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Preface

Discrete-Time Systems comprehend an important and broad research fi eld. The con-
solidation of digital-based computational means in the present, pushes a technological 
tool into the fi eld with a tremendous impact in areas like Control, Signal Processing, 
Communications, System Modelling and related Applications. This fact has enabled 
numerous contributions and developments which are either genuinely original as 
discrete-time systems or are mirrors from their counterparts of previously existing 
continuous-time systems. 

This book att empts to give a scope of the present state-of-the-art in the area of Discrete-
Time Systems from selected international research groups which were specially con-
voked to give expressions to their expertise in the fi eld.

The works are presented in a uniform framework and with a formal mathematical 
context.

In order to facilitate the scope and global comprehension of the book, the chapters were 
grouped conveniently in sections according to their affi  nity in 5 signifi cant areas.

The fi rst group focuses the problem of Filtering that encloses above all designs of State 
Observers, Estimators, Predictors and Smoothers. It comprises Chapters 1 to 6.

The second group is dedicated to the design of Fixed Control Systems (Chapters 7 to 
12). Herein it appears designs for Tracking Control, Fault-Tolerant Control, Robust Con-
trol, and designs using LMI- and mixed LQR/Hoo techniques.

The third group includes Adaptive Control Systems (Chapter 13 to 15) oriented to the 
specialities of Predictive, Decentralized and Perturbed Control Systems.

The fourth group collects works that address Stability Problems (Chapter 16 to 20). 
They involve for instance Uncertain Systems with Multiple and Time-Varying Delays 
and Switched Linear Systems.  

Finally, the fi ft h group concerns miscellaneous applications (Chapter 21 to 27). They 
cover topics in Multitone Modulation and Equalisation, Image Processing, Fault Diag-
nosis, Event-Based Dynamics and Analysis of Deterministic/Stochastic and Multidi-
mensional Dynamics.   



X Preface

We think that the contribution in the book, which does not have the intention to be 
all-embracing, enlarges the fi eld of the Discrete-Time Systems with signifi cation in the 
present state-of-the-art. Despite the vertiginous advance in the fi eld, we think also that 
the topics described here allow us also to look through some main tendencies in the 
next years in the research area. 

Mario A. Jordán  and Jorge L. Bustamante
IADO-CCT-CONICET

Dep. of Electrical Eng. and Computers
National University of the South

Argentina







Part 1 

Discrete-Time Filtering 





Kerim Demirbaş
Department of Electrical and Electronics Engineering

Middle East Technical University
Inonu Bulvari, 06531 Ankara

Turkey

1. Introduction

Many systems in the real world are more accurately described by nonlinear models. Since
the original work of Kalman (Kalman, 1960; Kalman & Busy, 1961), which introduces the
Kalman filter for linear models, extensive research has been going on state estimation
of nonlinear models; but there do not yet exist any optimum estimation approaches for
all nonlinear models, except for certain classes of nonlinear models; on the other hand,
different suboptimum nonlinear estimation approaches have been proposed in the literature
(Daum, 2005). These suboptimum approaches produce estimates by using some sorts of
approximations for nonlinear models. The performances and implementation complexities
of these suboptimum approaches surely depend upon the types of approximations which
are used for nonlinear models. Model approximation errors are an important parameter
which affects the performances of suboptimum estimation approaches. The performance of a
nonlinear suboptimum estimation approach is better than the other estimation approaches for
specific models considered, that is, the performance of a suboptimum estimation approach is
model-dependent.
The most commonly used recursive nonlinear estimation approaches are the extended
Kalman filter (EKF) and particle filters. The EKF linearizes nonlinear models by Taylor
series expansion (Sage & Melsa, 1971) and the unscented Kalman filter (UKF) approximates
a posteriori densities by a set of weighted and deterministically chosen points (Julier, 2004).
Particle filters approximates a posterior densities by a large set of weighted and randomly
selected points (called particles) in the state space (Arulampalam et al., 2002; Doucet et al.,
2001; Ristic et al., 2004). In the nonlinear estimation approaches proposed in (Demirbaş,
1982; 1984; Demirbaş & Leondes, 1985; 1986; Demirbaş, 1988; 1989; 1990; 2007; 2010): the
disturbance noise and initial state are first approximated by a discrete noise and a discrete
initial state whose distribution functions the best approximate the distribution functions of the
disturbance noise and initial state, states are quantized, and then multiple hypothesis testing
is used for state estimation; whereas Grid-based approaches approximate a posteriori densities
by discrete densities, which are determined by predefined gates (cells) in the predefined state
space; if the state space is not finite in extent, then the state space necessitates some truncation
of the state space; and grid-based estimation approaches assume the availability of the state
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transition density p(x(k)|x(k− 1)), which may not easily be calculated for state models with
nonlinear disturbance noise (Arulampalam et al., 2002; Ristic et al., 2004). The Demirbaş
estimation approaches are more general than grid-based approaches since 1) the state space
need not to be truncated, 2) the state transition density is not needed, 3) state models can be
any nonlinear functions of the disturbance noise.
This chapter presents an online recursive nonlinear state filtering and prediction scheme for
nonlinear dynamic systems. This scheme is recently proposed in (Demirbaş, 2010) and is
referred to as the DF throughout this chapter. The DF is very suitable for state estimation of
nonlinear dynamic systems under either missing observations or constraints imposed on state
estimates. There exist many nonlinear dynamic systems for which the DF outperforms the
extended Kalman filter (EKF), sampling importance resampling (SIR) particle filter (which is
sometimes called the bootstrap filter), and auxiliary sampling importance resampling (ASIR)
particle filter. Section 2 states the estimation problem. Section 3 first discusses discrete noises
which approximate the disturbance noise and initial state, and then presents approximate
state and observation models. Section 4 discusses optimum state estimation of approximate
dynamic models. Section 5 presents the DF. Section 6 yields simulation results of two
examples for which the DF outperforms the EKF, SIR, and ASIR particle filters. Section 7
concludes the chapter.

2. Problem statement

This section defines state estimation problem for nonlinear discrete dynamic systems. These
dynamic systems are described by

State Model
x(k + 1) = f (k, x(k),w(k)) (1)
Observation Model
z(k) = g(k, x(k), v(k)), (2)

where k stands for the discrete time index; f : RxRmxRn → Rm is the state transition function;
Rm is the m-dimensional Euclidean space; w(k) ∈ Rn is the disturbance noise vector at time
k; x(k) ∈ Rm is the state vector at time k; g : RxRmxRp → Rr is the observation function;
v(k) ∈ Rp is the observation noise vector at time k; z(k) ∈ Rr is the observation vector at time
k; x(0), w(k), and v(k) are all assumed to be independent with known distribution functions.
Moreover, it is assumed that there exist some constraints imposed on state estimates. The DF
recursively yields a predicted value x̂(k|k− 1) of the state x(k) given the observation sequence

from time one to time k − 1, that is, Zk−1 Δ
= {z(1), z(2), . . . , z(k − 1)}; and a filtered value

x̂(k|k) of the state x(k) given the observation sequence from time one to time k, that is, Zk.
Estimation is accomplished by first approximating the disturbance noise and initial state with
discrete random noises, quantizing the state, that is, representing the state model with a time
varying state machine, and an online suboptimum implementation of multiple hypothesis
testing.

3. Approximation

This section first discusses an approximate discrete random vector which approximates a
random vector, and then presents approximate models of nonlinear dynamic systems.
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3.1 Approximate discrete random noise
In this subsection: an approximate discrete random vector with n possible values of a
random vector is defined; approximate discrete random vectors are used to approximate
the disturbance noise and initial state throughout the chapter; moreover, a set of equations
which must be satisfied by an approximate discrete random variable with n possible values
of an absolutely continuous random variable is given (Demirbaş, 1982; 1984; 2010); finally, the
approximate discrete random variables of a Gaussian random variable are tabulated.
Let w be an m-dimensional random vector. An approximate discrete random vector with n
possible values of w, denoted by wd, is defined as an m-dimensional discrete random vector
with n possible values whose distribution function the best approximates the distribution
function of w over the distribution functions of all m-dimensional discrete random vectors
with n possible values, that is

wd = min
yεD

−1{
∫

Rn
[Fy(a)− Fw(a)]2da} (3)

where D is the set of all m-dimensional discrete random vectors with n possible values, Fy(a)
is the distribution function of the discrete random vector y, Fw(a) is the distribution function
of the random vector w, and Rm is the m-dimensional Euclidean space. An approximate
discrete random vector wd is, in general, numerically, offline-calculated, stored and then used
for estimation. The possible values of wd are denoted by wd1, wd2, ...., and wdn ; and the
occurrence probability of the possible value wdi is denoted by Pwdi , that is

Pwdi

Δ
= Prob{wd = wdi}. (4)

where Prob{wd(0) = wdi} is the occurrence probability of wdi.
Let us now consider the case that w is an absolutely continuous random variable. Then, wd is
an approximate discrete random variable with n possible values whose distribution function
the best approximates the distribution function Fw(a) of w over the distribution functions of
all discrete random variables with n possible values, that is

wd = min
yεD

−1{J(Fy(a))}

in which the distribution error function (the objective function) J(Fy(a)) is defined by

J(Fy(a)) Δ
=

∫
R
[Fy(a)− Fw(a)]2da

where D is the set of all discrete random variables with n possible values, Fy(a) is the
distribution function of the discrete random variable y, Fw(a) is the distribution function of the
absolutely continuous random variable w, and R is the real line. Let the distribution function
Fy(a) of a discrete random variable y be given by

Fy(a) Δ
=

⎧⎨
⎩
0 if a < y1
Fyi if yi ≤ a < yi+1, i = 1, 2, . . . , n− 1
1 if a ≥ yn.

Then the distribution error function J(Fy(a)) can be written as

J(Fy(a)) =
∫ y1

−∞
F2w(a)da +

n−1
∑
i=1

∫ yi+1

yi

[Fyi − Fw(a)]2da +
∫ ∞

yn

[1− Fw(a)]2da.
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