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1. Introduction 

Video compression is a very efficient method for storage and transmission of digital video 
signal. The applications include multimedia transmission, teleconferencing, videophone, high-
definition television (HDTV), CD-ROM storages, etc. The hybrid coding techniques based on 
predictive and transform coding are the most popular and adopted by many video coding 
standards such as MPEG-1/2/4 [1] and H.261/H.263/H.264 [2, 3], owing to its high 
compression efficiency. In the hybrid coding system, the motion compensation, first proposed 
by Netravali and Robbins in 1997, plays a key role from the view point of coding efficiency 
and implementation cost [4-11]. A generic hybrid video coder is depicted in Figure 1.   
 

 
Fig. 1. A generic hybrid motion compensated DCT video coder. 
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The main idea of video compression to achieve compression is to remove spatial and 
temporal redundancies existing in video sequences. The temporal redundancy is usually 
removed by a motion compensated prediction scheme, whereas the spatial redundancy left 
in the prediction error is commonly reduced by a discrete cosine transform (DCT) coder. 
Motion compensated is a predictive technique in temporal direction, which compensates for 
the displacements of moving objects from the reference frame to the current frame. The 
displacement is obtained with the so-called motion vector estimation. Motion estimation 
obtains the motion compensated prediction by finding the motion vector (MV) between the 
reference frame and the current frame. 
The most popular technique used for motion compensation (MC) is the block-matching 
algorithm (BMA) due to its simplicity and reasonable performance. In a typical BMA, the 

current frame of a video sequence is divided into non-overlapping square blocks of N N×  

pixels. For each reference block in the current frame, BMA searches for the best matched 

block within a search window of size (2 1) (2 1)P P+ × +  in the previous frame, where P  

stands for the maximum allowed displacement. Figure 2 depicts the basic principle of block 
matching.  
In general, BMAs are affected by following factors: (i) search area, (ii) matching criterion, 
and (iii) searching scheme. The matching criterion is to measure the similarity between the 
block of the current frame and candidate block of the reference frame. Two typical matching 
criteria are mean square error (MSE) and mean absolute error (MAE), which are defined 
respectively as below: 
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where ( , , )f x y k  denotes the coordinate of the top left corner of the searching block of the 

current frame k, and ( , )u v  is the displacement of the matching block of frame 1k − . The 

MAE is the most popular matching criterion due to its simplicity of hardware 

implementation. 
 The searching scheme is very important because it is significantly related to with the 

computational complexity and accuracy of motion estimation for general video applications. 

A straightforward way to obtain the motion vector is the full search algorithm (FSA), which 

searches all locations in the search window and selects the position with minimal matching 

error. However, its high computational complexity makes it often not suitable for real-time 

implementation. Therefore, many fast search algorithms have been developed to reduce the 

computational cost. In general, fast search algorithms reduce the computational burden by 

limiting the number of search locations or by sub-sampling the pixels of a block. However, 

they often converge to a local minimum, which leads to worse performance. 

Most search algorithms estimate the motion vector (MV) for each block independently. In 

general moving scenes, it is very likely that a large homogeneous area in the picture frame 

will move in the same direction with similar velocities. Therefore, the displacements 

between neighboring blocks are highly correlated. Some schemes take advantage of this 

correlation to reduce the computational complexity [14-16]. 
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Fig. 2. Block matching algorithm. 

There are two major problems for the existing fast search algorithms. One is that the 
estimation accuracy in terms of the energy or the entropy of the motion-compensated 
prediction error (MCPE) signal is worse than that of FSA. The other is that the true motion 
may not be obtained even with FSA, which is very important in some applications such as 
motion compensated interpolation and frame (field) rate conversion. Bierling [17] proposed 
a hierarchical search scheme to achieve a truer (smoother) motion vector field over FSA, but 
it results in a worse performance in terms of the energy of the MCPE signal. 
The above two problems may arise from the following reasons [18]: (i) the basic 

assumptions, including pure translation, unchanged illumination in consecutive frames and 

noiseless environment, are not exactly correct; furthermore, another assumption that the 

occlusion of one object by another and uncovered background are neglected is also not 

exactly correct, (ii) the size of a moving object may not be equal to the prescribed block size, 

(iii) the fast search schemes often converge to a local optimum. In Section 2, we will 

introduce how to overcome these problems with a relatively low computational cost. We 

neither relax the above assumptions nor develop a globally optimal search scheme. Instead, 

we use the Kalman filter to compensate the incorrect and/or inaccurate estimates of motion. 

We first obtain a measurement of motion vector of a block by using a conventional fast 

search scheme. We then generate the predicted motion vector utilizing the motion 

correlation between spatial neighboring blocks. Based on the predicted and measured 

motion information, a Kalman filter is employed to obtain the optimal estimate of motion 

vector. In the new method, a local Kalman filter is developed, which is based on a novel 
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motion model that exploits both spatial and temporal motion correlations. The proposed 

local Kalman filter successfully addresses the difficulty of multi-dimensional state space 

representation, and thus it is simpler and more computationally efficient than the 

conventional 2-D Kalman filter such as reduced update Kalman filter (RUKF) [19]. In 

addition, we will also introduce an adaptive scheme to further improve estimate accuracy 

while without sending extra side information to the decoder. 

In low- or very low- bit rate applications such as videoconference and videophone, the 
percentage of MV bit rate increases when overall rate budget decreases. Thus, the coding of 
MVs takes up a significant portion of the bandwidth [20]. Then in very low bit rate 
compression, the motion compensation must consider the assigned MV rate simultaneously. 
A joint rate and distortion (R-D) optimal motion estimation has been developed to achieve 
the trade-off between MV coding and residue coding [20-28]. In [25], a global optimum R-D 
motion estimation scheme is developed. The scheme achieves significant improvement of 
performance, but it employs Viterbi algorithm for optimization, which is very complicated 
and results in a significant time delay. In [26], a local optimum R-D motion estimation 
criterion was presented. It effectively reduces the complexity at the cost of performance 
degradation. 
In Section 3, we will introduce two Kalman filter-based methods to improve the 

conventional R-D motion estimation, which are referred to as enhanced algorithm and 

embedded algorithm, respectively. In the enhanced algorithm, the Kalman filter is 

employed as a post processing of MV, which extends the integer-pixel accuracy of MV to 

fractional-pixel accuracy, thus enhancing the performance of motion compensation. Because 

the Kalman filter exists in both encoder and decoder, the method achieves higher 

compensation quality without increasing the bit rate for MV. 

In the embedded algorithm, the Kalman filter is applied directly during the process of 

optimization of motion estimation. Since the R-D motion estimation consider compensation 

error (distortion) and bit rate simultaneously, when Kalman filter is applied the distortion 

will be reduced, and thus lowering the cost function. Therefore, the embedded algorithm 

can improve distortion and bit rate simultaneously. Specifically, this approach can be 

combined with existing advanced motion estimation algorithms such as overlapped block 

motion compensation (OBMC) [29,30], and those recommended in H.264 or MPEG-4 AVC 

[31, 32]. 

2. Motion estimation with Kalman filter 

2.1 Review of Kalman filter 
The Kalman filtering algorithm estimates the states of a system from noisy measurement 

[33-36]. There are two major features in Kalman filter. One is its mathematical formulation is 

described in terms of state-space representation, and the other is that its solution is 

computed recursively. It consists of two consecutive stages: prediction and updating. We 

summarize the Kaman filter algorithm as follows:  

 Predicted equation: ( ) ( ) ( ) ( ) ( )kkkkk wΓvΦv +−−= 11 ,  (1) 

 Measurement equation: ( ) ( ) ( ) ( )kkkk nvHz += , (2) 
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where v(k) and z(k) are state and measurement vector at time k, and �H and � are state 
transition, measurement and driving matrix, respectively. The model error w(k), with 
covariance matrix Q(k), and measurement error n(k), with covariance matrix R(k), are often 
assumed to be Gaussian white noises; we assume that w(k)~N(0,Q(k)), n(k)~N(0,R(k)) and 

E[w(k)nT(l)]=0 for all k and l. Let ˆ[ (0)] (0)E =v v , and 

)0(]))0(ˆ)0())(0(ˆ)0([( Pvvvv =−− T
E  be initial values. The prediction and updating 

are given as follows. 
Prediction: 

 State prediction: ˆ ˆ( ) ( 1) ( 1)k k k
− += − −v Φ v  (3) 

Prediction-error covariance: 

)()1()()1()1()1()( kkkkkkk
TT ΓQΓΦPΦP −+−−−= +−

 (4) 

Updating: 

 State updating: )](ˆ)()()[()(ˆ)(ˆ kkkkkk
−−+ −+= vHzKvv  (5) 

 Updating-error covariance: )()]()([)( kkkk
−+ −= PHKIP  (6) 

 Kalman gain matrix: 
1)]()()()()[()()( −−− += kkkkkkk

T
RHPHHPK  (7) 

The P(k) is the error covariance matrix that is associated with the state estimate v(k), and is 
defined as 

 ˆ ˆ( ) [( ( ) ( ))( ( ) ( )) ]T
k E k k k k= − −P v v v v . (8) 

The superscripts “-“ and “+” denote “before” and “after” measurement, respectively. The 
error covariance matrix P(k) provides a statistical measure of the uncertainty in v(k). 

2.2 The overview of motion estimation with Kalman filter 
In general, for moving scenes, the motion vectors among neighboring blocks are highly 
correlated. Therefore, the MV of the current block can be predicted from its neighboring 
blocks if an appropriate motion model is employed. Furthermore, any existing searching 
algorithms can be used to measure the MV. Using the predicted MV and the measured MV, 
a motion estimation method was developed, as depicted in Figure 3. The MV obtained with 
any conventional searching algorithm is defined as measurement, z(k). The measurement is 
then inputted to the Kalman filter and the updating estimate of MV could be obtained [37]. 
Because an identical Kalman filter will be used in the decoder, we can only send z(k), which 

is an integer, instead of ˆ ( )kv , which is a real in general, to the receiver. By the same 

procedure, we can estimate ˆ ( )kv  in the receiver, therefore we can achieve fractional-pixel 

accuracy with the bit rate of integer motion vector. In summary, there are two advantages 
for the new method: (i) it improves the performance of any conventional motion estimation 
due to the fractional-pixel accuracy; (ii) the transmitted bit rate for the motion vector is the 
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same as that of the input integer motion vector, therefore, the new method is compatible 
with the current video coding standards. 
 In the following, we will first introduce a motion model that exploits both spatial and 

temporal motion correlations, and then a local Kalman filter is developed accordingly. The 

local Kalman filter is simpler and more computationally efficient than the conventional 2-D 

Kalman filter such as RUKF. Therefore, it is more suitable for the real-time applications [48-

49]. In addition, to further improve the motion estimate accuracy, we also introduce an 

adaptive scheme. The scheme can automatically adjust the uncertainty of prediction and 

measurement; however, it needs not to send side information to the decoder. 

 

 
 

Fig. 3. Block diagram of motion estimation with Kalman filter 

2.3 Motion estimation using Local Kalman Filter (LKF) 
Let B(m,n,i) be the block at the location (m,n) in the ith frame, and 

V(m,n,i)=[vx(m,n,i),vy(m,n,i)]T be the MV of B(m,n,i), where vx(m,n,i) and vy(m,n,i) denote the 

horizontal and vertical components, respectively. Assume that the MV is a random process, 

and the two components are independent. Then we can model these two components 

separately. In this work, we present a three-dimensional (3-D) AR model that exploits the 

relationship of motion vectors for only 3-D neighboring blocks that arrive at before the 

current block. We only choose the nearest neighboring blocks, in which the motion vectors 

are strongly correlated. We refer to this model as 3-D local model, which is expressed as 

 ( ) ( )( ), ,

, , , , ( , , )
x klp x x

k l p S

v m n i a v m k n l i p w m n i
⊕∈

= − − − +∑∑ ∑ , (9) 

 ( ) ( ), ,

, , ( , , ) ( , , )
y klp y y

k l p S

v m n i a v m k n l i p w m n i
⊕∈

= − − − +∑∑ ∑ , (10) 

where { } { } { }0, 1, 0 1, 1, 0 1, 1, 1S l k p l k p l k p
⊕ = = = = ∪ = ≤ = ∪ ≤ ≤ = . The support of the 

model mentioned above is depicted in Figure 4. 
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Fig. 4. Causal AR models for motion vector associated with spatial and temporal 
neighborhood system. 

2.3.1 State space representation of MV model 
For the fully state propagation, we must represent the proposed models of Eqs. (9) and (10) 
in a state space. This will yield a 13-dimensional state vector. The high-dimension state 
vector will result in a huge computation for estimating the motion vector. To attack the 
computation problem, we decompose the AR model into two parts: filtering and prediction. 
The prediction part will not affect the state propagation; thus it is considered as a 
deterministic input. Consequently, the state space representation can be formulated as  

 ( , , ) ( 1, , ) ( , , ) ( , , )m n i m n i m n i m n i= Φ − + Λ + Γv v u w , (11) 

 ( , , ) H ( , , ) ( , , )m n i m n i m n i= +z v e . (12) 

In the above equations, v(m,n,i) represents the state vector at the location (m,n,i); u(m,n,i) 

denotes a deterministic input; and Φ, Λ, Γ and H are the corresponding matrices. In our 
work, the deterministic input is defined as the prediction part of the model, which will be 
used to implement the local Kalman filter (LKF). Since the motion estimation processes the 
block one by one according to the order of raster scan, the state propagation should be 
performed in one-dimensional manner, as depicted in Eq. (11). 
The main idea in LKF is the approximation of the MV v(m,n,i), which can not be represented 
in terms of v(m-1,n,i). We will demonstrate the state space representation in Eqs. (13) and 
(14) as follows.   

 ( , , ) ( 1, , ) ( , , ) ( , , )m n i m n i m n i m n i= Φ − + Λ + Γv v u w   (13) 

where 
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 ( , , ) ( , , ) ( , , )m n i m n i m n i= +z Hv e  (14) 

where 
( , , )

( , , )
( 2, 1, )

z m n i
m n i

z m n i

⎡ ⎤= ⎢ ⎥+ −⎣ ⎦z , 
1 0 0 0 0 0

0 0 1 0 0 0

⎡ ⎤= ⎢ ⎥⎣ ⎦H  and 
( , , )

( , , )
( 2, 1, )

e m n i
m n i

e m n i

⎡ ⎤= ⎢ ⎥+ −⎣ ⎦e . 

The motion vector v(m,n,i), which can not be represented in terms of v(m-1,n,i), consists of 
two components: v(m+2,n-1,i) and v(m+1,n,i-1). We use the most recent estimate with 
uncertainty to approximate them, i.e., 

 ( ) ˆ2, 1, ( 2, 1, ) ( 2, 1, )v m n i v m n i e m n i+ − = + − + + − , (15) 

 ( ) ( ) ( )ˆ1, , 1 1, , 1 1, , 1v m n i v m n i w m n i+ − = + − + + − , (16) 

The above equations indicate that the best available estimate is the most recent update of the 
MV, which is available at time (m,n,i). The current frame MV, v(m+2,n-1,i), is incorporated 
into measurement, and the previous frame MV, v(m+1,n,i -1), is incorporated into 
deterministic input. In our work, the covariance of these two uncertainties is given a small 
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value for simplicity. Through the above process, the motion estimation with 3-D AR model 
can be realized by 1-D recursive manner. 
Given these models, the Kalman filter is described in the following: 
<1> Prediction 

 State prediction: ),,(),,1(ˆΦ),,(ˆ inminminm uvv Λ+−= +−
 (17) 

 Prediction-error covariance: 
TT

inminminm Γ),,(ΓΦ),,1(Φ),,( QPP +−= +−
 (18) 

<2> Updating: 

 State updating: )],,(ˆ),,()[,,(),,(ˆ),,(ˆ inminminminminm
−−+ −+= vHzKvv  (19) 

 Updating-error covariance: ),,(]),,([),,( inminminm
−+ −= PHKIP  (20) 

 Kalman gain matrix: 
1)],,(),,([),,(),,( −−− += inminminminm

TT
RHHPHPK (21) 

The P(m,n,i) is the error covariance matrix that is associated with the state estimate v(m,n,i), 
R(m,n,i) and Q(m,n,i) are the covariance of e(m,n,i) and w(m,n,i), respectively. 
However, the local model can be simplified to consider only spatial or temporal support, 
and then the motion model and the corresponding state space representation are modified 
accordingly. 

2.3.2 Spatial causal AR models for MV 
Let B(m,n,i) be the block at the location (m,n) in the ith frame, and 
V(m,n,i)=[vx(m,n,i),vy(m,n,i)]T be the MV of B(m,n,i), where vx(m,n,i) and vy(m,n,i) denote the 
horizontal and vertical components, respectively. Assume that the MV is a random process, 
and the two components are independent. A 2-D AR model exploits the motion information 
of only 2-D neighboring blocks that arrived before the current block. In the block matching, 
the calculation of matching criterion is performed block-by-block in a raster scan manner, 
i.e., from left to right and top to bottom. Thus we can define the 2-D AR model for a motion 
vector as 

 ∑ ∑ +∈
+−−=

Slk

xixiklxi inmwilnkmvav
),(

,,0, ),,(),,( , (22) 

 ∑ ∑ +∈
+−−=

Slk

yiyiklyi inmwilnkmvav
),(

,,0, ),,(),,( , (23) 

where { } { },  0,  1S k l l k l
+ = ≥ ∀ ∪ = ≥  is the model support, and akl0 are the model 

coefficients, which can be space varying or space invariant. For simplicity, we assume that 

the model is space invariant. Eq. (22) and (23) are also called the nonsymmetric half-plane 

(NSHP) model [19]. 
We only chose the nearest neighboring blocks in both horizontal and vertical direction 
because their motions are strongly correlated. We call this model as 2-D local motion model. 
In such case, Eq. (22) and (23) can be simplified as 
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−= − + + −
+ − + − − +  (25) 

The support of the model mentioned above is depicted in Figure 5. 
 

 

Fig. 5. Causal AR models for motion vector associated with spatial neighboring blocks. 

2.3.3 State space representation of spatial local AR model 
For the full state propagation, we must represent the proposed models, Eq. (11) and (12), in 
a state space. Since the Kalman filter is implemented by one-dimensional recursion, it is very 
difficult to transfer the two-dimensional AR model into one-dimensional state space 
representation [39,40]. To attack this problem, we introduce an extra deterministic input into 
the conventional state-space equations, and then we have the state-space representation as 
follows. 
Predicted equation: 

 ( , , ) ( 1, , ) ( , , ) ( , , )m n i m n i m n i m n i= Φ − + Λ + Γv v u w , (26) 

where v(m,n,i) represents the state vector at the location (m,n,i); u(m,n,i) is the introduced 

deterministic input; and Φ, Λ, Γ and H are the corresponding matrices. They are respectively 
defined as 
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Φ , 

0

0

1

0

0

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

Λ , and 

1 0

0 0

0 1

0 0

0 0

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

Γ . 

 

Measurement equation: 

  z( , , )  ( , , ) ( , , )m n i m n i e m n i= +H v , (27) 

where [ ]1 0 0 0 0=H . 

Because the element v(m+2,n-1,i) of the motion vector v(m,n,i) can not be written in terms of 

its previous state, here we use the most recent estimate to approximate it, i.e., 

 ( ) ˆ2, 1, ( 2, 1, ) ( 2, 1, )v m n i v m n i w m n i+ − = + − + + − . (28) 

 

The above equations indicate that the best available estimate is the most recent update of the 

MV, which is available at time (m,n,i). Through the above process, the motion estimation 

based on 2-D AR model can be realized by 1-D recursive manner. 

2.3.4 Temporal causal AR models for MV 
Using the similar definition of the above spatial model, the AR models in the temporal 
direction are defined as  

 ( ) ( )( ), ,

, , , , ( , , )
x klp x x

k l p S

v m n i a v m k n l i p w m n i
⊕∈

= − − − +∑∑ ∑ , (29) 

 ( ) ( ), ,

, , ( , , ) ( , , )
y klp y y

k l p S

v m n i a v m k n l i p w m n i
⊕∈

= − − − +∑∑ ∑ , (30) 

where { }1,  1,  1S l k p
⊕ = ≤ ≤ = . Like the spatial local model, only the adjacent 

neighboring blocks are considered as model support, as shown in Figure 6. In such case, the 

state-space representation of Eq. (29) and (30) are 
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Predicted equation: 

 ( ) ( )

( )( )( )( )( )( )( )( )

001

1, 1, 1

, 1, 1

1, 1, 1

1, , 1
, , , , 1 ( , , )

1, , 1

1, 1, 1

, 1, 1

1, 1, 1

v m n i

v m n i

v m n i

v m n i
v m n i a v m n i w m n i

v m n i

v m n i

v m n i

v m n i

⎡ ⎤+ − −⎢ ⎥− −⎢ ⎥⎢ ⎥− − −⎢ ⎥+ −⎢ ⎥= − + +⎢ ⎥− −⎢ ⎥+ + −⎢ ⎥⎢ ⎥+ −⎢ ⎥⎢ ⎥− + −⎣ ⎦

Λ , (31) 

where [ ]111 011 111 101 101 1 11 0 11 1 11
a a a a a a a a− − − − − −=Λ . 

Measurement equation: 

 ( , , ) ( , , ) ( , , )z m n i v m n i e m n i= + . (32) 

 

Fig. 6. Causal AR models for motion vector associated with temporal neighboring blocks. 

Once the motion models and their state space representation are available, same procedure 
can then be obtained as in Section 2.3.1. 

2.4 Adaptive Kalman filtering 
In general, the motion correlation between the adjacent blocks cannot be modeled exactly. 
Similarly, the measurement of motion vector may have error due to incorrect, inaccurate 
and low precision estimation algorithms. Therefore, there exist uncertainties in both 
prediction and measurement processes. The uncertainties of prediction and measurement 
are represented by zero mean white Gaussian noise w(m,n,i) and e(m,n,i) with variance 
q(m,n,i) and r(m,n,i), respectively. In Kalman filtering algorithm, the Kalman gain depends 
on q(m,n,i) and r(m,n,i); therefore, the variances will determine the relative amount of 
updating using prediction or measurement information [41]. Due to the nonstationary 
nature of motion vector fields, the values of the variances q(m,n,i) and r(m,n,i) should be 
adjusted block by block to achieve better performance. 
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In [37], we introduced a distortion function, D1 and D2, to measure the uncertainty for both 
prediction and measurement, and use the distortion function as a reliability criterion. Based 
on such concept, we calculate the covariance q(m,n,i) and r(m,n,i) that are closely related to 
D1 and D2, and then obtain a time-varying Kalman gain. This results in more reliable 
estimate of MV. The idea behind the procedure is that we use the actual distortion of 
prediction and measurement to adjust the covariance instead of the conventional complex 
statistical on-line approaches [37]. Because the distortion measured is more trustworthy than 
any assumption, the developed scheme achieves very good performance as demonstrated in 
[37]. The major disadvantages of the scheme are: (i) it needs to send extra side-information, 
(ii) it increases the overall bit rate, and (iii) the bit stream may be not compatible with the 
current video coding standard. To overcome this problem, we will introduce an adaptive 
scheme, which is simpler and more effective than the previous schemes and it does not need 
to send extra side-information. 
We first calculate the errors compensated by predicted MV and measured MV. And then 

investigate the relation between the difference of the two errors, dΔ , and the difference of 

two motion vectors, MVΔ . Let D1 and D2 be the block distortion of motion compensation 

due to the measurement error and prediction error, respectively, which are defined as 

 
( ) ( )

( )
1 1

1
0 0

1
, , ( , , ), ( , , ), 1

    ,

N N

j l

x y

D B m j n l i B m j z m n i n l z m n i i
M N

MAD z z

− −

= =
= + + − + + + + −×
=

∑∑ #
, (33) 

and 

 
( ) ( )

( )
1 1

2
0 0

1
ˆ ˆ, , ( , , ), ( , , ), 1

ˆ ˆ    ,

N N

x y
j l

x y

D B m j n l i B m j v m n i n l v m n i i
M N

MAD v v

− − − −
= =

− −

= + + − + + + + −×
=

∑∑ #
, (34) 

where Bi and Bi-1 are the current block and motion compensated block, respectively. The 

dΔ is defined as 

 dΔ =| D1-D2 |.  (35) 

When MVΔ  increases, dΔ  first increased approximately exponentially, and then decreased 

exponentially; the increasing rate is larger than the decreasing rate. In general, the 

measurement is obtained by a real matching; thus a large MVΔ  means that the prediction is 

far away from optimal location. This results in a large value of dΔ . However, when MVΔ  

exceeds a certain value, the measurement may find incorrect position due to the restrictions 
of block matching, such as cover/uncover-background, complex motion types, etc. Hence 

dΔ will decrease gradually according to the increase of MVΔ . Therefore, we can use two 

exponential functions to model the variance of prediction as: 

 
1 1

2 2

ˆ ˆ1 exp( ( , , ) ( , , ) ),           
( , , )

ˆ ˆexp( ( ( , , ) ( , , ) )),      

a b m n i m n i th
q m n i

a b m n i m n i th th

− −

− −
⎧ − − − − ≤⎪= ⎨ − − − − >⎪⎩

z v z v

z v z v
 (36) 

 r(m,n,i)=1-q(m,n,i), (37) 
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where th is the turning point, which is a reliable index of measurement. If MVΔ  is less than 

th, the measurement is reliable compared with prediction. However, when MVΔ  is far 

away from th, the measurement is less reliable and the prediction should give more 

contribution. The parameters a and b affect the shape of the exponential function and are 

related with searching methods. The parameter values for full search are larger than those 

for fast search. Because the prediction can be calculated in the receiver, no extra-information 

needs to be sent. Therefore, this method is also suitable for real-time application. 

2.5 Simulation results 
Several image sequences including "Miss America", "Salesman", "Flower Garden" and 

"Susie" are evaluated to compare the performances of different motion estimation 

algorithms. The first two sequences are typical videoconference situations. In order to create 

larger motion displacement, each of the two sequences is reduced to 15 Hz with frame 

skipping. The last two sequences contain more complex motion such as rotation, and 

covered/uncovered background. They are converted from CCIR 601 format using the 

decimation filters recommended by the ISO/MPEG standard committee. The 30 successive 

frames of each sequence are used in simulation.  

Four different algorithms are compared: (i) full search algorithm (FSA), (ii) new three-step 

algorithm (NTSS), (iii) NTSS combined with 3-D Kalman filter (3DLKF), and (iv) NTSS 

combined with adaptive Kalman filter (3DALKF). The size of the image block is 16×16. The 

search window is 15×15 pixels (i.e., S = 7) for “Miss America”, “Salesman” and “Susie”, 

31×31(S = 15) for “Flower Garden”. The threshold for the motion detection is 2 for each 

algorithm. The model parameters are obtained by off-line least-squared estimate. In our 

work, the parameters are given by c100=7/C, c-110=2/C, c010=7/C, c110=2/C, c001=5/C, c-

111=0.25/C, c011=0.5/C, c111=0.25/C, c-101=0.5/C, c101=0.5/C, c-1-11=0.25/C, c0-11=0.5/C, and c1-

11=0.25/C. Where C is a normalization factor, and C=26 in our simulation. For non-adaptive 

algorithm, the covariance of w(m,n,i) and e(m,n,i) should be given a priori. In this work, the 

q(m+2,n-1,i) and r(m+1,n,i-1) are 0.095, q(m,n,i) and r(m,n,i) are 0.85 and 0.15, respectively. In 

the adaptive algorithm, q(m,n,i) and r(m,n,i) are adjusted automatically, the parameters a, b 

and th are set as a1=0.55, a2=1.10, b1=0.985, b2=0.009 and th=5.8 for "Flower Garden", a1=1.10, 

a2=0.98, b1=0.735, b2=0.008 and th=4.2 for others sequences. The value is obtained 

experimentally. The q(m+2,n-1,i) and r(m+1,n,i-1) are the same as the non-adaptive 

algorithm. 

The motion-compensated prediction frame is obtained by displacing the previous 

reconstructed blocks using the estimated motion vectors. Since the estimated motion vector 

is a real value instead of an integer, the displaced pixels may not be on the sampling grid. 

Therefore, the well-known bilinear interpolation [17] is adopted to generate a motion 

compensated prediction frame. 

Table 1 summarizes the comparison of the average PSNRs for various algorithms. It 

indicates that all our algorithms perform better than NTSS. The 3DLKF also obtains better 

performance than FSA on the average. It is noted that the 3DLKF needs few additional 

computations over NTSS. The 3DALKF give much better PSNR performance than FSA. 

Figures 7-10 displays the comparison of PSNR of the test sequences obtained by various 

algorithms. It indicates that the proposed method improves the performance. The most 
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important point to note is that the adaptive algorithm can compensate poor measurement 

and thereby raise the PSNR significantly. In addition, the visual quality of the reconstructed 

image is also improved considerably. This can be seen from Figure 11, which shows the 

reconstructed images of frame 74 obtained by NTSS and 3DALKF, respectively. The NTSS 

algorithm yields the obvious distortion on some regions such as the left ear and the mouth, 

as shown in Figure 11 (a). The 3DLKF algorithm, as shown in Figure 11 (c), improves this 

significantly. 
 

Algorithm Image 
Sequence NTSS FSA 3DLKF 3DALKF 

Miss America 38.2581 38.3956 38.6473 38.9077 

Salesmen 34.6905 34.7827 34.9477 35.1080 

Susie 37.8381 37.8742 38.2893 38.5298 

Flower Garden 28.2516 28.4485 28.3836 28.5340 

Average 34.7596 34.8753 35.067 35.2699 

Table 1. Average PSNR for various algorithms 

Figure 12 shows the motion vector fields of "Miss America" obtained by FSA, NTSS and 

3DALKF, respectively. The motion vector fields obtained by 3DLKF algorithm are obviously 

smoother than those by the other algorithms. Although the hierarchical search algorithm 

presented in [17] can also achieve smooth motion vector fields, it obtains lower PSNR than 

FSA. 
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Fig. 7. The PSNR comparison for Miss America sequence at 15Hz 
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Fig. 8. The PSNR comparison for Salesman sequence at 15Hz 
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Fig. 9. The PSNR comparison for Susie sequence at 15Hz 
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Fig. 10. The PSNR comparison for Flower Garden sequence at 30Hz 

 
 

   
 
 

 
 
 

Fig. 11. The comparison of reconstructed image (a) Original image (b) NTSS and (c) 
3DALKF. 
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