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1. Introduction 

In classical logic, every statement is either true or false, i.e., it has a truth value of 1 or 0. 
Classical sets impose rigid membership requirements. Fuzzy logic, which is the principle of 
imprecise knowledge, was introduced by Lofti A. Zadeh in 1965 (Zadeh, L. A., 1965). It is an 
extension of classical logic dealing with the partial truth concept. Every statement in fuzzy 
logic is a matter of degree and exact reasoning is viewed as a limiting case of approximate 
reasoning. In fuzzy logic, classical/Boolean truth value is replaced with degree of truth. 
Degree of truth denotes the extent to which a proposition is true. In fuzzy logic, the degree 
of truth of a proposition may be any real number between 0 and 1, inclusive. This fuzzy 
truth represents membership in vaguely defined sets, not likelihood of some event or 
condition.  
Fuzzy logic allows for set membership values between and including 0 and 1, shades of grey 
as well as black and white, and in its linguistic form, imprecise concepts like “slightly”, 
“quite” and “very”. Specifically it allows partial membership in a set. It is related to fuzzy 
sets and possibility theory. Fuzzy sets are an extension of classical set theory and are used in 
fuzzy logic (Zadeh, L. A., 1975). In classical set theory, the membership of elements in 
relation to a set is assessed in a crisp condition: either belongs to or not. In contrast, fuzzy set 
theory allows the gradual assessment of the membership of elements in relation to a set, 
with the aid of a membership function Ǎ. A membership function may act as an indicator 
function, mapping all elements of fuzzy sets to real numbered value in the interval 0 and 1: 
Ǎ→[0,1]. In general, there are 6 types of membership functions as depicted in Fig. 1. 

2. Fuzzy logic system 

A fuzzy logic system is composed of four principal components: a fuzzifier, a fuzzy rule 
base, a fuzzy inference engine and a defuzzifier (Mendel, J. M., 1995). It is an information 
processing system. Fig. 2 depicts a fuzzy logic system that is widely used in fuzzy logic 
controllers and signal processing applications.  
The crisp inputs s, are first converted into fuzzy quantities u. This process is known as 
fuzzification, where a fuzzifier transforms crisp input values into linguistic values. Input 
values are translated into linguistic concepts, which are represented by fuzzy sets. Rules 
may be provided by experts or can be extracted from numerical data. In either case, 
engineering rules are expressed as a collection of IF-THEN statements. The inference engine 
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Fig. 1. Types of membership functions 

 

Fig. 2. Fuzzy logic system (Mendel, J.M., 1995) 

of the fuzzy logic system maps fuzzy sets u into fuzzy sets v. It handles the way in which 
rules are combined. The defuzzifier maps output sets into crisp numbers. This mapping can 
be expressed quantitatively as d = f(s).  We shall consider an example of a simple 

www.intechopen.com



Extended Kalman Filter Based Fuzzy Adaptive Filter 

 

89 

temperature regulator that uses a fan. Fig. 3 shows the fuzzy sets and the membership 
functions for the input temperature. 
 

 

Fig. 3. Fuzzy sets of a simple temperature regulator that use a fan 

A membership function Ǎx, for x∈X, quantifies the grade of membership of the elements x 
to the fundamental set Χ. An element mapping to the value 0 means that the member is not 
included in the given set, 1 describes a fully included member. Values strictly between 0 and 
1 characterize the fuzzy members. Membership functions are applied to the measurement 
and the degree of truth in each determined premise. According to Fig.3, if the input 
temperature s is 33ºC, after fuzzification, the membership value that s belongs to warm and 

hot temperature are 0.2
warm

μ = and 0.8
hot

μ =  respectively. 

The fuzzy rules may be provided by a human expert, or can be extracted from numerical 
input-output data pairs. In either case, engineering rules are expressed as a collection of IF- 
THEN statements, i.e., 

“IF temperature is very hot THEN speed maximum fan.” 
“IF temperature is hot THEN speed medium high fan.” 
“IF temperature is warm THEN maintain medium fan.” 
“IF temperature is cold THEN turn down medium low fan.” 
“IF temperature is very cold THEN stop fan.” 

These rules reveal that we will need an understanding of (Mendel, J.M., 1995): 
1. Linguistic variables versus numerical values of the variable, e.g., very hot versus 45ºC. 
2. Quantifying linguistic variables. E.g., u may have a finite number of linguistic terms 

associated with it, ranging from very hot to very cold, which is fuzzifying using fuzzy 
membership functions. There is no unique membership function in a situation and it is 
primarily subjective in nature. But this does not mean that membership function can be 
assigned arbitrarily, it is rather on the basis of application-specific criteria. Some of the 
commonly used membership functions are shown in Fig. 1 (Chen, S., 1990). 

3. Implications, which is the relationship between two statements where the truth of one 
suggests the truth of the other, e.g., “IF temperature is warm THEN maintain medium 
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fan.” Here, the truth of temperature is warm suggests the fan to maintain in medium 
speed. 

4. Logical connections for linguistic variables, e.g., “and”, “or”, etc. “IF temperature is 
very hot and humidity is high, THEN speed medium high fan.” Humidity is another 
fuzzy set. The fan speeds to medium high only when the two conditions are fulfilled. 

Inference is the act or process of drawing a conclusion based solely on the fuzzy rules, e.g., u 

has 0.2
warm

μ =  and 0.8
hot

μ = , inference machine will draw a conclusion that the temperature 

is hot since 
hot
μ >

warm
μ . Defuzzifier converts the fuzzy value into a “crisp” value. The 

defuzzifier maps output sets v into crisp numbers d. In the example mentioned above, v is 

speed medium high fan, when map into crisp number, d is the supply voltage value to the 

fan (e.g., 80 volts).   
In summary, once the fuzzy rules have been established, the fuzzy logic system could map 
crisp inputs s into crisp outputs d. The mapping can be expressed quantitatively as d = f(s). 
The fuzzifier maps crisp numbers s into fuzzy sets u in order to activate fuzzy rules that are 
in terms of linguistic variables, which have fuzzy sets associated with them. The inference 
machine maps fuzzy sets u into fuzzy sets v. It deals with the process in which rules are 
combined. The defuzzifier maps output sets v into crisp numbers d. In the sub-section 
below, we will discuss a well-known fuzzy logic system, which is the Takagi-Sugeno Kang 
(TSK) fuzzy logic system. 

2.1 Takagi Sugeno Kang (TSK) fuzzy logic system  

The Takagi-Sugeno Kang (TSK) fuzzy model is a universal approximator of the continuous 
real functions that are defined in a closed and bounded subset of n-dimensional real 

number nℜ . This strong property of the TSK model finds several applications in modeling 

dynamical systems (Mastorakis, N.E., 2004). A TSK fuzzy logic system is described by fuzzy 
IF-THEN rules which represent input/output relations of a system. The most widely used 
TSK fuzzy logic system is the first-order TSK fuzzy logic system. It has a rule base of M 
rules, each having p antecedents, where the l-th rule is expressed as: 

Rl: IF x1 is lF1  and x2 is lF2  and …and xp is l

pF  

      THEN yl p

l

p

lll xcxcxcc ++++= ...22110  

in which l=1, 2,…, M; l

j
c  is the consequent parameter, for j=0,1,…,p; xj is the input to the 

fuzzy logic system; yl  is the output of the l-th IF-THEN rule; and l

j
F  is the fuzzy sets, for 

j=0,1,…,p. The final output of the unnormalized first order TSK model is inferred as 

(Tanaka, K., 1998): 

 r=∑=
M

l

ll yf
1

 (1.1) 

where lf are rule firing strengths defined as: 

 )(1 jF

p

j

l xf l
j

μ== Τ   (1.2) 

and Τ  denotes a t-norm. t-norm is the short form of triangular norm. It is a kind of function 

used in multi-valued logic, especially in fuzzy logic. t-norm generalizes intersection in a 
lattice and AND in logic. The most often used t-norms are: 
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and product t-norm are used, (1.1) can be expressed as: 

 r= ∏∑ == ⎥⎥⎦
⎤

⎢⎢⎣
⎡

⎟⎟⎠
⎞

⎜⎜⎝
⎛ −−p

j
l

j

l

jj
M

l

l
mx

y
1

2

1 2

1
exp σ  (1.4) 

 where  l

jm  and l

jσ  are the centre and width of the l-th fuzzy set l

jF , respectively. 

2.2 Application of fuzzy logic system 

Fuzzy logic systems deal with reasoning with fuzzy sets, fuzzy rules, and estimated 
sampled functions from linguistic input to linguistic output. Fuzzy logic systems are 
successful in the field of control especially the feed back control of some physical and 
chemical processes like electric current, temperature, motion of machines and flow of 
liquids or gas. Fuzzy logic principles are also be applied in fuzzy software engineering that 
incorporate fuzziness in data and programs and fuzzy database systems in the field of 
economics, management and medicines (Gupta, M.M., 1994a, Gupta, M.M., 1994b, Jang, 
J.S.R., 1993, Kaufmann, A., 1988). Recently, some automotive industry products and 
consumer electronics in the market have moved into fuzzy logic technology, and the 
outcome of the products has significant performance improvement (Al-Holou, N., 2002, 
Eichfeld, H., 1996). 
Fuzzy logic systems are nonlinear systems and they are capable of inferring complex 
nonlinear relationships between input and output variables (Mendel, J.M., 1997). The non-
linearity property is particularly important when the underlying physical mechanism to be 
modeled is inherently nonlinear. The system can ‘learn’ the non-linear mapping by being 
presented with a sequence of input signals and desired response pairs, which are used in 
conjunction with an optimization algorithm to determine the values of the system 
parameters. This is one of the most commonly used learning paradigms, called supervised 
learning. Even if the process to be modeled is non-stationary, the system can be updated to 
reflect the changing statistics of the process. Unlike conventional stochastic models used to 
model such processes, fuzzy logic systems do not make any assumptions regarding the 
structure of the process, nor do they invoke any kind of probabilistic distribution model, i.e., 
they belong to the general family of model free, data driven, non-parametric methods. 
However, conventional fuzzy systems have limitation of low capabilities for learning and 
adaptation. An improvement done in (Gupta, M.M.,1991) combines conventional fuzzy 
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technology with neural network technology to form an innovative technological field, so 
called fuzzy neural networks (FNNs). Fuzzy mathematics gives an inference mechanism for 
approximate reasoning under cognitive uncertainty, while neural networks have the 
abilities of pattern recognition, optimization and decision making (Bhatti, S.S., 2002). A 
combination of these two technological innovations give birth to a new technology in which 
the explicit knowledge representation of fuzzy logic is improved by the learning power of 
simulated neural networks (Bhatti, S.S., 2002). Fuzzy basis function network (FBFN) is one 
of the FNNs that are used for information processing. It rediscovers some interesting 
advantages of a fuzzy system. One is the universal approximation capability, and the other 
is learning and adaptation, which have not been dealt with in fuzzy systems. Fuzzy 
adaptive equalizers are based on such technology. This technology is also capable of dealing 
with nonlinearity and uncertainty. 

3. Equalizer 

Consider, for example, a communication system which consists of a transmitter, 
communication channel, receiver, and equalizer connected together as shown in Fig. 4. The 
term equalizer in communication system is commonly refer to a device that place after the 
receiver designed to equalize the channel characteristics and extract out information send by 
transmitter side from noise and distortion. 
 

 

Fig. 4. Block diagram of a communication system 

The main problem that has to be considered in communication system involves the fading and 
intersymbol interference (ISI), which is generated by multipath propagation effects and its 
resulting delay spread. Sometimes, there are obstacles and reflectors in the communication 
channel. The transmitted signal arrives at the receiver from various directions over a 
multiplicity of paths. Such a phenomenon is called multipath. It is an unpredictable set of 
reflections from direct waves and each with its own degree of attenuation and delay.  
In communication channel, multiple reflections of the transmitted signal may arrive at the 
receiver at different times, this can result in intersymbol interference (or bits "crashing" into 
one another) which the receiver cannot sort out. This time dispersion of the channel is called 
multipath delay spread which is an important parameter to degrade the performance of 
communication systems.Besides signal distortion due to multipath propagation, noise is the 
most crucial factor that degrades the performance of communication systems. Since 
communication systems have such a lot of undesired distortions, equalizers are designed to 
compensate these distortions. 

3.1 Optimal equalizer (MAP equalizer) 

Maximum a-posteriori (MAP) equalizer is the optimal equalizer based on maximum a 
posteriori probability estimation. MAP equalization requires the knowledge of the 
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conditional probability density function (PDF) of the received signal given the transmitted 
signal pattern. Assume that we want to estimate an unobservable population ǉ on the basis 
of observations y. Let f be the sampling distribution of y, so that f(y|ǉ)  is  a conditional PDF, 
summarizing our knowledge  provided by the data y conditioned on knowing ǉ. Then the 
function: 

 ǉ U  f(y|ǉ)  (1.5) 

is known as the likelihood function and the estimate (Kay, S.M., 1993): 

    arg)(ˆ xamyML θθ =  f(y|ǉ)  (1.6) 

as the maximum likelihood estimate of ǉ. Now, assume that a prior distribution g over ǉ 
exists. Applying Bayesian statistics, we may treat ǉ as a random variable with posterior 
distribution as: 

 ǉ  U  ∫θ θθθ
θθ
dgyf

gyf

)()|(

)()|(
 (1.7) 

This is an application of Bayes’ theorem. The method of maximum a-posteriori estimation is 
then estimates ǉ as the mode of the posterior distribution with: 

 )()|(    arg
)()|(

)()|(
    arg)(ˆ θθθθθ

θθθ θ
θ

θ gyfxam
dgyf

gyf
xamyMAP == ∫  (1.8) 

MAP estimate of ǉ coincides with maximum likelihood estimate when the prior distribution 
function g is uniform. The geometric formulation of MAP equalizer is given below. 

3.2 Geometric formulation for MAP equalizer 

The geometric formulation of the MAP equalizer is shown in (Chen, S., 1990) and (Chen, S., 
1991). We are using the same notation as in those studies and we define: 

 }1)(|)(x̂{)1(, =−ℜ∈= τητη kskP  (1.9) 

and 

 }1)(|)(x̂{)1(, −=−ℜ∈=− τητη kskP   (1.10) 

where ǈ is the order, Ǖ is the lag of the equalizer, ℜ is any real number, 

 
Tkxkxkxk ])1(ˆ...)1(ˆ)(ˆ[)(x̂ +−−= η  (1.11) 

)(ˆ kx  is the noise-free output of the rake receiver, and )1(,τηP  and )1(, −τηP  are two sets of 

possible noise free output vectors )(x̂ k   that can be produced from input sequences 

containing s(k-Ǖ) = 1 and s(k-Ǖ) = -1, respectively. Let: 

 Tkxkxkxk ])1(...)1()([)(x +−−= η   (1.12) 
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be the observed output vector with noise, )]1()(x̂|)(x[ ,1 τηPkkp ∈  and 

)]1()(x̂|)(x[ ,1 −∈− τηPkkp  be the conditional probability density functions of x(k) given 

)1()(x̂ ,τηPk ∈  and )1()(x̂ , −∈ τηPk  respectively. It was shown in (Chen, S., 1990) and (Chen, 

S., 1991), which the MAP equalizer is defined by: 

 ))]1()(x̂|)(x())1()(x̂|)(x(sgn[))(x( ,1,1 −∈−∈= − τητη PkkpPkkpkfopt  (1.13) 

This optimal equalizer achieves the minimum bit error rate for the given order ǈ and Ǖ, 
where sgn(q) = 1 (-1), if q ≥0 (q<0). If the noise is Gaussian and with covariance matrix: 

 })]1(...)([ )]1(...)({[( TknknknknEQ +−+−= ηη  (1.14) 

Then from )()(ˆ)( knkxkx += , we have: 

))1()(x̂|)(x())1()(x̂|)(x( ,1,1 −∈−∈ − τητη PkkpPkkp  

∑ ⎥⎦
⎤⎢⎣

⎡ −−−= +−+ )x̂)(x()x̂)(x(
2

1
exp 1 kQk T   ∑ ⎥⎦

⎤⎢⎣
⎡ −−−− −−− )x̂)(x()x̂)(x(

2

1
exp 1 kQk T (1.15) 

where the first summation is over all the positive noise free points )1(x̂ ,τηP∈+  whereas the 

second summation is over all the negative noise free points )1(x̂ , −∈− τηP . 

In practice, it is difficult to know or predict the PDF of the transmitted or received signals, 
and MAP equalizer is too complex for practical use. Therefore, attention has been given to 
the design of sub-optimum equalizers such as adaptive equalizers that are practical and 
have near optimal performance.  

4. Adaptive equalizer  

Adaptive equalizers are sub-optimum equalizers that rely on a recursive algorithm to 
perform satisfactory information extraction in a communication system in which the 
statistical characteristics about the input-output signal are not known. The algorithm will 
start from some predetermined set of initial conditions, representing whatever the system 
knows about the communication channel. In a stationary communication channel, after 
successive iterations of the algorithm, the equalizer will converges to the optimum solution 
in some statistical sense. In a non-stationary communication channel, the algorithm will also 
have the ability to track time variations in the statistic of the input data (Haykin, S. 2002). 
Some adaptive equalizers examples are shown below: 

4.1 Transversal equalizer 
Digital equalizer is well known and was already described in 1940 by H. J. Kallman in 
(Kallman, H.J., 1940). The invention relates to a simple and linear transversal equalizer for 
processing an analog signal with a number of stages to which level control devices are 
connected by uniformly spaced taps in a non-dispersive delay line. The transversal 
equalizer is typically implemented using digital circuitry, charged-coupled devices, or 
surface-acoustic wave devices. Due to its versatility and ease of implementation, the 
transversal equalizer has emerged as an essential signal processing structure in a wide 
variety of applications. 
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In signal processing, transversal equalizer is also known as tapped-delay line equalizer or 
finite–duration impulse response (FIR) equalizer (Proakis, J.G.,1995). The structure of an 
adaptive transversal equalizer is depicted in Fig. 5: 
 

 

Fig. 5. Structure of transversal equalizer 

The output of the transversal equalizer is given by: 

 ∑= −= η
0

)()(ˆ
l

l lkxwks .  (1.16) 

where lw  is the l-th tap weight and ǈ is the order of the equalizer. The weights of the 

equalizer can be optimized by minimizing some criterion functions. Two popular choices for 

the adaptation algorithm are the RLS and LMS algorithm. 

4.2 Decision feedback equalizer 

Another sub-optimum adaptive equalizer is the decision feedback equalizer (DFE). DFE 
utilizes two transversal equalizers: a feedforward transversal equalizer and a feedback 
transversal equalizer (Sailer, T.M., 2001). The DFE uses previous symbol estimates for 
interference cancellation of ISI corrupted data transmission. When the symbol estimates are 
correct, they have the advantage of not being corrupted by additive channel noise, giving 
the DFE a performance advantage over other linear structures. However, if the symbol 
estimates are incorrect, there is the danger of error propagation leading to catastrophic 
performance. The structure of DFE is shown in Fig. 6: 
 

 
Fig. 6. Structure of decision feedback equalizer 
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where f(.) is a decision device and x(k) is the input to the feedforward transversal equalizer. 
From the output of the feedforward transversal equalizer, dff(k), the interference from 
previously detected symbols are removed via the output of the feedback transversal 
equalizer, dfb(k-q). The difference between these two transversal equalizer outputs 

constitutes an estimate of the transmitted symbol, ˆ( | )d k q k− . This estimate is sometimes 

called soft estimate, since it is not yet quantized. The decision device quantizes the soft 

estimate and the resulting hard estimate, ˆ( )s k q−  becomes the input of the feedback 

transversal equalizer. The constant q is known as the decision delay or the smoothing lag. It 
specifies how many future measurements are being processed before a decision is made on 
the present symbol.     

4.3 Volterra series expansion equalizer  

Since the optimal decision boundary is normally nonlinear for communication channel 

equalization problem, linear equalization methods are no longer adequate for the task. In 

this case, nonlinear equalizers that have the ability to perform nonlinear input-output 

mapping can be applied to minimize the error probability. In this and the following two 

subsections, we discuss three nonlinear channel equalization methods, namely the Volterra 

series expansion, the radial basis function and the multilayer perceptrons. The Volterra 

series expansion equalizer is a nonlinear equalizer based on the Volterra series functional 

representation from mathematics (Kong, X., 2004). 

Let x[n] and y[n] represent the input and output signals, respectively, of a discrete time and 
causal nonlinear system. The Volterra series expansion for y[n] using x[n] is given by 
(Mathews, V.J., 1991): 

y[n] ∑ ∑ ∑∞
=

∞
=

∞
=

+−−+−+=
0 0 0

212121110

1 1 2

...][][],[][][
m m m

mnxmnxmmhmnxmhh  

 ∑ ∑ ∑∞
=

∞
=

∞
=

+−−−+
0 0 0

2121

1 2

...][]...[][],...,,[...
m m m

ppp

p

mnxmnxmnxmmmh   (1.17) 

where ],...,,[ 21 pp mmmh is known as the p-th order Volterra kernel of the system. 

],...,,[ 21 pp mmmh can be optimized by minimizing some criterion functions. Among the 

most commonly used algorithm are the recursive least squares (RLS) and least mean squares 

(LMS) algorithms. Without any loss of generality, it is assumed that the Volterra kernels are 

symmetric, in which ],...,,[ 21 pp mmmh is left unchanged for any of the possible p! 

permutations of the indices pmmm ,...,, 21 (Mathews, V.J., 1991). 
 Since an infinite series expansion like (1.17) is not useful in channel equalization, we may 
work with truncated Volterra series expansion (Mathews, V.J., 1991): 

y[n] ∑ ∑ ∑−
=

−
=

−
=

+−−+−= 1

0

1

0

1

0
21212111

1 1 2

...][][],[][][
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m

mnxmnxmmhmnxmh  
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0
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][]...[][],...,,[...
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N

m
ppp

p

mnxmnxmnxmmmh  (1.18) 
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where 00 =h (without loss of generality (Mathews, V.J., 1991)). Note that there are )( pNO  

coefficients in this polynomial expansion. One big disadvantage for the model as in (1.18) is 

that the complexity of implementing equalizers using this model can be very large even for 

moderately large values of N and P. Consequently, most Volterra series expansions system 

involve low order model. 

4.4 Radial basis function equalizer  
A radial basis function (RBF) equalizer is a neural network equalizer whose outputs are a 
linear combination of the hidden layer functions (Mulgrew, B., 1996). It is trained to perform 
a mapping from an m-dimensional input space to an n-dimensional output space. The 
structure of RBF equalizer is shown in Fig. 7 below. 
 

 

Fig. 7. Structure of radial basis function equalizer 

Mathematically, the output of a RBF equalizer is, 

 )())((
1

x∑== h

l
llFwkxf   (1.19) 

where the basis function F is a sigmoidal function 

 ⎟⎟⎠
⎞⎜⎜⎝

⎛ −−= 2

2

1
exp)( l

l

F μσ xx   (1.20) 

x is the input vector of the equalizer [x1  x2 …  xm], h indicates the total number of hidden 
neurons, 

l
μ and 

l
σ  refer to the center and width of the l-th hidden neuron.||.|| is the 

Euclidean norm. The coefficient wl is the weight of the l-th hidden neuron to the output 
neuron. 
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4.5 Multilayer perceptrons equalizer  

Another approach for nonlinear channel equalization using neural network is the multilayer 

perceptrons (MLP) equalizer. A typical MLP equalizer consists of a set of source nodes 

forming the input layer, one or more hidden layers of computation nodes, and an output 

layer of nodes. The input signal propagates through the MLP equalizer layer-by-layer. The 

signal-flow of such an equalizer is shown in Fig. 9. In between the input layer and the 

output layer are the hidden layers of the MLP equalizer. The MLP equalizer has L layers of 

synaptic connections and L+1 layers of neurons.  

In (Seung, S., 2002), back propagation algorithm is used in multilayer perceptrons network. 

Assume there are no biases, the network is diagrammed as: 

 LWWW
xx

L

x ⎯→⎯⎯→⎯⎯→⎯ A
21

10   (1.21) 

where lnlx ℜ∈  for all l = 0,1, …, L; ] ...  [ 21

l

h

lll xxxx =  and Wl is an 1−× ll nn  matrix for all l = 

0,1, …, L. 
l
n  is the number of hidden neurons in l-th layer. There are L + 1 layers of neurons. 

The input vector 0x  is transformed into the output vector Lx  by evaluating the equation: 

 ∑−= −= 1

1

1
ln

j

l

j

l

ij

l

i xWx  for l = 1 to L.  (1.22) 

The actual output of the equalizer is 

 ∑== h

i

L

ixkxf
1

))((   (1.23) 

 
 

 

Fig. 9. Structure of multilayer perceptron equalizer 
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Two types of linear adaptive equalizer had been discussed, namely transversal equalizer 

and decision feedback equalizer; at the meantime, three types of nonlinear channel are also 

discussed, namely Volterra series expansion equalizer, radial basis function equalizer and 

multilayer perceptron equalizer. Normally, complex communication channels are nonlinear 

channel. Therefore most of the adaptive equalizers used today are nonlinear adaptive 

equalizer, because they not only dealing well with linear channel characteristic, but 

nonlinear channel as well. Since nonlinear channels include a very broad spectrum of 

nonlinear distortion, it is difficult to comment on which nonlinear adaptive equalizer is 

dominantly better than the others. So, it is good to try out new nonlinear adaptive equalizer 

for communication channel equalization. Fuzzy adaptive equalizer is such a new nonlinear 

equalizer. 

5. Fuzzy adaptive equalizer 

Fuzzy adaptive equalizers are adaptive equalizers that apply the concepts of fuzzy logic. 

Fuzzy adaptive equalizers are information processors that make use of both linguistic (in the 

form of fuzzy IF-THEN rules) and numerical information (in the form of input-output 

pairs). The main merits of using fuzzy adaptive equalizers are nonlinear and simple in 

design, which linguistic information from human experts can be directly incorporated into 

the equalizer. If no linguistic information is available, the fuzzy adaptive equalizers become 

well-defined nonlinear adaptive equalizers (similar to the polynomial, neural nets, or radial 

basis function adaptive equalizers). The adaptive algorithms adjust the parameters of the 

membership functions which characterize the fuzzy concepts in the IF-THEN rules, by 

minimizing some criterion function.  

Fuzzy adaptive equalizer, as a fuzzy basis function expansions system, can be represented 

as two-layered feedforward network structure (Wang, L.X., 1992b). On the basis of this idea, 

the fuzzy adaptive equalizer can be trained to realize the desired input-output relationship 

using various learning algorithms such as least mean squares (LMS), recursive least squares 

(RLS) and extended Kalman filter (EKF) adaptation algorithms. Fig. 10 shows the schematic 

diagram of fuzzy adaptive equalizer. The inputs to the fuzzy adaptive equalizer [x(k), x(k-

1),…, x(k-n+1)] are the receiver’s outputs. The task of the fuzzy adaptive equalizer at the 

sampling instant k is to produce an estimate of the transmitted symbol ˆ( )s k d− , using the 

information contained in [x(k), x(k-1),…, x(k-n+1)] where the integer n and d are the order 

and lag of the equalizer respectively. 

A fuzzy adaptive equalizer is functionally equivalent to a fuzzy basis function network 

(FBFN) with the form given in (1.24) to (1.27). It can be shown that the input-output 

equations of a fuzzy adaptive equalizer with singleton fuzzifier, product inference and 

centroid defuzzifier can be expressed as: 
 

 f(x(k)) = ∑ ∏
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(x)lφ are called the fuzzy basis functions. Equation (1.24) gives an expression for fuzzy 

adaptive equalizer as shown in Fig.10. x =[x1 x2 …xn-1]=[x(k) x(k-1) … x(k-n+1)] is the vector 
of inputs to the fuzzy adaptive equalizer. In particular, if a Gaussian radial basis function is 
chosen as the membership function, then 

 ∑=
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u
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)x(φ   (1.26) 
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ul(x) is the membership function after product inference, l

i
x#  is the center of the i-th 

membership function and l

i
σ represents the width of the i-th membership function. In the 

next two sections, we will discuss two examples of fuzzy adaptive equalizers that were 

proposed in (Wang, L.X., 1993) for nonlinear channel equalization. 
 

 
Fig. 10. Schematic diagram of fuzzy adaptive equalizer. 
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6. RLS based fuzzy adaptive equalizer 

In (Wang, L.X., 1993), the RLS based fuzzy adaptive equalizer is used to solve the following 
problem. Consider a real-valued vector input sequence [x(k)] and a real-valued scalar 
sequence [d(k)], where k=0,1,2,… is the time index, and 

x(k)∈U≡ n

nn CCCCCC ℜ⊂××× +−+−+− ],[...],[],[ 2211 . U and ℜ  are the input and output 

spaces of the equalizer respectively. At each time point k, the values of x(k) and d(k) are 
given. The problem to be solved is to determine a fuzzy adaptive equalizer 

n

k Uf ℜ⊂: →ℜ  such that:  

 ∑= − −= k

i
k

ik ifidkJ
0

2))](()([)( xλ   (1.28) 

is minimized, where ]1,0(∈λ  is a forgetting factor. 

6.1 Design procedure of the RLS based fuzzy adaptive equalizer 

Step 1: mi fuzzy sets are defined in each interval [ ]+−
ii CC ,  of the input space U, which are 

labeled as ji

iF (i = 1, 2, …, n; ji = 1, 2, …, mi; ji is a single index, i.e., j1 is an index which takes 

values from 1 to m1 for i=1), in the following way: the mi membership functions ji
iF

μ cover 

the interval [ ]+−
ii CC ,  in the sense that for each [ ]+−∈ iii CCx ,  there exist at least 

one 0)( ≠iF
xji

i

μ . These membership functions are fixed and will not change during the 

adaptation procedure. 

Step 2: A set of ∏=
n

i
im

1

 fuzzy IF-THEN rules is constructed in the following form: 

 :),...,1( jnjR  IF x1 is 1

1

jF  and … and xn is jn

nF , THEN d is ),...,1( jnjG .  (1.29) 

where [ ] [ ] Unkxkxxx
TT

n   )1(),...,(,...,x 1 ∈+−==  is the equalizer input, ℜ∈d  is the 

equalizer output, ji = 1, 2, …, mi with i =1, 2, …, n, ji

iF ’s are the same labels of the fuzzy sets 

defined in Step 1, and the ),...,1( jnjG ’s are labels of fuzzy sets defined in the output space 
which are determined in the following way: if there are linguistic rules from human experts 

in the form of (1.29), ),...,1( jnjG  is set to the corresponding linguistic terms of these rules; 

otherwise, ),...,1( jnjG
μ  is set to an arbitrary membership function over the output space ℜ . It 

is in this way that linguistic rules are incorporated into the fuzzy adaptive equalizer. 

Step 3: The filter output fk is calculated based on the ∏=
n

i
im

1

rules in step 2 as follows: 
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  (1.30) 
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where [ ] [ ] ,  )1(),...,(,...,x 1 Unkxkxxx
TT

n ∈+−== s'ji
iF

μ  are membership functions 

defined in Step 1, and ℜ∈),...,1( jnjθ  is the point at which ),...,1( jnjG
μ  achieves its maximum 

value. Due to the way in which the ji
iF

μ ’s are defined in Step 1, the denominator of (1.30) is 

nonzero for all the points of U; therefore the filter fk of (1.30) is well defined. For a given 

input U∈x , the equalizer output is determined as a weighted average of the ∏=
n

i
im

1

points 

),...,1( jnjθ  in the output space at which the fuzzy sets ),...,1( jnjG  of the THEN parts of the 

∏=
n

i
im

1

rules have maximum membership values; and, the weight )()...( 11
1

nFF
xx jn

n
j μμ  for 

),...,1( jnjθ  is proportional to the membership values of which x satisfies the IF part of  ),...,1( jnjR . 

6.2 Parameter adaptation of the RLS based fuzzy adaptive equalizer 

In (1.30), the weights )()...( 11
1

nFF
xx jn

n
j μμ  are fixed functions of x; therefore the free design 

parameters of the fuzzy adaptive equalizer are the ),...,1( jnjθ ’s which are collected as a ∏=
n

i
im

1

-

dimensional vector (Wang, L.X., 1993): 

( ) ( ) ( ) ( ) ( ) ( )
,...,,...,,...,,...,,,...,[θ 1,...,1,,1,...,1,,11,...,1,2,1,...,2,11,...,1,1,...,1,1 21211 mmmmm θθθθθθ= ( ) ( ) Tmmmmm nn ],...,

,...,,,...,,1 212 θθ (1.31) 

The fuzzy basis function is defined by 

 ( ) ( )∑ ∑= =
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xx
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  (1.32) 

and they are collected as a ∏=
n

i
im

1

-dimensional vector p(x) in the same ordering as the θ  of 

(1.31), i.e., 

( ) ( ) ( ) ( ) ( )
)x(),...,x(),...,x(),x(),...,x(()x(p

1,...,1,,11,...,1,2,1,...,1,2,11,...,1,1,...,1,1 111 mmm
ppppp=  

 
( ) ( ) ( ) Tmmmmmmm nn ppp ))x(),...,x(),...,x(,...,

,...,,,...,,11,...,1,, 21221   (1.33) 

Based on (1.31) and (1.33), (1.30) can be rewritten as: 

 θ)x(p)( T

kf =x   (1.34) 

The following RLS algorithm is used to update θ . The initial estimate of θ , ( )0θ , is 

determined  as in Step 2, and P(0)=ǔI, where ǔ is a small positive constant, and I is the 

∏=
n

i
im

1

-by-∏=
n

i
im

1

 identity matrix. At each time point k=1,2, ..., the following equation are 

computed: 
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 ))(x(p)( kk =φ   (1.35) 

 [ ])1()()]()1()()[()1()1(
1

)( 1 −−+−−−= − kPkkkPkkkPkPkP TT φφφλφλ   (1.36) 

 1)]()1()()[()1()( −−+−= kkPkkkPkK T φφλφ   (1.37) 

 ))1(θ)()()(()1(θ)(θ −−+−= kkkdkKkk Tφ   (1.38) 

where x(k) is the real-valued input vector and d(k) is the real-valued desired output scalar 

sequence. ))(x(p k is defined in (1.33), and ǌ is the forgetting factor. Some comments on the 

RLS based fuzzy adaptive equalizer are given in the next sub-section. 

6.3 Comments on RLS based fuzzy adaptive equalizer 
The RLS algorithm, (1.36) – (1.38) are obtained by minimizing the recursive least squares 

criterion, ,))](x()([)(
0

2∑= − −= k

i
k

ik ifidkJ λ  with fk constrained to be the form of (1.34). 

Because fk is linear in the parameter, the derivation of (1.36) – (1.38) is the same as that for 
the FIR linear adaptive filter (Cowan, C.F.N., 1985). 

Equations (1.36) – (1.38) can be viewed as updating the ∏=
n

i
im

1

rules in the form of (1.29) by 

changing the centers ),...,1( jnjθ  of the THEN parts of these rules in the direction that 
minimizing the criterion function J(k) as in (1.28). Only these centers are allowed to change. 

The membership functions ji
iF

μ  of the IF parts of the rules are fixed at the very beginning 

and are not allowed to change. Hence, a good choice of the membership functions is very 
important to the success of the entire equalizer. However, in the next section, LMS based 

fuzzy adaptive equalizer will lighten this constraint by allowing ji
iF

μ ’s also to change during 

the adaptation process. 
It was proven in (Wang, L.X., 1992a) and (Wang, L.X., 1992b) that the equalizers (1.30) are 
universal approximators; i.e. for any real continuous function g on the compact set U, there 
exists a function in the form of (1.30) such that it can uniformly approximate g over U to an 
arbitrary accuracy. Therefore, this fuzzy adaptive equalizer is a powerful nonlinear adaptive 
equalizer in the sense that it has the capability of performing very difficult nonlinear 
equalization operation. This type of fuzzy adaptive equalizer performs two operations on 
the input vector x: first, it performs a nonlinear transformation p(.)  on x; then the equalizer 
output is obtained as a linear combination of these transformed signals. The fuzzy adaptive 
equalizer is similar to the radial basis function (Chen, S., 1991), (Powell, M.J.D., 1987) and 
potential function (Meisel, W.S., 1969) approaches. 
Linguistic information (in the form of fuzzy IF-THEN rules of (1.30)) and numerical 
information (in the form of desired input-output pairs x(k), d(k)) are combined into the 
equalizer in the following way: In Step 2-3, linguistic IF-THEN rules are directly 
incorporated into the equalizer (1.30) by constructing the initial equalizer based on the 
linguistic rules. During the parameter adaptation, numerical pairs (x(k), d(k)) are 
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