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1. Introduction 

In the always expanding field of biometrics the choice of which biometric modality or 
modalities to use, is a difficult one. While a particular biometric modality might offer 
superior discriminative properties (or be more stable over a longer period of time) when 
compared to another modality, the ease of its acquisition might be quite difficult in 
comparison. As such, the use of the human face as a biometric modality presents the 
attractive qualities of significant discrimination with the least amount of intrusiveness. In 
this sense, the majority of biometric systems whose primary modality is the face, emphasize 
analysis of the spatial representation of the face i.e., the intensity image of the face. While 
there has been varying and significant levels of performance achieved through the use of 
spatial 2-D data, there is significant theoretical work and empirical results that support the 
use of a frequency domain representation, to achieve greater face recognition performance. 
The use of the Fourier transform allows us to quickly and easily obtain raw frequency data 
which is significantly more discriminative (after appropriate data manipulation) than the 
raw spatial data from which it was derived. We can further increase discrimination through 
additional signal transforms and specific feature extraction algorithms intended for use in 
the frequency domain, so we can achieve significant improved performance and distortion 
tolerance compared to that of their spatial domain counterparts. 
In this chapter we will review, outline, and present theory and results that elaborate on 
frequency domain processing and representations for enhanced face recognition. The second 
section is a brief literature review of various face recognition algorithms. The third section 
will focus on two points: a review of the commonly used algorithms such as Principal 
Component Analysis (PCA) (Turk and Pentland, 1991) and Fisher Linear Discriminant Analysis
(FLDA) (Belhumeur et al., 1997) and their novel use in conjunction with frequency domain 
processed data for enhancing face recognition ability of these algorithms. A comparison of 
performance with respect to the use of spatial versus processed and un-processed frequency 
domain data will be presented. The fourth section will be a thorough analysis and 
derivation of a family of advanced frequency domain matching algorithms collectively 
known as Advanced Correlation Filters (ACFs). It is in this section that the most significant 
discussion will occur as ACFs represent the latest advances in frequency domain facial 
recognition algorithms with specifically built-in distortion tolerance. In the fifth section we 
present results of more recent research done involving ACFs and face recognition. The final 
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section will be detail conclusions about the current state of face recognition including 
further future work to pursue for solving the remaining challenges that currently exist. 

2. Face Recognition 

The use of facial images as a biometric stems naturally from human perception where 
everyday interaction is often initiated by the visual recognition of a familiar face. The innate 
ability of humans to discriminate between faces to an amazing degree causes researchers to 
strive towards building computer automated facial recognition systems that hope to one day 
autonomously achieve equal recognition performance. The interest and innovation in this 
area of pattern recognition continues to yield much innovation and garner significant 
publicity. As a result, face recognition (Chellappa et al., 1995; Zhao et al., 2003) has become 
one of the most widely researched biometric applications for which numerous algorithms 
and research work exists to bring the work to a stage where it can be deployed. 
Much initial and current research in this field focuses on maximizing separability of facial 
data through dimensionality reduction. One of the most widely known of such algorithms is 
that of PCA also commonly referred to as Eigenfaces (Turk and Pentland, 1991). The basic 
algorithm was modified in numerous ways (Grudin, 2000; Chen et al., 2002, Savvides et al., 
2004a, 2004b; Bhagavatula & Savvides, 2005b) to further develop the field of face recognition 
using PCA variants for enhanced dimensionality reduction with greater discrimination. 
PCA serves as one of the universal benchmark baseline algorithms for face recognition. 
Another family of dimensionality reduction algorithms is based on LDA (Fisher, 1936). 
When applied to face recognition, due to the high-dimensionality nature of face data,  this 
approach is often referred to as Fisherfaces (Belhumeur et al., 1997). In contrast to Eigenfaces,
Fisherfaces seek to maximize the relative between-class scatter of data samples from different 
classes while minimizing within-class scatter of data samples from the same class. 
Numerous reports have exploited this optimization to advance the field of face recognition 
using LDA (Swets, D.L. & Weng, J., 1996; Etemad & Chellappa, 1996; Zhao et al. 1998, 1999). 
Another actively researched approach to face recognition is that of ACFs. Initially applied in 
the general field of Automatic Target Recognition (ATR), ACFs have also been effectively 
applied and modified for face recognition applications. Despite their capabilities, ACFs are 
still less well known than the above mentioned algorithms in the field of biometrics. Due to 
this fact most significant work concerning ACFs and face recognition comes from the 
contributions of a few groups. Nonetheless, these contributions are numerous and varied 
ranging from general face recognition (Savvides et al., 2003c, 2004d; Vijaya Kumar et al., 
2006) large scale face recognition (Heo et al., 2006; Savvides et al., 2006a, 2006b), illumination 
tolerant face recognition (Savvides et al., 2003a, 2003b, 2004a, 2004e, 2004f), multi-modal face 
recognition (Heo et al., 2005), to PDA/cell-phone based face recognition (Ng et al., 2005). 
However, regardless of the algorithm, face recognition is often undermined by the caveat of 
limited scope with regards to recognition accuracy. Although performance may be reported 
over what is considered a challenging set of data, it does not necessarily imply its 
applicability to real world situations. The aspect of real world situations that is most often 
singled out is that of scale and scope. To this end, large scale evaluations of face recognition 
algorithms are becoming more common as large scale databases are being created to fill this 
need. One of the first and most prominent of such evaluations is the Face Recognition 
Technology (FERET) database (Phillips et al., 2000) which ran from 1993 to 1997 in an effort to 
develop face recognition algorithms for use in security, intelligence, and law enforcement. 
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Following FERET, the Face Recognition Vendor Test (FRVT) (Phillips et al., 2003) was created 
to evaluate commercially available face recognition systems. Since its conception in 2000, 
FRVT has been repeated and expanded to include academic groups in 2002 and 2006 to 
continue evaluation of modern face recognition systems. Perhaps the most widely known 
and largest evaluation as of yet is the Face Recognition Grand Challenge (FRGC) (Phillips et al., 
2005) in which participants from both industry and academia were asked to develop face 
recognition algorithms to be evaluated against the largest publicly available database.  Such 
evaluations have served to better simulate the practical real-world operational scenarios of 
face recognition. 

3. Subspace Modelling Methods 

Image data, and particularly facial image data is typically represented in a very high 
dimensional space, thus a significant amount of data needs to be processed requiring 
significant computation and memory. In this case, we try to reduce the overall 
dimensionality of the data by projecting it onto a lower dimensional space that still captures 
most of the variability and discrimination. Several techniques have been proposed for the 
latter option such PCA, and Fisher Discriminant Analysis (FLDA) (Belhumeur et al., 1997). 

3.1 Principal Component Analysis 

PCA is among the most widely used dimensionality reduction technique. It enables us to 
extract a lower dimensional subspace that represents the principal directions of variations of 
the data with controlled loss of information. Also known as the Karhunen Loeve Transform
(KLT) or Hotelling Transform, its application in face recognition is most commonly known as 
Eigenfaces.
The aim of PCA is to find the principal directions of variation within a given set of data. Let 

X  denote a d × N matrix containing N data samples of dimension d vectorized along each 

column. PCA looks for <k d  principal components projections such that the projected data 

 has maximum variance. In other words, we look for the d unit norm 

direction vectors  that maximize the variance of the projected data or equivalently 

best describe the data. These projection vectors form an orthogonal basis that best represent 
the data in a least-squared error sense. The variance is defined as 
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where [ ]μ xE= . We can estimate the covariance matrix Σ̂  and the mean μ̂  from the N

available data samples as 
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where X  now denotes the zero-mean data matrix. To maximize this objective function 

under the constraint = 1 , we utilize the following Lagrangian optimization: 

( ) ( )= − −T T 1ˆ,L λ λΣ  (5) 

To find the extrema we take the derivative with respect to and set the result to zero. Doing 

so we find that: 

=ˆ
i i iλΣ  (6) 

Premultiplying Eq. (6) by T
i we get more insight 

= ⎯⎯→ = =T T Tˆ ˆ {y }i i i i i i i i iVarλ λΣ Σ  (7) 

This corresponds to a standard eigenvalue-eigenvector problem, hence the name Eigenfaces.

The directions of variation we are looking for are given by the eigenvectors i of ˆ , and 

the variances along each direction are given by the corresponding eigenvalues iλ as shown 

from the above equation. Thus we first choose the eigenvectors (or Eigenfaces) with the 
largest eigenvalues. Moreover, because the covariance matrix is symmetric and positive 
semi-definite, the eigenvectors produced from Eq. (6) will yield an orthogonal basis. In other 
words, PCA is essentially a transformation from one coordinate system to a new orthogonal 
coordinate system which allows us to perform dimensionality reduction and represent the 
data in the least squared error sense. We apply PCA to face images taken from the Carnegie 
Mellon University Pose-Illumination-Expression (CMU PIE) No-Light database (Sims et al., 
2003) to visualize the resulting Eigenfaces. Figure 1 shows the mean image followed by the 
first 6 dominant Eigenfaces computed from this dataset.

Figure 1. From left to right: PIE No-Light database mean face image followed by the first 6 
Eigenfaces
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3.2 Fisher Linear Discriminant Analysis 

Despite its apparent power, PCA has several shortcomings with regards to discriminating 
between different classes primarily because PCA is optimal for finding projections that are 
optimal for representation but not necessarily for discrimination. 
First developed for taxonomic classifications, LDA (Fisher, 1936) tries to find the optimal set 

of projection vectors i  that maximize the projected between-class scatter while 

simultaneously minimizing the projected within-class scatter. This is achieved by 
maximizing the criterion function equal to the ratio of the determinant of the projected 
scatter matrices as defined below: 

( )
T
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Where BS and WS are defined as 
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where iN , μi , and μ  are the number of training images for ith class, the mean of the ith

class, and the global mean of all classes respectively. To maximize the Fisher criterion we 
follow a similar derivation to that of Eq. (5) yielding the following generalized eigenvalue-
eigenvector problem: 

B WS Si iλ=  (11) 

whose standard eigenvalue-eigenvector problem equivalent is 

=-1
W BS S i i iλ  (12) 

When applying FLDA to face recognition, the data dimensionality d is typically greater than 

the total number of data samples N . This situation creates rank deficiency problems in Sw.

More specifically, note that BS , being the sum of c outer product matrices has at most rank  

1c − . Similarly, WS is not full rank but of rank N c− at most (when <<N d ). To avoid this 

singularity condition, one can perform PCA on the data to reduce its dimensionality to 

N c−  and then perform FLDA as shown in Eq. (13). The final resulting basis is called 

Fisherfaces (Belhumeur et al., 1997)  as given by Eq. (14). 
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3.3 Frequency Domain Extensions 

It has been shown (Oppenheim et al., 1980) that phase information of an image holds the 
most salient information. In (Hayes et al., 1981), it is shown that one can reconstruct the 
original signal up to a scale factor given only phase information of the signal. This concept 
was exploited in face recognition to improve performance over standard algorithms 
(Savvides et al., 2004b). Figure 2 shows images of two different subjects; each image is split 
in Fourier domain between magnitude and phase. Figure 2 shows that when the first 
subject’s Fourier magnitude spectrum is coupled with the second subject’s Fourier phase 
spectrum, the resulting image in spatial domain shows significantly more similarity to the 
second subject compared to the first subject. 

 (a) (b) (c) (d) 
Figure 2. (a) Original image of first subject (b) Original image of second subject (c) Spatial 
domain image synthesized from combination of Fourier magnitude spectrum of first subject 
with Fourier phase spectrum of second subject (d) Spatial domain image synthesized from 
combination of Fourier magnitude spectrum  of second subject with Fourier phase spectrum 
of first subject 

However, performing PCA in the frequency domain alone does not constitute any 
breakthrough, this is because the eigenvectors obtained in the frequency domain are merely 
the Fourier transform of their spatial domain counterparts. We begin this derivation by 
defining the standard 2-D Discrete Fourier Transform (DFT) pair which is fundamental to the 

rest of our discussion. Given an 2-D discrete input signal [ ],x m n  of size M × N we denote 

its Fourier transform as [ ],X k l  whose Fourier transform pair is defined as follows: 
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where 1i = − , operator F  is defined as the forward DFT, and the operator 1F−  is the 

inverse DFT. 

The estimated covariance matrix of the data in Fourier domain ˆ f  is given by Eq. (16) 

where F  is the d × d Fourier transform matrix containing the DFT basis vectors. The 
estimated covariance matrix of the data in Fourier domain is given as 
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As was with standard PCA, the eigenvectors f  of ˆ f  are given by  

1ˆF Fs f fλΣ − =  (17) 

Premultiplying each side by 1F−  we get 

1 1ˆ F Fs f fλΣ − −=   (18) 

Comparing Eq. (18) to Eq. (6) we conclude that 1Fs f
−= where s is an Eigenface in 

spatial domain. We have thus proved that modeling data in the frequency domain does not 
bring any advantages so far. This fact brings to doubt the usefulness of such a transform 
with respect to PCA and FLDA without any further processing. However, the ability to 
distinguish using the magnitude and phase spectrums is the key advantage of the Fourier 
domain. By modelling the subspace of the phase and magnitude spectrums separately, we 
can gain further insight and properties of the data otherwise unattainable in the space 
domain.   

3.3.1 Phase Spectrum 

It has been shown (Savvides et al., 2004b) that by performing PCA on the phase spectrum 
alone and disregarding the magnitude spectrum the resulting subspace is more robust with 
respect to illumination variation. The resulting principal components derived from this new 
subspace are termed Eigenphases in analogy to Eigenfaces. It was shown that Eigenphases
outperform Eigenfaces and Fisherfaces when trying to recognize not only full faces but also 
partial or occluded faces as depicted in Figure 4. 

Figure 3. All twenty-one images of a single subject of the PIE No-Light database 

 (a) (b) (c) 
Figure 4. Various occlusions on an example PIE No-Light subject (a) full face (b) right half-
face (c) eye section 
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  (a) (b) 
Figure 5. Rank-1 identification rates obtained by Eigenphases, Eigenfaces, and Fisherfaces for 
two different experiments each using different types of partial faces. (a) right half face (b) 
eye-section face 

In this work, comparisons between Rank-1 identification rates obtained from Eigenphases,
Eigenfaces, and Fisherfaces are made when using whole and partial faces. Training is done on 
multiple subsets of the PIE database while testing is performed over the whole database. 
Fifteen different training subsets each representing different types of illumination with the 
first seven having the most or harshest illumination variation with the remaining eight 
containing near frontal lighting which are considered the most neutral lighting conditions. 
Figure 5 depicts the recognition rates obtained with the three different methods using half-
faces and eye-sections. These results show that not only do Eigenphases outperform 
Eigenfaces and Fisherfaces for all experiments by a wide margin, but they also demonstrate 
minimal performance degradation for half-faces and eye-section faces. This added occlusion 
robustness is a very attractive property in real-world applications where missing data and 
poor data quality are common problems. 

3.3.2 Magnitude Spectrum 

In contrast, if PCA is performed on the magnitude spectrum only, it has been shown 
(Bhagavatula & Savvides, 2005a) that the resulting subspace holds many advantages over 
spatial subspaces. Using the Olivetti Research Laboratory (ORL) database, which is noted 
for significant pose variation, it was shown that the Fourier Magnitude Principal Component 
Analysis (FM-PCA) subspace yielded higher recognition rates across a range of experiments. 
These experiments included varying the number of training images whose comparison to 
spatial domain PCA or Eigenfaces is illustrated in Figure 6 (a).  It was also shown that FM-
PCA is more robust to noise as demonstrated in Figure 6 (b). This was verified by corrupting 
the testing images with varying levels of Additive White Gaussian Noise (AWGN). In similar 
fashion, it was demonstrated that Fourier Magnititude Fisher Linear Discriminant Analysis (FM-
FLDA) clusters data better than traditional Fisherfaces with decreased within-class scatter 
and increased between-class scatter. FM-FLDA yields higher recognition rates for varying 
image sizes and resolutions in comparison to spatial FLDA or Fisherfaces as tabulated in 
Table 1. 
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 (a) (b) 
Figure 6. Comparisons of identification rates of spatial domain PCA and FM-PCA under 
varying conditions (a) varying number of training images (b) varying degrees of AWGN 
noise corrupting the testing images 

In addition to increased performance, Fourier Magnitude feature subspaces hold another 
key advantage. They are shift invariant, as a direct result of the properties of Fourier 
transform. If the image is shifted in the spatial domain, that shift will translate into a linear-
phase change in frequency domain and not in its magnitude. This makes Fourier Magnitude 
subspaces robust to errors in registration, where the input images are not correctly centred 
which could cause significant recognition errors. To demonstrate this property, face 
recognition experiments have been done (Bhagavatula & Savvides, 2005a) by shifting 
images in both horizontal and vertical directions up to ±5 pixels. These results verify that 
FM-FLDA and FM-PCA recognition accuracies are not affected, while their spatial domain 
counterparts are severely affected. 

Image Size 32 × 32 64 × 64 112 × 92 128 × 128

FM-Fisher 80.8% 83.2% 84.6% 84.4% 

Traditional Fisher 77.7% 78.5% 77.3% 74.0% 

Table 1. Recognition accuracies with different image resolutions 

4. Advanced Correlation Filters (ACFs)

4.1 Advanced Correlation Filter Basics

The previous sections of this chapter have shown the power of frequency domain 
representations of data when used in conjunction with techniques and algorithms usually 
applied to spatial domain representations. However, none of the preceding concepts have 
been derived from a purely frequency domain approach. By developing algorithms whose 
focus is on the frequency domain representation of information we can achieve significant 
gains in performance. One such family of algorithms that have and are still being developed is 
that of Correlation Filters (CFs). CFs have a long and rich history in optics, automatic target 
recognition, and pattern recognition in general. More recently a new family of CF’s termed 
ACFs (Vijaya Kumar, 1992) have evolved to become the cutting edge of this general family of 
algorithms. The numerous and varied types of ACFs offer many attractive qualities such as 
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shift invariance, normalized outputs, and noise tolerance. Their derivations require some 
knowledge in such fields as linear algebra, signal processing, and detection and estimation 
theory. We will assume that readers will have sufficient background in these fields and only 
elucidate on background information when is necessary. We will also now limit our discussion 
to two-dimensional applications which include facial recognition using grayscale imagery. 
To begin the discussion we define a few fundamental terms and conventions that will be 
used repeatedly for the span of this section. The application of a CF or ACF to an input 
image will yield a correlation plane. The centre or origin of correlation plane will be 
considered to be the spatial position (0, 0). Analysis of the correlation plane to some metric 
of performance or confidence will usually involve calculation and identification of the 
largest value or peak in the correlation plane.. The simplest CF is the Matched Filter (MF), 
commonly used in applications such as communication channels and radar receivers where 
the goal is detecting a known signal in additive noise. The concept of noise is a very 
important aspect of pattern recognition problems. To characterize noise we define the 
quantitative measure of Power Spectral Density (PSD). Using this characterization of noise the 
MF is developed with the goal of maximizing the Signal-to-Noise-Ratio (SNR). 
Fundamentally this is equivalent to describing a filter whose application to an input signal 
will minimize the effect of specific type of noise while maximizing the output value when 
presented with the desired input signal. We will not develop the MF, however multiple 
other sources provide detailed derivations for varying applications and should be consulted 
for more information.  We will use this fundamental concept of maximizing the response of 
the desired signal or pattern and minimizing the effects of noise as a guideline in our 
derivation of ACFs. 
One of the fundamental differences between typical CFs and ACFs is the ability to 
synthesize ACFs from multiple instances of training data or in the case of face recognition, 
multiple facial images and by doing so, to be able to recognize all instances which are 
present in the training data. The desire or hope here is that the training data sufficiently 
represents or captures the potential distortion or variation that might be presented to the 
recognition system. With respect to face recognition systems this is an extremely desirable 
quality because the human face is subject to numerous variations both intrinsic and 
extrinsic. By allowing such variations to be at least partially represented through the use of 
representative training data we can increase both performance and robustness of face 
recognition systems. 

4.2 Correlation Basics

Before we can derive any ACF we must first lay the framework of correlation with respect to 
2D imagery. The standard definition of discrete 2-D correlation between an input 2-D signal 

( )x m, n  and a 2-D filter ( )h m, n  resulting in  2D correlation output plane ( )y m, n  is as 

follows: 

( ) ( ) ( )
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We will only consider the case of discrete correlation as this is the case of interest in face 
recognition systems although the analog domain provides some desirable qualities and 
generalizations. However, for our purposes the desired properties of both correlation and 
the Fourier transform are present in the discrete domain. Using the Fourier transform and 
its properties as discussed previously we can express Eq. (19) in the frequency domain as 

( ) ( ) ( )

( ) ( ){ }1 *             

y m, n x m, n h m, n

F X k, l H k, l−

= ⊗

= ⋅
 (20) 

where ( )X k, l and ( )H k, l are the 2-D Fourier transforms of ( )x m, n and ( )h m, n respectively. 

The symbols 1F− , ⋅ , and * represent the inverse Fourier transform, the element by element 
(point to point) multiplication of the two 2-D signals, and the element by element 
conjugation respectively. Correlation in the frequency domain is vastly preferred to 
correlation in the spatial domain with regards to the number computational floating point 
operations required. 

4.3 Synthetic Discriminant Functions 

One of the first ACFs to incorporate such a composite design is the Synthetic Discriminant 
Function filter (Hester & Casasent, 1980). The design of the Synthetic Discriminant Function
(SDF) filter is that the filter is created such that it yields a correlation plane whose output at 
the origin yields a pre-specified value. By introducing such a constraint on the output we 
not only allow for normalized comparisons but also a degree of discrimination into our 
filters. This framework refers to the ability to use a single filter to recognize different 
patterns or classes with sufficient discrimination as opposed to using a single filter for each 
class or image sample  (as with the case of MFs). For example, in a two class problem we 
would like to design a filter yields an output value of 1 for class 1 while yielding an output 
value of 0 for class 2. We can achieve this by constraining the correlation plane outputs (at 
the origin) to be 1 for all training data from class 1 and 0 for all training data from class 2.  
Our derivation of the SDF filter begins with an outline of the basic variables and problem 

definition. Let us assume that we have N facial training images ( )ix m, n of size d1 × d2. Define 

ui to be the output value of the correlation plane ( )iy m, n ; that is the result of applying the 

filter ( )h m, n to the training image ( )ix m, n . Please note that the output value of the 

correlation plane is considered to be the value of the correlation plane at the origin or 

equivalently ( )0, 0iy . Thus we can define the following equation, 

( ) ( ) ( ) Nim, nhm, nxyu
d

m

d

n

iii ≤≤==
= =

100,
1 2

1 1

,  (21) 

The above equation explicitly demonstrates the correlation operation and the constraint on 
the correlation plane output value at the origin. However, for convenience we can rewrite 
the above equation into a more compact vector format. Suppose we take a training 

image ( )ix m, n  (of dimensions d1 x d2) and place its entries (vectorize) from left to right and 

top to bottom into a column vector xi of length d = d1 x d2 and similarly for ( )h m, n into

column vector h whose length is also d. We can now express Eq. (21) in the following form, 
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Niu ii ≤≤= 1T ,hx  (22) 

where T is the transpose operation. We now have a system of N linear equations which 
encourages us to express them as the product of a matrix and a vector in order to take 

advantage of matrix algebra. Let [ ]1 2X x ,x , , xN=  be matrix of size d × N whose columns 

are the training image vectors. Likewise, let [ ]T

1 2u u ,u , ,uN=  be a column vector of 

length N whose entries are the desired output values. Now we can express this system of 
linear equations as the following matrix vector product: 

hXu T=  (23) 

A unique solution for h can be found by assuming that h is a linear combination of the 
training images, i.e. the columns of X. In matrix vector form this can be represented as 

Xah =  (24) 

where a is a column vector of length N whose entries are weightings for the linear 
combination of the columns of X. Substituting Eq. (24) into Eq. (23) we form the following 
equation:

Tu X Xa=  (25) 

From the above equation we can uniquely determine a to equal 

( )
1Ta X X u

-
=  (26) 

where -1 is the standard matrix inverse. Subsequent substitution of the above equation into 
Eq. (24) yields a solution for the SDF filter h which is as follows: 

( )
1Th X X X u

-
=  (27) 

Eq. (27) expresses the SDF filter h as a column vector of length d in the space domain as 
opposed to the frequency domain. 
We use the SDF filter to demonstrate some key characteristics of correlation in general and 
also some specific qualities of composite correlation. The images shown in Figure 7 are those 
of a set of training images taken from the ORL face database. We have used these training 
images to design an SDF filter whose correlation with any of the training images will yield a 
correlation plane whose output value, i.e. peak will equal 1. Figure 8 (a) shows the resulting 
SDF filter point spread function (2D-impulse response) , while Figure 8 (b) demonstrates the 
result of correlating the filter to one of the training images. 

Figure 7. Facial training images taken from single subject in the ORL database 
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 .(a) (b) 
Figure 8. (a) SDF filter derived from training images in Figure 7 (b) Mesh plot of correlation 
plane produced from application of SDF filter to one of the training images 

 As can be seen in these figures, the design of the filter guarantees a correlation plane whose 
peak equals 1 when applied to one of the training images. We make special note of the fact 
that we no longer specify the value of 1 to be at the origin but merely be the value of the 
peak (maximum value in the correlation plane) which corresponds to the location of the 
detected pattern. This consideration reflects the fact that correlation is a shift-invariant 
operation assuming the pattern of interest is still completely contained within the input 
image. 

4.4 Minimum Average Correlation Energy Filter 

Our discussion and development of the SDF filter has motivated us to address the issue of 
sidelobes whose presence is significant detriment to performance of any ACF. As such we 
will now derive the Minimum Average Correlation Energy (MACE) filter (Mahalanobis et al., 
1987) whose design will not only allow us to achieve constrained peaks as in the SDF filter 
but also suppress sidelobes in order to yield sharp distinct peaks. This is fundamentally a 
minimization of the sidelobe heights. One approach is to minimize the correlation plane 
energy which will subsequently suppress sidelobes. We define the term Average Correlation 
Energy (ACE) for the same N training images in the previous section as 

( )
1 2

2

1 1 1

1
ACE

d dN

i

i m n

y m, n
N

= = =

=  (28) 

where the variables d1, d2, and ( )iy m, n  retain their definitions from our development of the 

SDF filter. Eq. (28) can be represented in the frequency domain by applying Parseval’s 

Theorem. Letting ( )iY k, l  be the 2-D Fourier transform of ( )iy m, n  we express Eq. (28) as 

( )
1 2

2

1 1 1

1
ACE

d dN

i

i k l

Y k, l
N d

= = =

=
⋅

 (29) 

where d again is the total dimensionality of a training image. Since ( )iy m, n  is the result of 

the correlation between an input image ( )ix m, n  and our MACE filter ( )h m, n  we can use 

Eq. (20) to rewrite the above equation into the following form: 
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( ) ( )
1 2

2 2

1 1 1

1
ACE

d dN

i

i k l

X k, l H k, l
N d

= = =

=
⋅

 (30) 

It should be noted that it is at this point in the derivation where the role of the frequency 
domain representations of both the data and the filter are fundamental to the filter design. 
Later ACF designs will also utilize the quantitative measure of ACE along with other such 
measures. For now let us to proceed to again represent Eq. (30) in matrix vector form. Let h

be a column vector of length d whose elements are taken from ( )H k, l  and Xi be a diagonal 

matrix of size d × d whose non-zero elements are taken from ( )iX k, l . Using these frequency 

domain terms we can express Eq. (30) as 

( )( )
1

1
ACE h X X h

N

i i

i
N d

+ ∗

=

=
⋅

 (31) 

where the symbol + indicates the conjugate transpose. We can compress this expression 
further by defining a new diagonal matrix D of size d × d as follows: 

1

1
D X X

N

i i

i
N d

∗

=

=
⋅

 (32) 

This allows us to express the quantity of ACE in very concise manner as 

Dhh+=ACE  (33) 

Our goal in the design of the MACE filter is the minimization of the ACE of the training 
images while still satisfying the peak constraints we have specified. To accomplish this we 
must express these constraints in the frequency domain as well. Due to the fact that inner 
products in the frequency domain (at the origin only) are equivalent to inner products in the 
spatial domain, we can rewrite the peak constraints expressed in Eq. (23) as 

uhX ⋅=+ d  (34) 

where X is a matrix of size d × N whose columns are the vector representations of the FTs of 
the training images. Thus, the filter h which minimizes Eq. (33) while satisfying the 
constraints expressed in Eq. (34) is our MACE filter. This constrained optimization can be 
solved using Lagrange multipliers, which can be found in the original paper (Mahalanobis 
et al., 1987), which yield the final solution to the frequency domain filter h:

( )
11 1h D X X D X u

−− + −=  (35) 

The notation and form of the solution allows for simple and efficient calculation of the filter 
in column vector form from which a simple reshaping operation can be done to recover the 
2-D frequency domain filter of size d1 × d2. Correlation of the filter with an input image now 
requires one less Fourier transform as the filter is already represented and stored in the 
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frequency domain. Using the same training images from our derivation of the SDF filter we 
can create a MACE filter whose output correlation planes will not contain the problematic 
sidelobes. 
Visualizing the point spread function of the MACE filter itself does not reveal much insight 
without more significant analysis, but the goals of ACE minimization and constrained peaks 
are achieved as shown in Figure 9. Not only is the peak equal to 1 as specified, but the 
sidelobes are drastically suppressed when compared to those in the SDF filter’s correlation 
plane in Figure 8 (b).  Noise tolerance can be built in as discussed in the next section. 

Figure 9. Mesh plot of correlation plane produced from application of MACE filter to one of 
the training images 

4.5 Minimum Variance Synthetic Discriminant Function 

Through our derivations of the SDF and MACE filters we have shown that in order to 
achieve high discriminative ability in our filters we must be able to control the correlation 
plane through constraints and sidelobe energy minimizations. However, in any practical 
application we must always take into consideration the factor of noise introduced from 
varying sources. Whether it is sensor noise or noise caused by background clutter, the 
presence of noise can have significant impact on any face recognition system. As such we 
would like to introduce into our ACF designs some degree of noise tolerance. Let us 
formalize the problem with the following equation: 

( )T T Tx v h x h v h

u

+ = +

= + δ
 (36) 

where x is an image vector and v is the additive noise vector whose responses to the filter 

vector h are u and δ  respectively. The variations in the outputs of our filter are due to δ
and therefore δ  is the quantity we wish to suppress. For the rest of the derivation we will 

assume that our noise processes are stationary. We will also assume that our noise is zero 
mean without any loss of generality. To suppress the effect of variation in our filter outputs 

due to noise we aim to minimize the variance of the output noise term δ . Denote this 

variance as the Output Noise Variance (ONV) whose definition is 
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where C is the covariance matrix of the input noise. We take note of the independence of 
ONV from the image vector x which implies that its definition is identical for all images of 
interest. 
Let us now consider the training images we used in developing the SDF filter whose 
derivation focused on achieving certain constraints placed on output peak values. We 
would now like to not only achieve those same constraints expressed in Eq. (23) but also 
minimize the ONV amongst our training images. This formulation lends itself to the use of 
Lagrange minimization almost identical to that used in the formulation of the MACE filter 
to yield the following filter solution: 

( )
11 1h C X X C X u

−− + −=  (38) 

The above filter is referred to as the Minimum Variance Synthetic Discriminant Function
(MVSDF) filter (Vijaya Kumar, 1986). While the MVSDF filter does achieve minimum ONV 
amongst its training images, it does not suppress ACE and as such suffers from 
unsuppressed sidelobes. In later ACF designs we will show how to achieve an optimal 
tradeoff between ONV and ACE minimization in order to provide varying degrees of 
simultaneous noise tolerance and sidelobe suppression. 

4.6 Maximum Average Correlation Height Filter

All of the ACFs we have described to this point have been designed with some constraint or 
optimization in mind that is meant to introduce distortion tolerance into our filters. 
However, this is but one way and perhaps not the best way to create distortion tolerance. 
There is no formalized relationship between the constraints we have described so far and 
the degree of distortion tolerance incorporated into the filter. A more intuitive approach is to 
remove these constraints to allow for more solutions. In essence this is akin to generalizing 
the solution space which will hopefully contain solutions to non-training images. This 
would result in a greater degree of distortion tolerance when compared to ACFs derived 
using hard constraints. 
To address the issue of distortion tolerance it is necessary to first quantize the amount of 
distortion present in a set of filtered images. To this end we define the Average Similarity 

Measure (ASM) over a set of N filtered images ( )iy m, n  as 

( ) ( )( )
N

2

1

1
ASM i

i m n

y m, n y m, n
N

=

= −  (39) 
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where we define ( )y m, n  as the average image whose exact definition is 

( ) ( )
1

1
N

j

j

y m, n y m, n
N

=

=  (40) 

ASM is a measure of the average variation amongst a set of correlation surfaces. As was 
with previous ACFs we recognize the fact that the above spatial domain equation is 
equivalently expressed in the frequency domain by applying Parseval’s theorem. Let 

( )iY k, l  be the 2D-Fourier transform of ( )iy m, n  and ( )Y k, l  be the 2D-Fourier transform 

of ( )y m, n . Also, because we are primarily concerned with the frequency domain let us 

express ( )iY k, l  and ( )Y k, l  as the column vectors yi  and y  respectively. Eq. (39) is 

equivalently represented in the frequency domain as 
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⋅

= −
⋅

 (41) 

We must now introduce the filter itself into this metric to allow for optimization with 
respect to the filter coefficients. Let us consider the ASM over a set of correlation surfaces 

which are the result of filtering a set N training images ( )ix m, n  with the filter ( )h m, n . As 

such let us express the Fourier transforms of the ith training image and the filter as 

( )iX k, l and ( )H k, l  respectively. Also, define ( )X k, l , the average Fourier transform of the 

N training images, as 

( ) ( )
1

N

i

i

X k, l X k, l
=

=  (42) 

We proceed by representing ( )iX k, l , ( )X k, l , ( )H k, l  as column vectors xi , x , and h

respectively. Let us now define the diagonal matrices Xi  and X  whose non-zero elements 

are taken respectively from xi  and x . Using these matrices we can express yi  and y  as 

y X hi i
∗=  (43) 

y X h∗=  (44) 

Substituting the above equations in to Eq. (41) we have the following equivalent expression: 
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 (45) 
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