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1. Introduction 

Let (X, E·E) be a (real) Banach space. We refer to [38] or [28] as some introduction to the 

general theory of Banach spaces. Note that, as usual in the case, all the results we discuss 
here remain valid for complex scalars with possibly different constants. Let I be a countable 
set with possibly some ordering we refer to whenever considering convergence with respect 
to elements of I (wich will be denoted by limi→∞). 

Definition 1 We say that countable system of vectors    is biorthogonal if for i, j ∈ I 

we have 

 

(1) 

Such a general class of systems would be inconvenient to work with, therefore we require 
biorthogonal systems to be aligned with the Banach space X we want to describe. 
Definition 2 We say that system  is natural if the following conditions are satisfied: 

 
(2) 

 
(3) 

 (4) 

Usually we assume also that  for all i ∈I, i.e. we normalize the system. Note that if 

(4) holds then functionals  are uniquely determined by the set  and thus 

slightly abusing the convention we can speak about  being a biorthogonal system. 
Observe that if assumptions (1)-(4) are verified, then each  is uniquely determined 

by the values  and moreover  for every . 
Clearly the concept of biorthogonal system is to express each  as the series 

 convergent to x. If such expansion exists for all  then we work in in 

the usual Schauder basis setting. 
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Definition 3 A natural system  is said to be Schauder basis if I = N and for any  the 

series *

1
( )

i i i
e e

∞
=∑ x  is convergent. 

However in this chapter we proceed in a slightly more general environment and do not 

require neither convergence of *

1
( )

i i i
e e∈∑ x  nor fix a particular order on I. Obviously still the 

idea is to approximate any  by linear combinations of basis elements and therefore 
for any  and  we define 

 
(5) 

whenever this makes sense. In particular it is well defined for any finite J. It suggests that for 
each m = 0, 1, 2, … we can consider the space of m-term approximations. Namely we denote 
by  the collection of all elements of X which can be expressed as linear combinations of 

m elements of  i.e.: 

 

Let us observe that the space  is not linear since the sum of two elements from  is 
generally in Σ2m not in Σm. For  and for m = 0, 1, 2, … we define its best m-term 
approximation error (with respect to ) 

 

Commonly the system  is clear from the context and hence we can suppress it form the 
above notation. Observe that from (4) we acknowledge that for each  we have 

 There is a natural question one may ask, what has to be assumed for 

the best m-term approximation to exist, i.e. that there exists some  such that 

 The question of existence of the best m-term approximation for a given 

natural system was discussed even in a more general setting in [4]. A detailed study in our 
context can be found in [39] from which we quote the following result: 

Theorem 1 Let  be a natural biorthogonal system in X. Assume that there exists a 
subspace  such that 
1. Y is norming i.e. for all  

 

2. for every   we have lim i→∞ y(ei) = 0. 

Then for each  and m = 0, 1, 2, … there exists  such that  

The obvious candidate for being the norming subspace of X* is  

Later we will show that this is the case of unconditional bases. 
The idea of an approximation algorithm is that we construct a sequence of maps Tm : X →X, 

m = 0, 1, 2, … such that for each , we have that  The fundamental 

property which any admissible algorithm (Tm)m≥0 should verify is that the error we make is 

comparable with the approximation error, namely 

 (6) 
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where C is an absolute constant. The potentially simplest approach is to use projection of the 

type (5). We will show later that in the unconditional setting for each m,  there exists 

projection PJ which has the minimal approximation error, namely   

Among all the possible projections, one choice seems to be the most natural: we take a 

projection with the largest possible coefficients, that means we denote 

 
 

where the set  is chosen in such a way that  

whenever j ∈ J and k ∉ J. The collection of such , i.e.  will be called the Greedy 

Algorithm. 

Clearly , m = 0, 1, 2, … have some surprising features which one should keep in mind, 
when working with this type of approximation (cf. [40]): 

1. It may happen that for some x and m the element  (i.e. the set J) is not uniquely 

determined by the previous conditions. In such case we pick any of them. 

2. The operator  is not linear (even if appropriate sets are uniquely defined). 

3. The operator  is discontinuous. To see it it suffices to fix  such that 

 We define two sequences of vectors 

 

 

Clearly both yn and zn converge to  but 

 

and 

 

 
4. Following the previous example we learn that  is continuous at the point  if 

and only if the set J used in the definition of  is uniquely defined. 

5. If I = N then there is a simple trick to define  uniquely, namely given  we 

define greedy ordering as the map F : N → N such that  and 

so that if j < k then either  and F(j) 

< F(k). With this notation the mth greedy approximation of x equals 
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As announced we consider the greedy algorithm acceptable if it verifies (6). We formalize 
the idea in the following definitions: 
Definition 4 A natural biorthogonal system  is called a greedy basis if there exists a constant C 
such that for all  and m = 0, 1, 2, … we have 

 

The smallest constant C will be called the greedy constant of . 
Definition 5 A natural biorthogonal system  is called quasi-greedy if for every  the norm 
limit  exists (and equals x). 

Clearly every greedy basis is quasi-greedy. We remark that those concepts were formall 

defined in [26] though implicit in earlier works of Temlyakov [30]-[33]. Throughout the 

chapter we study various properties of greedy and quasi greedy bases. Toward this goal let 

us introduce the following notation: 
 

 

2. Unconditional bases 

One of the most fruitful concepts in the Banach space theory concerns the unconditionality 

of systems. The principal idea of the approach is that we require the space to have a lot of 

symmetry which we hope to provide a number of useful properties. We refer to [37],[38] as 

some introductory feedback to this item. 

Definition 6 A biorthogonal system  is unconditional if there exists a constant K 

such for all  and any finite  we have have  The smallest such 

constant K will be called unconditional constant. 

Remark 1 Note that the above definition is equivalent to requiring that  for all 

(not necessarily finite) . 
Sometimes we refer to a stronger property which is called symmetry. 

Definition 7 An an unconditional system  is symmetric if there exists a constant U 

such for all , any permutation  and random signs  we have 
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The smallest such constant U will be called symmetric constant. 
Usually in the sequel we will assume that the unconditional system has the unconditional 
constant equal to 1. This is not a significant restriction since given unconditional system  
in X one can introduce a new norm 

 

By the classical extreme point argument one can check that this is an equivalent norm on X, 

more precisely  for  and  has unconditional constant 1 in 

 In the classical Banach space theory a lot of attention has been paid to 

understand some features of spaces which admits the unconditional basis. We quote from 
[1] a property we have announced in the introduction. 

Proposition 1 Let  be an unconditional basis for X (with constant K). Then 

 verifies that 

 

for all  
Proof. Let . Since  it follows immediately that 

 

For the other inequality, pick  (from unit sphere in X*) so that  
Then for each finite J we have 

 

Now we let J tend to I and use that if  
■ 

Therefore according to Theorem 1 the optimal m-term approximation for unconditional 

system exists, i.e.  is attained at some y ∈ . We remark that there are a lot of 

classical spaces which does not admit any unconditional basis and even (e.g. C[0, 1] see [1]) 
cannot be embedded into a Banach space with such a structure. 
In the greedy approximation theory we consider the class of unconditional bases as the fine 
class we usually tend to search for the optimal algorithm (see [14]). The reason is that for 
unconditional bases for a given  the best m-term approximation must be attained at 
some projection  
Proposition 2 Let  be a natural biorthogonal system with unconditional constant 1. 

Then for each  and each m = 0, 1, 2, … there exists a subset  of cardinality m such 

that  
Proof. Let us fix m and  be the best m-term 

approximation i.e.  (the existence is guaranteed by Proposition 1). Note that 

 

which completes the proof.                                                                                                                 ■ 
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We turn to show that for unconditional systems  and  are comparable. The result we 
quote from [35] but for concrete systems (see [32]) the answer was known before. 
Theorem 2 If  is a natural biorthogonal system with unconditional constant 1, then 

 
Proof. We have shown in Proposition 2 that we can take the best m-term approximation of x 

as  Clearly  for some . In order to estimate  

we write 

 

so using 1-unconditionality we obtain 

 
 

Note that m. 

This implies that  Thus 

estimating c from the second inequality and substituting it into the first we get 

 

Consequently 

 
 

To show the converse inequality use the following result: 

Lemma 1 For each m there exists disjoint sets J1 and J2 with  such that 

 
Proof. If  the claim is obvious. Otherwise take sets J1 and J2 with  such 

that  For simplicity write 

 
 

With this notation we have  This implies 

 

so  Thus we have to replace J1 by any set of proper cardinality which 

contains J1\J2 and is disjoint with J2. 
■ 
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We take sets as in Lemma 1 and denote  be a set of 

cardinality m disjoint with J2. Consider 

 

Then  From Proposition 2 we 

learn that 

 

This and Lemma 1 give 

 

Since Ķ is arbitrary it completes the proof. 
■ 

More elaborate results of this type are presented in [29]. 
Theorem 3 Let  be natural biorthogonal system with unconditional constant 1. Suppose that s(m) 
is a function such that for some c > 0 

 (7) 

Then 

 

for some constants C and m = 0, 1, 2, …. 

Proof. Let us fix  with  and m = 0, 1, 2, …. By Proposition 2, there exits a 

subset J ⊂ I of cardinality m such that 

 
 

and  a subset of cardinality  Using 

the unconditionality of the system we get 

 
 

Let  The again using unconditionality we derive 

 
(8) 
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Since for  we get 

 
(9) 

From (8), (9) and (7) we get 

 

so 

 
■ 

Let  be a biorthogonal system. The natural question rises when  is 

the unconditional system in X*. The obvious obstacle may be that such system does not 

verify (4). For example the standard basis  in l1 cannot have its dual to be a basis in 

 since the latter is not separable. However, if we consider it as a system in 

span  then it will satisfy all our assumptions and thus we denote such 

system by *. Note that if  is unconditional then so is *. 

Theorem 4 Let  be natural biorthogonal system with unconditional constant 1. Then 

 

for m = 2, 3, …. 
Proof. Let us fix  and a set  of cardinality k. We have 

 

(10)

On the other hand there exists  with  such that 

 
(11)

Let  whenever  From 1- 

unconditionality we deduce that 
 

 
therefore 

 

(12)
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Thus from (10),(11) and (12) using the fact that  is decreasing, we obtain that 

 

(13)

■ 
Theorems 3 and 4 are quoted from [40] but the almost the same arguments were used earlier 

in [11] and [27]. 

3. Greedy bases 

The first step to understand the idea of greedy systems in Banach spaces is to give their 

characterization in terms of some basic notions. The famous result of Konyagin and 

Temlyakov [26] states that being a greedy basis is equivalent to be an unconditional and 

democratic basis. We start from introducing these two concepts. 

The second concept we need to describe greedy bases concerns democracy. The idea is that 

we expect the norm  being essentially a function of  rather then from J itself. 

Definition 8 A biorthogonal system  is called democratic if there exists a constant D such that for 

any two finite subsets  with  we have 

 
 

The smallest such constant D will be called a democratic constant of . 

We state the main result of the section. 

Theorem 5 If the natural biorthogonal system  is greedy with the greedy constant less or equal C, 
then it is unconditional with unconditional constant less or or equal C and democratic with the 
democratic constant less or equal C2. Conversely if it is unconditional with constant K and 
democratic with constant D, then it is greedy with greedy constant less or equal K + K3D. 
Proof. Assume first that  is greedy with the greedy constant C. Let us fix a finite 

 set  of cardinality m,  and a number  We put y := 

 Thus 

 (14)

Therefore  is unconditional according to Definition 6. 

To show that  is democratic we fix two subsets  with  Then 

we choose a third subset  such that  

Defining  we have that 
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and 

 
 

Analogously we get 

 
 

and the conclusion follows. 

Now we will prove the converse. Fix  and m = 0, 1, 2, …. Choose  

with  Clearly 

 
 

for appropriate  We write 

 (15)

Using unconditionality we get 

 (16)

and analogously 

 
 

From the definition of  we infer that 

 

so from unconditionality we get 

 
(17)

and 

 
(18)

Since  from (17) and (18) and democracy we deduce that 

 (19)

From (15), (16) and (19) we get (Ķ is arbitrary) 

  ■ 
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Remark 2 The above proof is taken from [26]. However some arguments (except the proof that greedy 
implies unconditional), were already in previous papers [32] and [35]. 
If we disregard constants Theorem 5 says that a system is greedy if and only if it is 
unconditional and democratic. Note that in particular Theorem 5 implies that a greedy 
system with constant 1 (i.e. 1-greedy) is 1-unconditional and 1-democratic. However this is 
not the characterization of bases with greedy constant 1 (see [40]). The problem of isometric 
characterization has been solved recently in [2]. To state the result we have to introduce the 
so called Property (A). 

Let  be a Schauder basis of X. Given , the support of x denoted supp consists of 

those  such that  Let M(x) denote the subset of supp where the coordinates (in 

absolute value) are the largest. Clearly the cardinality of M(x) is finite for all . We say 

that 1-1 map π : suppx → N is a greedy permutation of x if π(i) = i for all i ∈ suppx\M(x) and if 

i ∈ M(x) then, either π(i) = i or π(i) ∈ N \suppx. That is a greedy permutation of x puts those 

coefficients of x whose absolute value is the largest in gaps of the support of x, if there are any. 

If suppx ≠ N we will put  Finally we denote by ΠG(x) 

the set of all greedy permutation of x. 

Definition 9 A Schauder basis  for Banach space X has property (A) if for any  we 

have 

 
 

for all π ∈ ΠG(x) and all signs  with  
Note that property (A) is a weak symmetry condition for largest coefficients. We require that 

there is a symmetry in the norm provided its support has some gaps. When suppx = N then 

the basis does not allow any symmetry in the norm of x. The opposite case occurs when 

 and J0 is finite, then  for any  of cardinality 

 
Theorem 6 A basis  for a Banach space X is 1-greedy if and only if it is 1- unconditional and 

satisfies property (A). 
Another important for application result is the duality property. 

Remark 3 Suppose that  is greedy basis and that  with 0 < α < 1. Then * is also 

greedy. 
Proof. From Theorem 5 we know that  is unconditional, so we can renorm it to be 1-
unconditional. Also, because  is greedy we have  We repeat the proof of 

Theorem 4 but in (13) we explicitly calculate as follows: 

 

so * is greedy 
■ 
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This is a special case of Theorem 5.1 from [11]. We recall that it was proved in [21] that each 
unconditional basis in Lp, 1 < p < 1, has a subsequence equivalent to the unit vectors basis in 

lp, so for each greedy basis  in Lp we have  Thus we get: 

Corollary 1 If   is a greedy basis in Lp, 1 < p < 1, then * is a greedy basis in Lq, 1/p + 1/q = 1. 

4. Quasi greedy bases 

In this section we characterize the quasi-greedy systems. The well known result of 
Wojtaszczyk [35] says quasi-greedy property is a kind of uniform boundedness principle. 
Theorem 7 A natural biorthogonal system is quasi greedy if and only if there exists a constant C 
such that for all  and m = 0, 1, 2, … we have 

 

The smallest constant C in the above theorem will be called quasi greedy constant of the system . 

Proof. 1⇒2. Since the convergence is clear for x's with finite expansion in the biorthogonal 

system, let us assume that x has an infinite expansion. Take  such that 

 where  is a finite set and  for . If we take m big 

enough we can ensure that  and 

 Then 

 

This gives 2. 

2⇒1. Let us start with the following lemma. 
Lemma 2 If 2 does not hold, then for each constant K and each finite set  there exist a finite 

set  disjoint from J and a vector  aj ej such that  and  

for some m. 

Proof. Let us fix M to be the minimum of the norms of the (linear) projections PΩ(x) = 

 where  Let us start with a vector x1 such that  and 

 where K1 is a big constant to be specified later. Without loss of generality 

we can assume that all numbers  are different. For  we 

have  for some  and   

Thus  

Let us put 

 

and take a finite set J1 such that for i∉J1 we have  Let us take η very small 

with respect to │J1│ and │J│ and find x4 with finite expansion such that  If 

η is small enough we can modify all coefficients of x4 from J1 and J so that the resulting x5 

will have its k biggest coefficients the same as x3 and  Moreover x5 will have 

the form  with J0 finite and disjoint from J. Since 

 which 

can be made greater or equal K if we take K1 big enough.                                                 ■ 
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Using Lemma 2 we can apply the standard gliding hump argument to get a sequence o the 

vectors  with sets Jn disjoint and  a decreasing sequence of 

positive numbers  such that if  and a sequence of 

integers mn such that  Now we put  

This series is clearly convergent in X. If we write  we infer that 

 

This implies that for  we have 

 

so 

 

Thus  does not converge to x 

■ 
One of the significant features of quasi greedy systems is that they are closely related to the 

unconditionality property. 

Remark 4 Each unconditional system is quasi greedy. 

Proof. Note that for an unconditional system  and each  the series 

 converges unconditionally (we can change the order of I). In particular the 

convergence holds for any finite-set approximation of I and hence  is quasi greedy. 

■ 
There is a result in the opposite direction, which shows that quasi-greedy bases are rather 

close to unconditional systems. 

Definition 10 A system  is called unconditional for constant coefficients if there exits constants  

c1 > 0 and c2 < 1 such that for finite  and each sequence of signs  we have 

 
(20)

Proposition 3 If ( ) has a quasi-greedy constant C then it is unconditional for constant coefficients 

with c1 = C-1 and c2 = C. 

Proof. For a given sequence of signs  let us define the set  

For each Ķ > 0 and Ķ < 1 we apply Theorem 7 and we get 
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Since this is true for each Ķ > 0 we easily obtain the right hand side inequality in (20). The 
other inequality follows by analogous arguments. 

■ 
The quasi greedy bases may not have the duality property. For example for the quasi greedy 
basis in l1, constructed in [12] the dual basis is not unconditional for constant coefficients 
and so it is not quasi greedy. On the other hand dual of a quasi greedy system in a Hilbert 
space is also quasi greedy (see Corollary 4.5 and Theorem 5.4 in [11]). Otherwise not much 
has been proved for quasi greedy bases. 

5. Examples of systems 

In this section we discuss a lot of concrete examples of biorthogonal systems. We remark 
here that all of the discussed concepts of: greedy, quasi greedy, unconditional symmetric 
and democratic systems, are up to a certain extent independent of the normalization of the 
system. Namely we have (cf. [40]): 
Remark 5 If  is a sequence of numbers such that 

 

and  is a system which satisfies any of the Definitions 4-8, then the system 

 verifies the same definitions. 

The most natural family of spaces consists of Lp spaces 1 ≤ p ≤ ∞ and some of their variations, 
like rearrangement spaces. As for the systems we will be mainly interested in wavelet type 
systems, especially the Haar system or similar, and trigonometric or Wlash system. 

5.1 Trigonometric systems 
Clearly standard basis in lp, p > 1 is greedy. The straightforward generalization of such 

system into  space is the trigonometric system  Such system may be 

complicated to the Walsh system in , given by  where  

Unfortunately the trigonometric system is not quasi greedy even in Lp. To show this fact we 
use Proposition 3, i.e. we prove that such systems are not unconditional for constant 
coefficients whenever p ≠ 2. 
Suppose that for some fixed 1 ≤ p < ∞ trigonometric system verifies (20). Then taking the 
average over signs we get 

 
The symbol rj in the above denotes the Rademacher system. The right hand side (which is 

the Lp norm of the Dirichlet kernel) is of order  and of order logN when p = 1. 
Changing the order of integration and using the Kchintchine inequality we see that the left 

hand side is of order  To decide the case p = ∞ we recall that the well-known Rudin 

Shapiro polynomials are of the form  for appropriate choice of 

 while the L∞  norm of the Dirichlet Kernel is clearly equal to N. This violates 
(20). Those results are proved in [40], [30], [8] and [35]. 
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5.2 Haar systems 
We first recall the definition of Haar system in Lp space. The construction we describe here is 
well known an we follow its presentation from [40]. We start from a simple (wavelet) function: 

 

(21)

Clearly  For pair  we define the function hj,k(t) := h(2jt - k). The 

support of hj,k is dyadic interval I = I(j, k) = [k2-j, (k+1)2-j]. The usual procedure is to index Haar 

functions by dyadic intervals I and write hI instead of hj,k. We denote by D the set of all dyadic 

subintervals of R. It is a routine exercise to check that the system {hj,k : (j, k) ∈ Z2} = {hI : I ∈ D} is 

complete orthogonal system in L2(R). Note that whenever we consider the Haar system in a 

specified function space X on R we will consider the normalized system  
There are two common Haar systems in Rd: 

1. The tensorized Haar system, denoted by  and defined as follows: If J = J1×…×Jd where 

J1, …, Jd ∈ D, then we put  One checks trivially  

that the system {hJ : J ∈ Dd} is a complete, orthogonal system in L2(Rd). We will  

consider this system normalized in Lp with 1 ≤ p ≤ ∞, i.e. 

 The main feature of the system is 

that supports of the functions are dyadic parallelograms with arbitrary sides. 

2. The cubic Haar system, denoted by  defined as follows: We denote by h1(t) the 

functions h(t) defined in (21) and by h0(t) the function 1[0,1]. For fixed d = 1, 2, … let C 

denotes the set of sequences ĵ = (ĵ1, …, ĵd) such that ĵi = 0 or 1 and  For  

ĵ ∈ C, j ∈ Z and k ∈ Zd
 we define a function  by the formula 

 

(22)

Again it is a routine exercise to show that the system  where ĵ varies over C, i 

varies over Z and k varies over Zd is a complete orthonormal system in L2(Rd). As before 

we consider the system normalized in Lp(Rd), namely  where J (d) = 

C × Z × Zd and for α = (ĵ, j, k) ∈ J (d) we have  The feature of this 

system is that supports of the functions are all dyadic cubes. Therefore one can restrict 

the Haar system  to the unite cube [0, 1]d. We simply consider all Haar functions 

whose supports are contained in [0, 1]d plus the constant function. In this way we get 

the Haar system in Lp[0, 1]d. 

The above approach can be easily generalized to any wavelet basis. In the wavelet 

construction we have a multivariate scaling function φ0(t) and the associated wavelet φ 1(t) 
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on Lp(R). We assume that both φ0 and φ1 have sufficient decay to ensure that φ0, φ 1 ∈ L1(R) ∩ 

L∞(R). Clearly functions 1[0,1] and h(t) are the simplest example of the above setting, i.e. of 

scaling and wavelet function respectively. This concept may be extended to Rd, i.e we can 

define a tensorized wavelet basis, though since we do not study such examples in this 

chapter we refrain from detailing the construction. 

5.3 Haar systems in Lp spaces 
Since Haar systems play important role in the greedy analysis we discuss some of their 
properties. The main tool in our analysis of Lp will be the Khintchine inequality which 
allows to use an equivalent norm on the space. 

Proposition 4 If   is an unconditional system in Lp, 1 < p < ∞, then the expression 

 

(23)

gives an equivalent norm on Lp. 
The above proposition fails for p = 1 but if we introduce the norm given by (23) for p = 1, 

then we obtain a new space denoted as H1, in which the Haar system  is unconditional. 
The detail construction of the space may be found in [37], 7.3. 
We show that one of our Haar systems  is greedy whereas the second one  is not. We 

sketch briefly these results. The first result was first proved in [33] but we present argument 
given in [22] and [40] which is a bit easier. 

Theorem 8 The Haar  is greedy basis in  for d = 1, 2, … and 1 < p < ∞. The system  is 

greedy in H1. 

Proof. The unconditionality of the Haar system is clear from Proposition 4. Therefore we 

only need to prove that  is democratic in  for d = 1, 2, … (and also in H1). Let 

 be a finite set. Note that if the cube Q is the support of the Haar function  

then  Thus, for each t ∈ Rd, the non-zero values of the Haar functions 

 belong to a geometric progression with ratio 2d. Then we check that for a given t ∈ Rd 

there are at most 2d-1 Haar functions which take a given non zero value at this point. Thus 

defining  we obtain that 

 
for some constant c(d) > 0. So 

 

We recall that for a given t ∈ Rd there are at most 2d-1 Haar functions which have the same 

non zero value at this point. Therefore, following the same geometric progression argument 

we see that for each t ∈ Rd we have 
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for some constant C(d) < ∞ and  depending on t. Thus 

 
 

It shows that  is comparable with  which in the view of 

Proposition 4 completes the proof. 

■ 

The second result shows that  is not greedy in Lp. We recall that for as system,  we have 

used intervals I ∈ D d
 as the indices. We first prove the following: 

Proposition 5 For d = 1, 2, … and 1 < p < ∞ in  we have 

 
(24)

for p ≤ 2, and 

 
(25)

Proof. The right hand side inequality in (24) is easy. We simply apply the Holder inequality 

with exponent 
 
to the inside sum and we get 

 

(26)

To show the left hand side we will need the following result: 

Lemma 3 For d = 1 and 1 ≤ p < ∞ and for any finite subset  we have 

 
 

Proof. Let us denote  From the definition of the Haar system we 

obtain that  so 

 

■ 

Now we fix d = 1 and 1 < p ≤ 2. Let  be such that  is a 

decreasing sequence. Fix s such that  and we put 
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