

C-Preface

C- The high-level language that was originally developed by Dennis M. Ritchie

is easy to learn and can be compiled on a variety of computer platforms. Most of
the state-of-the-art software has been implemented using C. This book aims to
make the learning of this universal computer language simple and interesting.

The step by step methods that are given in the book is sure to make it reader
friendly. Apart from being a ready reference, this book is written with a view to

attract more and more students to learn, comprehend and subsequently use it for
their projects and research.

I hope this volume will be a valuable reference for computer science & non IT

students, researchers, computer programmers and software professionals.

Goals

 Be clear, readable, and possibly even entertaining. Many C books are too

concise for the average reader. I've tried to give clear, thorough explanations
to hold the reader's interest.

 Be authoritative without being pedantic. To avoid arbitrarily deciding what

to include and what not to include, I've tried to cover all the features of the C
language and library. At the same time, I've tried to avoid burdening the
reader with unnecessary detail.

 Be organized for easy learning. My experience in teaching C underscores

the importance of presenting the features of C gradually. I use a spiral
approach, in which difficult topics are introduced briefly, then revisited one or
more times later in the book with details added each time.

 Motivate language features. Instead of just describing each feature of the

language and giving a few simple examples of how the feature is used, I've
tried to motivate each feature and discuss how it's used in practical situations.

 Emphasize style. It's important for every C programmer to develop a

consistent style. Rather than dictating what this style should be, though, I

usually describe a few possibilities and let the reader choose the one that's
most appealing. Knowing alternative styles is a big help when reading other
people's programs (which programmers often spend a great deal of time

doing).

1. INTRODUCTION TO ‘C’ AND ‘C’ FUNDAMENTALS 1

2. DATA INPUT/OUTPUT AND ‘C’ OPERATORS 13

3. CONTROL STATEMENTS 37

4. ARRAYS 81

5. FUNCTIONS 111

6. POINTERS 144

7. STRUCTURES 174

8. MORE ON POINTERS 199

9. FILE HANDLING 212

10. INTRODUCTION TO GRAPHICS 251

11. SAMPLE PROGRAMS 271

CHAPTER TOPIC PAGE NO

C O N T E N T S

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901 Easy Way to Learn C Programming

Overview

 Origin Of C

 The Problems Of B

 Features Of C

 Characteristics Of C

 Current Uses Of C

 The C Compilation Model

 Basic Structure Of C

 The C Character Set

 Identifiers And Keywords

 Data Type

 Constants

 Variables

 Escape Sequences

 Expressions

 Statements

Origin of C

C was Invented and first implemented by Dennis Ritchie on a DEC PDP-11 that

version used the unix operating system. The first version of Unix was written in

the low-level PDP-7 assembler language. C is the result of a development process

that started with an older language called B, which was invented by Ken

Thompson.B leds to the development of C in 1970's. The C programming

language was first described by Brian Kernighan and Dennis Ritchie. In 1983, a

committee was established to create an ANSI(American National Standards

institute) standard that would define the C language once and for all.The ANSI C

standard was finally adopted in December 1989, with the first copies becoming

available in early 1990. The standard was also adopted by ISO(International

Standards Organisation) and now is refered as ANSI /ISO C standard.

C is a middle level language because it combines the best elements of high level languages with the

control and flexibility of assembly language.

Highest level ----------- > Ada

Modula-2

Pascal

COBOL

FORTRAN

BASIC

Middle level ------------ > Java

C++

C

FORTH

Lowest level ------------ > Macro-assembler

Assembler

Introduction to C and C Fundamentals

CHAPTER - 1

DENNIS RITCHIE

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678902 Easy Way to Learn C Programming

The Problems of B (BCPL - Basic Combined Programming Language)

The advent of the PDP-11 exposed several inadequacies of B's semantic model. First, its character-

handling mechanisms, inherited with few changes from BCPL, were clumsy: using library procedures to

spread packed strings into individual cells and then repack, or to access and replace individual characters,

began to feel awkward, even silly, on a byte-oriented machine.

Second, although the original PDP-11 did not provide for floating-point Arithmetic. Floating-point operations

had been added to BCPL but the mechanism was possible only because on the relevant machines, a

single word was large enough to contain a floating-point number; this was not true on the 16-bit PDP-11.

Finally, the B and BCPL model implied overhead in dealing with pointers. Each pointer reference generated

a run-time scale conversion from the pointer to the byte address expected by the hardware.

Aside from the problems with the language itself, the B compiler's threaded-code technique yielded

programs so much slower than their assembly-language .

In 1971 , the B language was extended by adding a character type and also rewrote its compiler to

generate PDP-11 machine instructions instead of threaded code. Thus the transition from B to C was

contemporaneous with the creation of a compiler capable of producing programs fast and small enough

to compete with assembly language. B called the slightly-extended language NB, for `new B.'

Features of C
 Modularity

 Portability

 Code-Reusability

 Ability to Extend Itself

 Limited Number of Keywords

Characteristics of C

We briefly list some of C's characteristics that define the language and also have lead to its popularity as

a programming language. Naturally we will be studying many of these aspects throughout the course.

 Small size

 Extensive use of function calls

 Loose typing -- unlike PASCAL

 Structured language

 Low level (Bitwise) programming readily available

 Pointer implementation - extensive use of pointers for memory, array, structures and functions.

C has now become a widely used professional language for various reasons.

 It has high-level constructs.

 It can handle low-level activities.

 It produces efficient programs.

 It can be compiled on a variety of computers.

Its main drawback is that it has poor error detection which can make it off putting to the beginner. However

diligence in this matter can pay off handsomely since having learned the rules of C we can break them.

Not many languages allow this. This if done properly and carefully leads to the power of C programming.

Current uses of C

 Operating system

 Interpreters

 Editors

 Compilers

 File utilities

 Performances enhancers

 Real time executives

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678903 Easy Way to Learn C Programming

The C Compilation Model

The Preprocessor

The Preprocessor accepts source code as input and is responsible for

 removing comments

 interpreting special preprocessor directives denoted by #.

For example

 #include -- includes contents of a named file. Files usually called header files.

(e.g) o #include <math.h> -- standard library maths file.

o #include <stdio.h> -- standard library I/O file

 #define -- defines a symbolic name or constant. Macro substitution.

o #define MAX_ARRAY_SIZE 100

C Compiler

The C compiler translates source to assembly code. The source code is received from the preprocessor.

Assembler

The assembler creates object code. On a UNIX system you may see files with a .o suffix (.OBJ on

MSDOS) to indicate object code files.

Link Editor

If a source file references library functions or functions defined in other source files the link editor combines

these functions (with main()) to create an executable file. External Variable references resolved here

also.

BASIC STRUCTURE OF C

Documentation Section

Link section

Definition section

Global declaration

Return_type main(parameter list)

{

Statement sequence

}

Subprogram section

Function 1

Function 2

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678904 Easy Way to Learn C Programming

Function 3

:

:

Function n

Documentation section - Consists of set of comment lines giving the name of the program, the author

and other details regarding the program. Comment line should be given between /*…….*/.

Link section - provides instructions to the compiler to link functions from the system library.

Definition section - Defines all symbolic constants .

Global declaration section - Declares variables that are globally visible, inside all the functions

Main program section - All C program must have one main function. Consists of two parts, Declaration

part and Executable part.

 The declaration part declares all variables used in the executable part.

 There is at least one statement in the executable part.

 These two parts appear between the opening and closing braces.

 The program execution begins at opening braces and end at closing braces. The closing brace

of the main function section is at the logical end of the program.

 All statements in the declaration part and executable parts end with a semicolon.

Subprogram section - Contains all the user-defined functions that are called in the main function. User

defined functions are placed immediately after the main function, although they may appear in any order.

Sample program

/* Print the given sentence*/

#include<stdio.h>

main()

{

printf("Welcome to JSC");

}

Output:

Welcome to JSC

The C Character Set

C uses the following as building blocks to form basic program elements such as constants, variables,

operators, expressions etc.

• Uppercase letters A to Z.

• Lowercase Letters a to z

• Digits 0 to 9 and

• Certain Special Characters like :

 ! * + \ “ < # (= | { >] ‘ . (blank) %) ` ; } / ^ - [: , ? & _

Special Characters

SYMBOL NAME SYMBOL NAME

, Comma & Ampersand

. Period ^ Caret

; Semicolon * Asterisk

: Colon - Minus Sign

? Question Mark + Plus Sign

' Aphostrophe < Opening Angle(Less than sign)

" Quotation Marks > Closing Angle(Greater than Sign)

! Exclaimation Mark (Left Parenthesis

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678905 Easy Way to Learn C Programming

| Vertical Bar) Right Parenthesis

/ Slash [Left Bracket

\ Backslash] Right Bracket

~ Tilde { Left Brace

_ Underscore } Right Brace

$ Dollar Sign # Number Sign

% Percentage Sign

Identifiers And Keywords

Identifiers are names given to various program elements, such as variable, functions and array identifiers

consist of letters and digits, in any order, expect that the first character must be a letter. The underscore

character(_) can also be include. An identifier may also begin with an underscore.

The following names are examples of valid identifiers.

X Y12 sum_1 _temprature

Name area tax_rate TABLE

There are certain reserved words, called keywords, that have standard, predefined meanings in C. The

keywords can be used only for intended purpose, they cannot be used as user defined keywords. Give

bellow is a list of the standard keywords.

Auto extern break float const

if typedef continue union void

double return volatile else for

struct char goto switch unsigned

do register static case default

long short while enum int

signed sizeof

Data Types

There are five atomic data types in C: character, integer, floating-point,double floating-point and

valueless(char,int,float,double, and void, respectively). The data type supported in a language dictates

the type of values which can be processed by the language. C supports several different types of data,

each of which may be represented differently within the computers memory.

The data types supported by C may broadly be classified into

• Simple, Primitive or atomic data.

• Compound, structured or derived data.

An atomic data is a fundamental unit of information which cannot be broken down to constituent parts.

Whereas a derived data item is made up of one or more simple data items. The list given below classifies

the items as simple compound.

SIMPLE Integers Characters Floats Doubles

COMPOUND Arrays Structures Unions BitFields

The basic data types

 Type Typical size in Bits size in Bytes Range

 char 8 1 -127 to 127

 unsigned char 8 1 0 to 255

 signed char 8 1 -127 to 127

 int 16 or 32 2 -32,767 to 32,767

 unsigned int 16 or 32 2 0 to 65,535

 signed int 16 or 32 2 -32,767 to 32,767

 short int 16 2 -32,767 to 32,767

 unsigned short int 16 2 0 to 65,535

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678906 Easy Way to Learn C Programming

 long int 32 4 -2,147,483,647 to 2,147,483,647

 signed long int 32 4 -2,147,483,647 to 2,147,483,647

 unsigned long int 32 4 0 to 4,294,967,295

 float 32 4 3.4E-38 to 3.4E+38

 double 64 8 1.7E-308 to 1.7E+308

 long double 80 10 1.7E-308 to 1.7E+308

Constants

C has four basic type of constants

• integer constants

• floating point constants

• character constants

• string constants

Integer Constanst

An integer constant is an integer valued number. Thus, it consists of a sequence of numbers. Integer

constants can be written in three different number system : decimal (base 10), octal (base 8) and

hexadecimal (base 16),binary(base 2).

A decimal integer constant can consist of any combination of digits taken from the set 0 through 9.

Examples of valid decimal integer constants are : 0 1 743 32767.

An octal integer constant can consist of digits taken from the set 0 through 7. The first digit must be 0 in

order to identify the constant as an octal number. Example of valid octal integer constants are :

01 0743 077777

A hexadecimal integer constant must begin with either 0x or 0X. It can then be followed by any combination

of digits taken from the sets 0 through 9 and A through F. Examples of valid hexadecimal integer constants

are :0x 0X1 0X7FFF 0xabcd.

The magnitude of an integer constant can range from zero to some maximum value. A typical maximum

value for most personal computers and many micro computers is 32767 in decimal notation this is

equivalent to 77777 octal or 7fff hexadecimal.

An unsigned integer constant can be identified by appending the letter U or u to the end of the constant.

Examples are : 50000U (decimal unsigned), 0777777U (octal unsigned), 0X50000U(hexadecimal

unsigned).

Long integer constants can be identified by the letter L or l at the end of the constant. For example,

123456789L(decimal long),0123456L(Octal long).

An unsigned long integer may be specified by appending the letters UL to the end of the constants. Examples

are, 12345678UL(decimal unsigned long), 0XFFFFFUL (hexadecimal unsigned long).

Floating-point constants

A floating-point constants is decimal number that represents a signed real number. The representation

of a floating-point constant an integer portion and a decimal point or an exponent (or both).Example of

Valid floating-point constants are,

1. 0.2 827.602

50000. 0.000437 12.3

2E-8 0.006e-3 1.6667E+8.12121212e12

Floating-point constants have a much greater range than integer constants. Typically, the magnitude of a

floating-point constant might range from a minimum value of 3.4E-38 to a maximum of 3.4E+38.

Floating-point constants are of the type float, double are long. A floating-point constant without an f,F,l or

L suffix is of type of double. If the letter f or F is the suffix, the constant has type float. If the letter l or L is

the suffix, it is of the type long double. For example :

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678907 Easy Way to Learn C Programming

100L /* Has type long double */

100F /* Has type Float */

100D /* Has type double */

The precision of floating-point constants (i.e. the number of significant figures) will vary from one version

of C to another.

Character Constants

A character Constant is a single character, enclosed in single quotation marks. Example of character

constants are, ‘A’ ‘x’ ‘3’ ‘$’

Character constants have integer values that are determined by the computer’s particular character set.

Most computers make use of the ASCII character set, in which each individual character is numerically

encoded.

For example

constant value

 ‘A’ 65

 ‘x’ 120

 ‘3’ 51

 ‘$’ 36

 ‘ ’ 32

Escape Sequences

Certain ASCII characters are unprintable, which means they are not displayed on the screen or printer.

Those characters perform other functions aside from displaying text. Examples are backspacing, moving

to a new line, or ringing a bell. Working with C, you have already worked with \n and \t escape sequences.

Escape sequences usually consist of a backslash and a letter or a combination of digits. To represent

the creation of nonprinting characters such as a newline character, single quotation mark, or certain

other characters such as “,’,? And \ escape sequences can be used. An escape sequence is regarded

as a single character and is therefore valid as a character constant. Escape sequences are typically

used to specify actions such as carriage return and tab movements on terminals and printers. The

commonly used escape sequences are listed below.

 Escape Sequences Represents ASCII Value

\a Bell(alert) 007

\b Backspace 008

\f Form Feed 012

\n New Line 010

\r Carriage return 013

\t Horizontal tab 009

\v Vertical tab 011

\’ Single quotation mark 039

\” Double quotation mark 034

\? Literal quotation mark 063

\\ Backslash 092

\0 Null 000

If a backslash precedes a character that does not appear in the above table, the compiler handles the

undefined characters as the character itself and thus the result may be unpredictable.

 S T R I N G \ 0

Character Strings

A character string or a string constant consists of any number of consecutive characters (including

none) enclosed in double quotations marks. Example of string constants are, “green”,”Washington,

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678908 Easy Way to Learn C Programming

D.C.20005”, “$19.95”.

Since a string can be of any length the end of the string is marked with the single character ‘\0’ the null

character, having an ASCII value of 0. Note that a character constant ‘A’ and the corresponding single

character string constant “A” are not equivalent. Also a character constant has an equivalent integer

value. A single character string constant consists of two characters; the specified character followed by

the null character(\0). For example, the string “STRING” would be internally stored as.Here, each box

represents a memory location containing one character. The string “STRING” would be require 7 elements;

six for the string and one for the null character.

Variables

A variable is an identifier used to represent some specified type of information. A variable represents a

single data item, that is, a numerical quantity or a character constant etc. The data item must be assigned

to the variable at some point in the program. The data item can then be accessed later in the program

simply by referring to the variable name. The information represented by the variable can change during

the execution of the program by assigning different data items at various places within the program. But

the data type associated with the variable cannot change.

Variable Declaration

Before a variable is used in a c program, it must be declared. This involves notifying the compiler of the

variable’s name and type as follows : type name; Where type can be int if the variable is going to hold an

integer value, char if this to be a character variable, or float if this is a floating-point variable. The following

is an example of variable declaration : int var_name ; in the above example, the name of the variable is

var_name and it is of type int.

Several variables of the same type can be declared in one statement as well. For example:int

count,flag,state; Note that each of these variables will be of type int.

Integer-type variables can be declared to be short int or long int for smaller and larger integer quantities

respectively. Such integer variables can also be declared by simply writing short an long. For example,

short int a,b,c and long int r,s,t.

An integer variable can also be declared to be unsigned. For example, unsigned x,y; on the other hand,

an unsigned long integer can be declared as follows, unsigned long p,q;

Given below are examples of declaring variables data types.

float root1,root2;

char flag,text[80];

double factor;

In the above example. ‘Text’ is a character type array. It can store a character string of maximum length

79 characters. The 80th character is for the delimiter, ‘\0’. Initial values can be assigned to variables

within a type declaration. To do so, the declaration must consist of a data type, followed by a variable

name, an equal sign (=) and a constant of the appropriate type. For example :

int c = 12;

char star = '$';

float sum = 0.0;

on the other hand, a character type array can be initialized within declaration as follows,

char text[11]=”Villivakkam”

Expressions

An expression represents a single data item, such as a number or a character. The expression may

consist of a single entity, such as a constant, a variable or a reference too a function. It may also consist

of some combination of the above entities interconnected by one or more operators are :

7

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678909 Easy Way to Learn C Programming

123.45

‘a’

var

var = var + 16

printf(“hello \n”)

Statements

A statement causes the computer to carry out some action. There are two types of statements in the C

language ; simple and compound.

Simple statements (expression statements) consist of an expression, followed by a semicolon.

For example.

main()

{

int x,y;

x=y+3;

}

The first line within the body of this program declares two integer variables x and y. The executable

portion of the example is made up of several expression are the values 3,y, the expression y+3 and the

assignment x=y+3.

A Compound statement consist of several individual statements enclosed within a pair braces ({ and

}). The individual statements may themselves be expression statement, or compound statements.

This collection of statements is treated as a single statement by C compiler. An example of compound

statement is shown below :

{

pi = 3.14159;

circumfrnce = 2 * pi * radius;

area = pi * radius * radius ;

}

The compound statement provides capability for embedding statements within other statements.

Example programs

/* To convert a character uppercase to lowercase by initializing a variable */

#include<stdio.h>

main()

{

char c='R';

clrscr();

printf("The character is:%c\n",c);

printf("The character in lowercase is %c\n",c+32);

getch();

}

Output:

The character is:R

The character in lowercase is r

Example

/* To initialize the given string */

#include<stdio.h>

main()

{

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567890123456789010 Easy Way to Learn C Programming

char m[11] ="C language";

clrscr();

printf("%s",m);

getch();

}

Output:

C language

Example

/*Simple calculation by using initialized integer values */

#include<stdio.h>

main()

{

int x=150,y=450,z=3,k;

clrscr() ;

k=(x+y)/z ;

printf(" k=%d " , k) ;

getch();

}

Output:

k=200

Example

/* To find the area of a circle by using initialized radius value */

#include<stdio.h>

#define pi 3.14159

main()

{

float radius=2.5,area ;

clrscr();

area=pi*radius*radius;

printf("Area of a circle is %f",area);

getch();

}

Output:

Area of a circle is :19.6349375

SOLVED PROGRAMS
Complete the following:

1. C has been developed by __________ in the year __________ while working at __________.

2. Binary equivalent of 762 is ________, its octal equivalent is ________ and its hex equivalent is

________.

3. First character in any variable name must always be an a __________

4. C variables are case __________ (sensitive / insensitive).

5. A character variable can at a time store __________ character(s).

Answers

1. Dennis Ritchie, 1972, American Telegraph & Telecommunication’s Bell Laboratories

2. 1011111010, 1372, 2FA 3. Alpha 4. Sensitive 5. One

What will be the output of the following programs:

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567890123456789011 Easy Way to Learn C Programming

1. main()

{

char ch=291;

printf(“%d %d %c”, 32700, ch, ch);

}

 Output :

-32700 35#

2. main()

{

int a, b;

a = -3 - -3;

b = -3 - -(-3);

printf (“a= %d b = %d b = %d”,a,b);

}

Output :

a=0 b=6

a = 0 b = -6 b = 1245

3. main()

{

int x;

x=3*4%5;

printf (“x=%d”,x);

}

Output :

x=2

4. main()

{

float a=5, b=2;

int c;

c = a %b;

printf (“%d”,c);

}

Output :

Error message: Illegal use of floating point in function main.

LAB EXERCISE
Exercise # 1

Create and execute the following programs in C Program Editor.

Key in the following program, run it and watch the result.

#include <stdio.h>

main()

{

printf(“Welcome to the World! \n”);

}

Exercise # 2

Write a program that prints your name and address.

Exercise # 3

Write appropriate declarations for each group of variabls and arrays

• Floating-point variabls: root1,root2

Long intger variables : cust_no

double precision variables : gross,tax,net

Introduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C FundamentalsIntroduction to C and C Fundamentals12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 1Chapter 1Chapter 1Chapter 1Chapter 1

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567890123456789012 Easy Way to Learn C Programming

• character variables: first,last

80-element character array : message

Exercise # 4

Write a program to declare an integer, float, a character variable and also a character array. Initialize the

numeric variables to 1 and the character variables to ‘a’.

Exercise #5

Identify the type of each of the following variables. Write appropriate declarations and assign the given

initial values for each group of variables and array.

A = -8.2 b = 0.005.

c1 = ‘w’, c2 = ‘&’

u = 711 (octal), v = ffff (hexadecimal)

EOL = newline character

message = “ERROR”

Exercise # 6

Write a program to define each of the following symbolic constants, as it would appear within a C program.

Constant Text

Factor -18

ERROR 0.00001

NAME “Sharon”

EOLON ‘\n’

Exercise # 7

 Write a program to display the below statements(Using escape sequence)

i. A Friend in need is a

 Friend in deed

 Tit for tat

ii. Mary had a

Little lamp,

Little lamp,

Little lamp,

Exercise # 8

Study the following program carefully and point out the errors:

mane{ }

(

print(' I think /n ')

Data Input/Output and 'C' OperatorsData Input/Output and 'C' OperatorsData Input/Output and 'C' OperatorsData Input/Output and 'C' OperatorsData Input/Output and 'C' Operators12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567890123456789013 Easy Way to Learn C Programming

Overview

 Introduction

 Single Character Input/Output functions

 The formatted data Output function

 The formatted data Input function

 Conversion Character list

 String Input/Output function

 Operators

 Mixed mode expression and Type Conversion

 Type casting

Introduction

Input/Output functions are used to accept values into variables and printing them after the processing is

over. The input and output of data can be done through the standard input/output media or through files. The

standard input medium is the keyboard, whereas the standard output medium is the console.

The C language is accompanied by a collection of header files that provide necessary information.

Each header file contains information in support of a group of related library functions. These files are

included in the program by giving the #include statement at the beginning of the program. The header file

required by the standard input/output library functions is called stdio.h.

An input/output function can be accessed from anywhere within a program simply by writing the function

name, followed by a list of arguments enclosed in parenthesis. The arguments represent data items that

are sent to the function.

Some input/output functions return data items whereas others don’t. The functions returning data items

may appear within expressions, as though each function reference were an ordinary variable; for example

c=getchar(). On the other hand, functions not returning data items may be referenced as though they

were separate statements; for example putchar(..);

The C library contains two distinct system of routines that handle input/output operations. They are :

• Buffered I/O

• Unbuffered I/O

The buffered I/O is used to read and write ASCII characters whereas the unbuffered I/O is used to read

and write binary data.

A buffer is a temporary storage area, either in the memory, or on the controller card for the device. In

buffered I/O, characters typed at the keyboard are collected untill the user presses the RETURN or the

ENTER key. The characters are made available to the program, as a block.

Buffered I/O can be further subdivided into Console I/O and buffered File I/O. Console I/O refers to operations

that occur at the keyboard and the screen of your computer. Buffered file I/O refers to operations that are

performed to read and write data onto a file. In unbuffered I/O, the character which the user enters at the

keyboard is made available to the program immediately without being stored temporarily in a buffer location.

It is not necessary to press the ENTER key to register the character.

A buffered system is preferred over an unbuferred system mainly for the following reasons:

Data Input/Output and 'C' Operators

CHAPTER - 2

Data Input/Output and 'C' OperatorsData Input/Output and 'C' OperatorsData Input/Output and 'C' OperatorsData Input/Output and 'C' OperatorsData Input/Output and 'C' Operators12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012345678901Chapter 2Chapter 2Chapter 2Chapter 2Chapter 2

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890
1234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567890123456789014 Easy Way to Learn C Programming

1. I/O operations on a buffered system is less time consuming, since a block of characters can be

transmitted at one time.

2. In the event when mistakes are made and the return key is not pressed, the mistakes can be

corrected.

In some cases however, unbuferred I/O is desired in interactive programs. A word processing program is

an example.

Problem

1. ________ is the header file that has to be included in a program for accessing standard input and

output functions.

2. A buffered system is preferred over an unbuffered system. State True or False.

3. A Buffered I/O is subdivided into _________ and __________.

Single Character Input/Output Functions

The GETCHAR() Function

Using the C Library function - getchar(), one is allowed to input a single character from the terminal. This

function is the simplest input mechanism which reads character at a time. It returns a single character

that is typed in from the keyboard. The function does not require any argument though a pair of empty

parentheses must follow the word getchar. A reference to the getchar function is written as character

variable = getchar(); where character variable refers to some previously declared character variable.

A C program contains the following statements.

char c; /* Declares c as a character-type variable */

.

.

.

c=getchar(); /* Causes a single character to be entered using the keyboard */

To distinguish the end of the input from valid data, the getchar function returns a distinctive value when there

is no more input, a value that cannot be confused with any real character. This value is called EOF, which

denotes “end of file”. EOF is an integer defined in the library file <stdio.h>. Typically EOF will be assigned

the value -1. However , this value may vary from one compiler to another.

On machines where characters are unsigned, the value of EOF (-1) cannot be stored properly in the

character type variable, c. Therefore c must be declared to be a type big enough to hold EOF in addition

to any possible character. Therefore the variable should be declared to be of integer type.

Pressing the keys CONTROL-Z causes <EOT> (End Of Terminal) to be sent to the program [Not that

this varies from machine to machine]. This character is interpreted by getchar() as an end of file and

getchar() then returns the defined value of EOF.

Given below is a sample program that shows how CTRL+Z can be used to denote EOF.

Example

#include<stdio.h>

main()

{

 int c;

 printf("Enter character (CONTROL-Z to end): ");

 c=getchar();

 if(c!=EOF)

printf("End of file not encountered !");

}

Output:

Enter character (CONTROL-Z to end):R

End of file not encountered !

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can

access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

