failure in the load part of the drive)

A reliability survey on large electric motors (>200 HP) revealed that most failures are due to
bearing (≈ 44%) and winding faults (≈ 26%) (IEEE motor reliability working group (1985a))
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(Engelmann & Middendorf (1995)). Similar results were obtained in an EPRI (Electric Power
Research Institute) sponsored survey (Albrecht et al. (1987)). These studies concerned only
the electric motor and not the whole drive including the load, but they show that mechanical
fault detection is of great concern in electric drives.
A growing number of induction motors operates in variable speed drives. In this case, the
motor is not directly connected to the power grid but supplied by an inverter. The inverter
provides voltage of variable amplitude and frequency in order to vary the mechanical speed.
Hence, this work addresses the problem of condition monitoring of mechanical faults in vari-
able speed induction motor drives. A signal based approach is chosen i.e. the fault detection
and diagnosis are only based on processing and analysis of measured signals and not on real-
time models.

1.2 Motor Current Signature Analysis

A common approach for monitoring mechanical failures is vibration monitoring. Due to the
nature of mechanical faults, their effect is most straightforward on the vibrations of the af-
fected component. Since vibrations lead to acoustic noise, noise monitoring is also a possible
approach. However, these methods are expensive since they require costly additional trans-
ducers. Their use only makes sense in case of large machines or highly critical applications.
A cost effective alternative is stator current based monitoring since a current measurement is
easy to implement. Moreover, current measurements are already available in many drives for
control or protection purposes. However, the effects of mechanical failures on the motor sta-
tor current are complex to analyze. Therefore, stator current based monitoring is undoubtedly
more difficult than vibration monitoring.
Another advantage of current based monitoring over vibration analysis is the limited number
of necessary sensors. An electrical drive can be a complex and extended mechanical system.
For complete monitoring, a large number of vibration transducers must be placed on the dif-
ferent system components that are likely to fail e.g. bearings, gearboxes, stator frame, load.
However, a severe mechanical problem in any component influences necessarily the electric
machine through load torque and shaft speed. This signifies that the motor can be consid-
ered as a type of intermediate transducer where various fault effects converge together. This
strongly limits the number of necessary sensors. However, since numerous fault effects come
together, fault diagnosis and discrimination become more difficult or sometimes even impos-
sible.
A literature survey showed a lack of analytical models that account for the mechanical fault ef-
fect on the stator current. Most authors simply give expressions of additional frequencies but
no precise stator current signal model. In various works, numerical machine models account-
ing for the fault are used. However, they do not provide analytical stator current expressions
which are important for the choice of suitable signal analysis and detection strategies.
The most widely used method for stator current processing in this context is spectrum estima-
tion. In general, the stator current power spectral density is estimated using Fourier transform
based techniques such as the periodogram. These methods require stationary signals i.e. they
are inappropriate when frequencies vary with respect to time such as during speed transients.
Advanced methods for non-stationary signal analysis are required.
The organization of the present work is the following. Section 2 analyses the effects of load
torque oscillations and dynamic eccentricity on the stator current. In section 3, suitable signal
processing methods for stator current analysis are introduced. Experimental results under
laboratory conditions are presented in section 4. Section 5 examines the detection of misalign-
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ment faults in electric winches including analysis of experimental data from a real winch.
Bearing faults are investigated apart in section 6 from a theoretical and practical point of view
since they can introduce particular eccentricities and load torque oscillations.

2. Theoretical study of mechanical fault effects on stator current

The key assumption for the development of the theoretical models is that mechanical faults
mainly produce two effects on induction machines: additional load torque oscillations at char-
acteristic frequencies and/or airgap eccentricity.
Load torque oscillations can be caused by the following faults:

• load unbalance (not necessarily a fault but can also be inherent to the load type)

• shaft misalignment

• gearbox fault e.g. broken tooth

• bearing faults

Airgap eccentricity i.e. a non-uniform airgap can be for example the consequence of bearing
wear or bearing failure, bad motor assembly with rotor unbalance or a rotor which is not
perfectly centered. In general, eccentricity will be a sign for a mechanical problem within the
electric motor whereas load torque oscillations point to a fault that is located outside of the
motor.
The method used to study the influence of the periodic load torque variation and the rotor
eccentricity on the stator current is the magnetomotive force (MMF) and permeance wave
approach (Yang (1981)) (Timár (1989)) (Heller & Hamata (1977)). This approach is traditionally
used for the calculation of the magnetic airgap field with respect to rotor and stator slotting or
static and dynamic eccentricity (Cameron & Thomson (1986)) (Dorrell et al. (1997)).
First, the rotor and stator MMF are calculated which are directly related to the current flowing
in the windings. The second important quantity is the airgap permeance Λ which is directly
proportional to the inverse of the airgap length g. The magnetic field in the airgap can then
be determined by multiplying the permeance by the sum of rotor and stator MMFs. The
equivalent magnetic flux in one phase is obtained by integration of the magnetic field in each
turn of the phase winding. The induced phase voltage, related to the current by the stator
voltage equation, is then deduced from the magnetic flux.
As this work also considers variable speed drives, the supply frequency fs and the character-
istic fault frequency fc may vary. Note that fc can be for example the time-varying rotational
frequency fr. The theoretical stator current analysis during transients, however, is identical to
the steady state if relatively slow frequency variations of fs and fc are considered.

2.1 Load torque oscillations

The influence of load torque oscillations on the stator current has been published for a gen-
eral case by the authors in (Blödt, Chabert, Regnier & Faucher (2006)) (Blödt (2006)). The
development will be shortly resumed in the following.

2.1.1 Effect on Rotor and Stator MMF

Under a mechanical fault, the load torque as a function of time is modeled by a constant com-
ponent Γconst and an additional component varying at the characteristic frequency fc, depend-
ing on the fault type. It can be for example the rotational frequency fr with load unbalance
or a particular gearbox frequency in case of a gearbox fault. The first term of the variable
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component Fourier series is a cosine with frequency fc. For the sake of clarity and since they
are usually of smaller amplitude, higher order terms at k fc are neglected in the following and
only the fundamental term is considered. The load torque can therefore be described by:

Γload(t) = Γconst + Γc cos (ωct) (1)

where Γc is the amplitude of the load torque oscillation and ωc = 2π fc.
The machine mechanical equation relates the torque oscillation to the motor speed ωr and to
the mechanical rotor position θr as follows:

∑Γ(t) =Γmotor − Γload(t) = J
dωr

dt
= J

d2θr

dt2
(2)

where Γmotor is the constant electromagnetic torque produced by the machine, J is the total
inertia of the machine and the load.
After integrating twice, θr(t) is obtained as:

θr (t) =
∫ t

t0

ωr (τ)dτ =
Γc

Jω2
c

cos (ωct) + ωr0t (3)

where ωr0 is the constant part of the motor speed. This equation shows that in contrast to the
healthy machine where θr (t) = ωr0t, oscillations at the characteristic frequencies are present
on the mechanical rotor position.
The oscillations of the mechanical rotor position θr act on the rotor MMF. In a healthy state
without faults, the fundamental rotor MMF in the rotor reference frame (R) is a wave with p
pole pairs and frequency s fs, given by:

F
(R)
r (θ′, t) = Fr cos

(

pθ′ − sωst
)

(4)

where θ′ is the mechanical angle in the rotor reference frame (R) and s is the motor slip.
Higher order space and time harmonics are neglected.

r (S)

(R)

θ

θ′

θr (S)

(R)

Fig. 1. Stator (S) and rotor (R) reference frame

Figure 1 illustrates the transformation between the rotor and stator reference frame, defined
by θ = θ′ + θr . Using (3), this leads to:

θ′ = θ − ωr0t −
Γc

Jω2
c

cos (ωct) (5)
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Thus, the rotor MMF given in (4) can be transformed to the stationary stator reference frame
using (5) and the relation ωr0 = ωs(1 − s)/p :

Fr(θ, t) = Fr cos (pθ − ωst − βcos (ωct)) (6)

with:

β = p
Γc

Jω2
c

(7)

Equation (6) clearly shows that the load torque oscillations at frequency fc lead to a phase
modulation of the rotor MMF in the stator reference frame. This phase modulation is char-
acterized by the introduction of the term βcos(ωct) in the phase of the MMF wave. The
parameter β is generally called the modulation index. For physically reasonable values J, Γc

and ωc, the approximation β ≪ 1 holds in most cases.
The fault has no direct effect on the stator MMF and so it is considered to have the following
form:

Fs(θ, t) = Fs cos
(

pθ − ωst − ϕs
)

(8)

ϕs is the initial phase difference between rotor and stator MMF. As in the case of the rotor
MMF, only the fundamental space and time harmonic is taken into account; higher order
space and time harmonics are neglected.

2.1.2 Effect on Flux Density and Stator Current

The airgap flux density B(θ, t) is the product of total MMF and airgap permeance Λ. The
airgap permeance is supposed to be constant because slotting effects and eccentricity are not
taken into account for the sake of clarity and simplicity.

B (θ, t) = [Fs(θ, t) + Fr(θ, t)]Λ

= Bs cos
(

pθ − ωst − ϕs
)

+ Br cos
(

pθ − ωst − βcos (ωct)
)

(9)

The phase modulation of the flux density B(θ, t) exists for the flux Φ(t) itself, as Φ(t) is ob-
tained by simple integration of B(θ, t) with respect to the winding structure. The winding
structure has only an influence on the amplitudes of the flux harmonic components, not on
their frequencies. Therefore, Φ(t) in an arbitrary phase can be expressed in a general form:

Φ(t) = Φs cos
(

ωst + ϕs
)

+ Φr cos
(

ωst + βcos (ωct)
)

(10)

The relation between the flux and the stator current in a considered phase is given by the
stator voltage equation:

V(t) = Rs I(t) +
dΦ(t)

dt
(11)

With V(t) imposed by the voltage source, the resulting stator current will be in a linear relation
to the time derivative of the phase flux Φ(t) and will have an equivalent frequency content.
Differentiating (10) leads to:

d

dt
Φ(t) = − ωsΦs sin

(

ωst + ϕs
)

− ωsΦr sin
(

ωst + βcos (ωct)
)

+ ωcβ Φr sin
(

ωst + βcos (ωct)
)

sin(ωct)

(12)
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The amplitude of the last term is smaller than that of the other terms because β ≪ 1. Thus, the
last term in (12) will be neglected in the following.
As a consequence, the stator current in an arbitrary phase can be expressed in a general form:

Ito(t) = ist(t) + irt(t)

= Ist sin (ωst + ϕs) + Irt sin
(

ωst + βcos (ωct)
) (13)

Therefore the stator current I(t) can be considered as the sum of two components. The term
ist(t) results from the stator MMF and it is not modulated. The term irt(t), which is a direct
consequence of the rotor MMF shows the phase modulation due to the considered load torque
oscillations. The healthy case is obtained for β = 0.
In this study, the time harmonics of rotor MMF and the non-uniform airgap permeance have
not been considered. However, the harmonics of supply frequency fs and the rotor slot har-
monics will theoretically show the same phase modulation as the fundamental component.

2.2 Airgap Eccentricity

Airgap eccentricity leads to an airgap length that is no longer constant with respect to the
stator circumference angle θ and/or time. In general, three types of airgap eccentricity can be
distinguished (see Fig. 2):

Static eccentricity: The rotor geometrical and rotational centers are identical, but different
from the stator center. The point of minimal airgap length is stationary with respect to
the stator.

Dynamic eccentricity: The rotor geometrical center differs from the rotational center. The
rotational center is identical with the stator geometrical center. The point of minimal
airgap length is moving with respect to the stator.

Mixed eccentricity: The two effects are combined. The rotor geometrical and rotational cen-
ter as well as the stator geometrical center are different.

In the following theoretical development, static and dynamic eccentricity will be considered.

Rotor

Stator

(a) Static eccentricity (b) Dynamic eccentricity (c) Mixed eccentricity

Fig. 2. Schematic representation of static, dynamic and mixed eccentricity. × denotes the rotor
geometrical center, ∗ the rotor rotational center

The airgap length g(θ, t) can be approximated for a small airgap and low levels of static or
dynamic eccentricity by the following expression (Dorrell et al. (1997)):

gse(θ, t) ≈ g0(1 − δs cos(θ))

gde(θ, t) ≈ g0(1 − δd cos(θ − ωrt))
(14)

www.intechopen.com



Mechanical fault detection in induction motor drives through stator  
current monitoring - Theory and application examples 457

where δs, δd denote the relative degrees of static or dynamic eccentricity and g0 the mean
airgap length without eccentricity. Note that static eccentricity can be considered as a special
case of dynamic eccentricity since gse(θ, t) corresponds to gde(θ, t) with ωr = 0, i.e. the point
of minimum airgap length is stationary. Since dynamic eccentricity is more general, it will
mainly be considered in the following.
The airgap permeance Λ(θ, t) is obtained as the inverse of g(θ, t) multiplied by the perme-
ability of free space µ0. Following a classical approach, the permeance is written as a Fourier
series (Cameron & Thomson (1986)):

Λde(θ, t) = Λ0 +
∞

∑
iecc=1

Λiecc
cos(ieccθ − ieccωrt) (15)

where Λ0 = µ0/g0 is the permeance without eccentricity. The higher order coefficients of the
Fourier series can be written as (Cameron & Thomson (1986)):

Λiecc
=

2µ0(1 −
√

1 − δ2)iecc

g0δiecc

d

√
1 − δ2

(16)

Dorrell has shown in (Dorrell (1996)) that the coefficients with iecc ≥ 2 are rather small for
δd < 40%. For the sake of simplicity, they are neglected in the following considerations.
The airgap flux density is the product of permeance with the magnetomotive force (MMF).
The total fundamental MMF wave can be written as:

Ftot(θ, t) = F1 cos(pθ − ωst − ϕt) (17)

with ϕt the initial phase. Hence, the flux density in presence of dynamic eccentricity is:

Bde(θ, t) ≈ B1

[

1 + 2
Λ1

Λ0
cos(θ − ωrt)

]

cos(pθ − ωst − ϕt) (18)

with B1 = Λ0F1

The fraction 2Λ1/Λ0 equals approximately δd for small levels of eccentricity. The airgap flux
density can therefore be written as:

Bde(θ, t) = B1

[

1 + δd cos(θ − ωrt)
]

cos(pθ − ωst − ϕt) (19)

This equation shows the fundamental effect of dynamic eccentricity on the airgap magnetic
flux density : the modified airgap permeance causes an amplitude modulation of the fun-
damental flux density wave with respect to time and space. The AM modulation index is
approximately the degree of dynamic eccentricity δ.
In case of static eccentricity, the fundamental flux density expresses as:

Bse(θ, t) = B1

[

1 + δs cos(θ)
]

cos(pθ − ωst − ϕt) (20)

which shows that static eccentricity leads only to flux density AM with respect to space.
Consequently, the amplitude modulation can also be found on the stator current I(t) (see
section 2.1.2) that is expressed as follows in case of dynamic eccentricity:

Ide(t) = I1

[

1 + αcos(ωrt)
]

cos (ωst − ϕi) (21)

In this expression, I1 denotes the amplitude of the stator current fundamental component,
α the AM modulation index which is proportional to the degree of dynamic eccentricity δd.
Static eccentricity does not lead to frequencies different from ωs since the corresponding ad-
ditional flux density waves are also at the supply pulsation ωs. It can be concluded that
theoretically, pure static eccentricity cannot be detected by stator current analysis.
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3. Signal processing tools for fault detection and diagnosis

The previous section has shown that load torque oscillations cause a phase modulation on one
stator current component according to (13). On the other hand, dynamic airgap eccentricity
leads to amplitude modulation of the stator current (see (21)). In this section, signal processing
methods for detection of both modulation types in the stator current will be presented and
discussed.
In order to simplify calculations, all signals will be considered in their complex form, the so-
called analytical signal (Boashash (2003)) (Flandrin (1999)). The analytical signal z(t) is related
to the real signal x(t) via the Hilbert Transform H{.}:

z(t) = x(t) + jH {x(t)} (22)

The analytical signal contains the same information as the real signal but its Fourier transform
is zero at negative frequencies.

3.1 Power Spectral Density

3.1.1 Definition

The classical method for signal analysis in the frequency domain is the estimation of the Power
Spectral Density (PSD) based on the discrete Fourier transform of the signal x[n]. The PSD
indicates the distribution of signal energy with respect to the frequency. The common estima-
tion method for the PSD is the periodogram Pxx( f ) (Kay (1988)), defined as the square of the
N-point Fourier transform divided by N:

Pxx( f ) =
1

N

∣

∣

∣

∣

∣

N−1

∑
n=0

x(n)e−j2π f n

∣

∣

∣

∣

∣

2

(23)

3.1.2 Application

The PSD represents the basic signal analysis tool for stationary signals i.e. it can be used in
case of a constant or quasi-constant supply frequency during the observation interval.
The absolute value of the Fourier transform |I( f )| of the stator current PM signal (13) is ob-
tained as follows (see Blödt, Chabert, Regnier & Faucher (2006) for details):

|Ito( f )| = (Ist + Irt J0(β)) δ( f − fs)

+ Irt

+∞

∑
n=−∞

Jn(β)δ
(

f − ( fs ± n fc)
) (24)

where Jn denotes the n-th order Bessel function of the first kind and δ( f ) is the Dirac delta
function. For small modulation index β, the Bessel functions of order n ≥ 2 are very small and
may be neglected (the so-called narrowband approximation). It becomes clear through this
expression that the fault leads to sideband components of the fundamental at fs ± n fc. When
the modulation index β is small, only the first order sidebands at fs ± fc will be visible and
their amplitudes will be approximately J1(β)Irt ≈ 0.5βIrt.
The Fourier transform magnitude of the AM stator current signal according to (21) is:

|Ide( f )| = I1 δ ( f − fs) +
1

2
αI1δ ( f − ( fs ± fc)) (25)

The amplitude modulation leads to two sideband components at fs ± fc with equal amplitude
αI1/2. Therefore, the spectral signature of the AM and PM signal is identical if the modulation
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frequency is equal and the PM modulation index is small. This can be the case when e.g. load
unbalance and dynamic rotor eccentricity are considered as faults.
It can be concluded that the PSD is a simple analysis tool for stationary drive conditions. It is
not suitable for analysis when the drive speed is varying. Another drawback is that PM and
AM cannot be clearly distinguished.

3.2 Instantaneous Frequency

3.2.1 Definition

For a complex monocomponent signal z(t) = a(t)ejϕ(t), the instantaneous frequency fi(t) is
defined by (Boashash (2003)):

fi(t) =
1

2π

d

dt
ϕ(t) (26)

where ϕ(t) is the instantaneous phase and a(t) the instantaneous amplitude of the analytical
signal z(t).

3.2.2 Application

The instantaneous frequency (IF) of a monocomponent phase modulated signal can be calcu-
lated using the definition (26). For the phase modulated stator current component irt(t) (see
second term of equation (13)), it can be expressed as:

fi,irt
(t) = fs − fcβsin(ωct) (27)

The fault has therefore a direct effect on the IF of the stator current component irt(t). In the
healthy case, its IF is constant; in the faulty case, a time varying component with frequency fc

appears.
If the complex multicomponent PM signal according to (13) is considered, the calculation of
its IF leads to the following expression:

fi,I(t) = fs − fcβsin(ωct)
1

1 + a(t)
(28)

with

a(t) =
I2
st + Ist Irt cos (βcos (ωct)− ϕs)

I2
rt + Ist Irt cos (βcos (ωct)− ϕs)

(29)

Using reasonable approximations, it can be shown that 1/ (1 + a(t)) is composed of a constant
component with only small oscillations. Hence, the IF of (13) may be approximated by:

fi,I(t) ≈ fs − C fcβsin(ωct) (30)

where C is a constant, C < 1. Numerical evaluations confirm this approximation. It can there-
fore be concluded, that the multicomponent PM signal IF corresponding to the stator current
also shows fault-related oscillations at fc which may be used for detection.
The IF of an AM stator current signal according to (21) is simply a constant at frequency fs.
In contrast to the PM stator current signal, no time-variable component is present. The AM
modulation index α is not reflected in the IF. Consequently, the stator current IF cannot be
used for amplitude modulation detection i.e. airgap eccentricity related faults.
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3.3 Wigner Distribution

The Wigner Distribution (WD) belongs to the class of time-frequency signal analysis tools. It
provides a signal representation with respect to time and frequency which can be interpreted
as a distribution of the signal energy.

3.3.1 Definition

The WD is defined as follows (Flandrin (1999)):

Wx(t, f ) =
∫ +∞

−∞
x
(

t +
τ

2

)

x∗
(

t −
τ

2

)

e−j2π f τd τ (31)

This formula can be seen as the Fourier transform of a kernel Kx(τ, t) with respect to the delay
variable τ. The kernel is similar to an autocorrelation function.
An interesting property of the WD is its perfect concentration on the instantaneous frequency
in the case of a linear frequency modulation. However, other types of modulations (e.g. in
our case sinusoidal phase modulations) produce so-called inner interference terms in the dis-
tribution (Mecklenbräuker & Hlawatsch (1997)). Note that the interferences may however be
used for detection purposes as it will be shown in the following.
Another important drawback of the distribution is its non-linearity due to the quadratic na-
ture. When the sum of two signals is considered, so-called outer interference terms appear in
the distribution at time instants or frequencies where there should not be any signal energy
(Mecklenbräuker & Hlawatsch (1997)). The interference terms can be reduced by using e.g.
the Pseudo Wigner Distribution which includes an additional smoothing window (see section
3.4).

3.3.2 Application

The stator current in the presence of load torque oscillations can be considered as the sum of
a pure frequency and a phase modulated signal (see (13)). The detailed calculations of the
stator current WD can be found in (Blödt, Chabert, Regnier & Faucher (2006)). The following
approximate expression is obtained for small β:

Wipm
(t, f ) ≈

(

I2
rt + I2

st

)

δ( f − fs)

− I2
rtβsin (ωct) δ( f − fs −

fc

2
)

+ I2
rtβsin (ωct) δ( f − fs +

fc

2
)

(32)

The WD of the PM stator current is therefore a central frequency at fs with sidebands at fs ±

fc/2. These components have time-varying amplitudes at frequency fc. It is important to note
that the lower sideband has the opposed sign to the upper sideband for a given point in time
i.e. a phase shift of π exists theoretically between the two sidebands.
The WD of the AM signal according to (21) is calculated in details in (Blödt, Regnier & Faucher
(2006)). The following approximate expression is obtained for small modulation indices α:

Wiam
(t, f ) ≈ I2

1 δ ( f − fs) + αcos (ωrt) I2
1 δ

(

f − fs ±
fr

2

)

(33)

The AM signature on the WD is therefore sidebands at fs ± fr/2. The sidebands oscillate at
shaft rotational frequency fr, their amplitude is αI2

1 . It should be noted that the signature is
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similar to the PM signal but with the important difference that the upper and lower sideband
oscillations have the same amplitudes for a given point in time i.e. they are in phase.

3.4 Illustration with Synthesized Signals

In order to validate the preceding theoretical considerations, the periodogram and WD of
AM and PM signals are calculated numerically with synthesized signals. The signals are dis-
crete versions of the continuous time signals in (13) and (21) with the following parameters:

Ist = Irt =
√

2/2, I1 =
√

2, α = β = 0.1, ϕs = −π/8, fs = 0.25 and fc = fr = 0.125 normalized
frequency. These parameters are coherent with a realistic application, apart from the strong
modulation indices which are used for demonstration purposes. White zero-mean Gaussian
noise is added with a signal to noise ration of 50 dB. The signal length is N = 512 samples.
First, the periodogram of both signals is calculated (see Fig. 3). Both spectra show the funda-
mental component with sidebands at fs ± fr. The higher order sidebands of the PM signal are
buried in the noise floor so that both spectral signatures are identical.

Fig. 3. Power spectral density of synthesized PM and AM signals.

The WD is often replaced in practical applications with the Pseudo Wigner Distribution
(PWD). The PWD is a smoothed and windowed version of the WD, defined as follows: (Flan-
drin (1999)):

PWx(t, f ) =
∫ +∞

−∞
p(τ)x

(

t +
τ

2

)

x∗
(

t − τ

2

)

e−j2π f τd τ (34)

where p(τ) is the smoothing window. In the following, a Hanning window of length N/4
is used. The time-frequency distributions are calculated using the Matlab R© Time-Frequency
Toolbox (Auger et al. (1995/1996)). The PWD of the PM and AM stator current signals is dis-
played in Fig. 4. A constant frequency at fs = 0.25 is visible in each case. Sidebands resulting
from modulation appear at fs ± fr/2 in both cases. The zoom on the interference structure
shows that the sidebands are oscillating at fr. According to the theory, the sidebands are
phase-shifted by approximately π in the PM case whereas they are in phase with the AM
signal.
For illustrating the stator current IF analysis, a simulated transient stator current signal is
used. The supply frequency fs(t) varies from 0.05 to 0.25 normalized frequency. The modu-
lation frequency fc(t) is half the supply frequency. The IF of the transient PM and AM stator
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Fig. 4. Pseudo Wigner Distribution of synthesized PM and AM signals with zoom on interfer-
ence structure.

current signal is shown in Fig. 5. The linear evolution of the supply frequency is clearly visi-
ble apart from border effects. With the PM signal, oscillations at varying fault frequency fc(t)
can be recognized. In case of the AM signal, no oscillations are present. Further IF and PWD
analysis with automatic extraction of fault indicators is described in (Blödt, Bonacci, Regnier,
Chabert & Faucher (2008)).
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(b) AM signal

Fig. 5. Instantaneous frequency of simulated transient PM and AM signals.
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3.5 Summary

Several signal processing methods suitable for the detection of mechanical faults by stator
current analysis have been presented. Classical spectral analysis based on the PSD can give
a first indication of a possible fault by an increase of sidebands at fs ± fr. This method can
only be applied in case of stationary signals without important variations of the supply fre-
quency. The IF can be used to detect phase modulations since they lead to a time-varying IF. A
global time-frequency signal analysis is possible using the WD or PWD where a characteristic
interference structure appears in presence of the phase or amplitude modulations. The three
methods have been illustrated with simulated signals.

4. Detection of dynamic airgap eccentricity and load torque oscillations under lab-

oratory conditions

4.1 Experimental Setup

Laboratory tests have been performed on an experimental setup (see Fig.6) with a three phase,
400 V, 50 Hz, 5.5 kW Leroy Somer induction motor (motor A). The motor has p = 2 pole pairs
and its nominal torque Γn is about 36 Nm. The machine is supplied by a standard industrial
inverter operating in open-loop condition with a constant voltage to frequency ratio. The
switching frequency is 3 kHz.
The load is a DC motor with separate, constant excitation connected to a resistor through a
DC/DC buck converter. A standard PI controller regulates the DC motor armature current.
Thus, using an appropriate current reference signal, a constant torque with a small additional
oscillating component can be introduced. The sinusoidal oscillation is provided through a
voltage controlled oscillator (VCO) linked to a speed sensor.
Since the produced load torque oscillations are not a realistic fault, load unbalance is also
examined. Thereto, a mass is fixed on a disc mounted on the shaft. The torque oscillation
produced by such a load unbalance is sinusoidal at shaft rotational frequency. With the cho-
sen mass and distance, the torque oscillation amplitude is Γc = 0.04 Nm. If the motor bear-
ings are healthy, the additional centrifugal forces created by the mass will not lead to airgap
eccentricity.
A second induction motor with identical parameters has been modified to introduce dynamic
airgap eccentricity (motor B). Therefore, the bearings have been replaced with bearings having
a larger inner diameter. Then, eccentrical fitting sleeves have been inserted between the shaft
and the inner race. The obtained degree of dynamic eccentricity is approximately 40%.
Measured quantities in the experimental setup include the stator voltages and currents, torque
and shaft speed. The signals are simultaneously acquired through a 24 bit data acquisition
board at 25 kHz sampling frequency. Further signal processing is done off-line with Matlab R©.

4.2 Stator Current Spectrum Analysis

For illustration purposes, the stator current spectral signatures of a machine with dynamic
eccentricity (motor B) are compared to an operation with load torque oscillations at frequency
fc = fr (motor A). In Fig. 7 the current spectrum of a motor with 40% dynamic eccentricity is
compared to an operation with load torque oscillations of amplitude Γc=0.14 Nm. This cor-
responds to only 0.4% of the nominal torque. The healthy motor spectrum is also displayed
and the average load is 10% of nominal load during this test. The stator current spectra show
identical fault signatures around the fundamental frequency i.e. an increasing amplitude of
the peaks at fs ± fr ≈ 25 Hz and 75 Hz. This behavior is identical under different load condi-
tions.
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Fig. 6. Scheme of experimental setup

Fig. 7. Comparison of experimental motor stator current spectra: 40 % eccentricity (B) vs.
healthy machine (A) and 0.14 Nm load torque oscillation (A) vs. healthy machine (A) at 10%
average load.

The stator current with load unbalance is analyzed in Fig. 8. A small weight has been fixed on
the disc on the shaft and the amplitude of the introduced torque oscillation is Γc = 0.04 Nm.
The load unbalance as a realistic fault also leads to a rise in sideband amplitudes at fs ± fr.
These examples show that a monitoring strategy based on the spectral components fs ± fr

can be used efficiently for detection purposes. In all three cases, these components show a
considerable rise. However, this monitoring approach cannot distinguish between dynamic
eccentricity and load torque oscillations.
In the following, transient stator current signals are also considered. They are obtained during
motor startup between standstill and nominal supply frequency. The frequency sweep rate
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Fig. 8. PSD of stator current with load unbalance Γc = 0.04 Nm vs. healthy case

is 10 Hz per second i.e. the startup takes 5 seconds. For the following analysis, the transient
between fs = 10 Hz and 48 Hz is extracted. The PSD of a healthy and faulty transient signal are
displayed in Fig. 9. This example illustrates that classic spectral estimation is not appropriate
for transient signal analysis. The broad peak due to the time-varying supply frequency masks
all other phenomena. The faulty and healthy case cannot be distinguished.
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Fig. 9. PSD of stator current during speed transient with load torque oscillation Γc = 0.22 Nm
vs. healthy case.

4.3 Stator Current Instantaneous Frequency Analysis

In this section, instantaneous frequency analysis will be applied to the stator current signals.
The original signal has been lowpass filtered and downsampled to 200 Hz in order to remove
high frequency content before time-frequency analysis. Only the information in a frequency
range around the fundamental is conserved.
First, a transient stator current IF is shown in Fig. 10 for the healthy case and with a load torque
oscillation Γc = 0.5 Nm. When load torque oscillations are present, the IF oscillations increase.
The oscillation frequency is approximately half the supply frequency which corresponds to
the shaft rotational frequency fr.
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Fig. 10. Example of transient stator current IF with load torque oscillation (Γc = 0.5 Nm) vs.
healthy case, 25% load.

For further analysis, the IF spectrogram can be employed. The spectrogram is a time-
frequency signal analysis based on sliding short time Fourier transforms. More information
can be found in (Boashash (2003)) (Flandrin (1999)). The two spectrograms depicted in Fig. 11
analyze the stator current IF during a motor startup with a small oscillation of Γc = 0.22 Nm
and 10% average load. Besides the strong DC level at 0 Hz in the spectrogram, time varying
components can already be noticed in the healthy case (a). They correspond to the supply
frequency fs(t) and its second harmonic. Comparing the spectrogram of the healthy IF to
the one with load torque oscillations (b), a fault-related component at fr(t) becomes clearly
visible. More information about IF analysis can be found in (Blödt (2006)).
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Fig. 11. Spectrogram of transient stator current IF with load torque oscillation Γc = 0.22 Nm
vs. healthy case, 10% load.

4.4 Pseudo Wigner Distribution of Stator Current

The previously considered transient signals are also analyzed with the PWD. Figure 12 shows
an example of the stator current PWD during a motor startup. Comparing the healthy case
to 0.22 Nm load torque oscillations, the characteristic interference signature becomes visible
around the time-varying fundamental frequency. Since the fault frequency is also time vari-
able, the sideband location and their oscillation frequency depend on time (Blödt et al. (2005)).
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(b) 0.22 Nm torque oscillation

Fig. 12. PWD of transient stator current in healthy case and with load torque oscillation, 10%
average load.

It is thereafter verified if dynamic eccentricity and load torque oscillations can be distin-
guished through the stator current PWD. The stator current PWDs with dynamic eccentric-
ity and with 0.14 Nm load torque oscillation are shown in Fig. 13 for 10% average load. The
characteristic fault signature is visible in both cases at fs ± fr/2 = 37.5 Hz and 62.5 Hz. The
phase shift between the upper and lower sideband seems closer to zero with eccentricity
whereas with torque oscillations, it is closer to π. Nevertheless, it is difficult to determine
the exact value from a visual analysis. However, the phase difference between the upper and
lower sidebands can be automatically extracted from the PWD (see (Blödt, Regnier & Faucher
(2006)). The result is about 125◦ with load torque oscillations and around 90◦ with dynamic
eccentricity. These values differ from the theoretical ones (180◦ and 0◦ respectively) but this
can be explained with load torque oscillations occurring as a consequence of dynamic eccen-
tricity. A detailed discussion can be found in (Blödt, Regnier & Faucher (2006)). However, the
phase shifts are sufficient to distinguish the two faults.

Fig. 13. Detail of stator current PWD with 40% dynamic eccentricity (B) and 0.14 Nm load
torque oscillation (A) at small average load
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