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Chapter 1

Continuous-Time Signals1

Signals occur in a wide range of physical phenomenon. They might be
human speech, blood pressure variations with time, seismic waves, radar
and sonar signals, pictures or images, stress and strain signals in a building
structure, stock market prices, a city's population, or temperature across a
plate. These signals are often modeled or represented by a real or complex
valued mathematical function of one or more variables. For example,
speech is modeled by a function representing air pressure varying with
time. The function is acting as a mathematical analogy to the speech
signal and, therefore, is called an analog signal. For these signals, the
independent variable is time and it changes continuously so that the term
continuous-time signal is also used. In our discussion, we talk of the
mathematical function as the signal even though it is really a model or
representation of the physical signal.

The description of signals in terms of their sinusoidal frequency con-
tent has proven to be one of the most powerful tools of continuous and
discrete-time signal description, analysis, and processing. For that rea-
son, we will start the discussion of signals with a development of Fourier
transform methods. We will �rst review the continuous-time methods of
the Fourier series (FS), the Fourier transform or integral (FT), and the
Laplace transform (LT). Next the discrete-time methods will be developed
in more detail with the discrete Fourier transform (DFT) applied to �nite
length signals followed by the discrete-time Fourier transform (DTFT) for
in�nitely long signals and ending with the Z-transform which allows the
powerful tools of complex variable theory to be applied.

More recently, a new tool has been developed for the analysis of signals.
Wavelets and wavelet transforms [32], [9], [20], [60], [56] are another more

1This content is available online at <http://cnx.org/content/m16920/1.2/>.
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2 CHAPTER 1. CONTINUOUS-TIME SIGNALS

�exible expansion system that also can describe continuous and discrete-
time, �nite or in�nite duration signals. We will very brie�y introduce the
ideas behind wavelet-based signal analysis.

1.1 The Fourier Series

The problem of expanding a �nite length signal in a trigonometric series
was posed and studied in the late 1700's by renowned mathematicians
such as Bernoulli, d'Alembert, Euler, Lagrange, and Gauss. Indeed, what
we now call the Fourier series and the formulas for the coe�cients were
used by Euler in 1780. However, it was the presentation in 1807 and
the paper in 1822 by Fourier stating that an arbitrary function could
be represented by a series of sines and cosines that brought the problem
to everyone's attention and started serious theoretical investigations and
practical applications that continue to this day [31], [12], [37], [36], [28],
[45]. The theoretical work has been at the center of analysis and the
practical applications have been of major signi�cance in virtually every
�eld of quantitative science and technology. For these reasons and oth-
ers, the Fourier series is worth our serious attention in a study of signal
processing.

1.1.1 De�nition of the Fourier Series

We assume that the signal x (t) to be analyzed is well described by a real
or complex valued function of a real variable t de�ned over a �nite interval
{0 ≤ t ≤ T}. The trigonometric series expansion of x (t) is given by

x (t) =
a (0)

2
+
∞∑
k=1

a (k) cos
(

2π
T
kt

)
+ b (k) sin

(
2π
T
kt

)
. (1.1)

where xk (t) = cos (2πkt/T ) and yk (t) = sin (2πkt/T ) are the basis func-
tions for the expansion. The energy or power in an electrical, mechanical,
etc. system is a function of the square of voltage, current, velocity, pres-
sure, etc. For this reason, the natural setting for a representation of
signals is the Hilbert space of L2 [0, T ]. This modern formulation of the
problem is developed in [26], [37]. The sinusoidal basis functions in the
trigonometric expansion form a complete orthogonal set in L2 [0, T ]. The
orthogonality is easily seen from inner products

(
cos
(

2π
T
kt
)
, cos

(
2π
T
`t
))

=∫ T
0

(
cos
(

2π
T
kt
)
cos
(

2π
T
`t
))

dt = δ (k − `)
(1.2)
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3

and(
cos

(
2π
T
kt

)
, sin

(
2π
T
`t

))
=
∫ T

0

(
cos

(
2π
T
kt

)
sin

(
2π
T
`t

))
dt = 0

(1.3)
where δ (t) is the Kronecker delta function with δ (0) = 1 and δ (k 6= 0) =
0. Because of this, the kth coe�cients in the series can be found by taking
the inner product of x (t) with the kth basis functions. This gives for the
coe�cients

a (k) =
2
T

∫ T

0

x (t) cos
(

2π
T
kt

)
dt (1.4)

and

b (k) =
2
T

∫ T

0

x (t) sin
(

2π
T
kt

)
dt (1.5)

where T is the time interval of interest or the period of a periodic signal.
Because of the orthogonality of the basis functions, a �nite Fourier series
formed by truncating the in�nite series is an optimal least squared error
approximation to x (t). If the �nite series is de�ned by

^
x (t) =

a (0)
2

+
N∑
k=1

a (k) cos
(

2π
T
kt

)
+ b (k) sin

(
2π
T
kt

)
, (1.6)

the squared error is

ε =
1
T

∫ T

0

|x (t)− ^
x (t) |

2

dt (1.7)

which is minimized over all a (k) and b (k) by (1.4) and (1.5). This is an
extraordinarily important property.

It follows that if x (t) ∈ L2 [0, T ], then the series converges to x (t) in
the sense that ε → 0 as N → ∞[26], [37]. The question of point-wise
convergence is more di�cult. A su�cient condition that is adequate for
most application states: If f (x) is bounded, is piece-wise continuous, and
has no more than a �nite number of maxima over an interval, the Fourier
series converges point-wise to f (x) at all points of continuity and to the
arithmetic mean at points of discontinuities. If f (x) is continuous, the
series converges uniformly at all points [37], [31], [12].

A useful condition [26], [37] states that if x (t) and its derivatives
through the qth derivative are de�ned and have bounded variation, the
Fourier coe�cients a (k) and b (k) asymptotically drop o� at least as fast
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4 CHAPTER 1. CONTINUOUS-TIME SIGNALS

as 1
kq+1 as k →∞. This ties global rates of convergence of the coe�cients

to local smoothness conditions of the function.
The form of the Fourier series using both sines and cosines makes

determination of the peak value or of the location of a particular frequency
term di�cult. A di�erent form that explicitly gives the peak value of the
sinusoid of that frequency and the location or phase shift of that sinusoid
is given by

x (t) =
d (0)

2
+
∞∑
k=1

d (k) cos
(

2π
T
kt+ θ (k)

)
(1.8)

and, using Euler's relation and the usual electrical engineering notation
of j =

√
−1,

ejx = cos (x) + jsin (x) , (1.9)

the complex exponential form is obtained as

x (t) =
∞∑

k=−∞

c (k) ej
2π
T kt (1.10)

where

c (k) = a (k) + j b (k) . (1.11)

The coe�cient equation is

c (k) =
1
T

∫ T

0

x (t) e−j
2π
T ktdt (1.12)

The coe�cients in these three forms are related by

|d|2 = |c|2 = a2 + b2 (1.13)

and

θ = arg{c} = tan−1

(
b

a

)
(1.14)

It is easier to evaluate a signal in terms of c (k) or d (k) and θ (k) than
in terms of a (k) and b (k). The �rst two are polar representation of a
complex value and the last is rectangular. The exponential form is easier
to work with mathematically.

Although the function to be expanded is de�ned only over a speci�c
�nite region, the series converges to a function that is de�ned over the real
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5

line and is periodic. It is equal to the original function over the region
of de�nition and is a periodic extension outside of the region. Indeed,
one could arti�cially extend the given function at the outset and then the
expansion would converge everywhere.

1.1.2 A Geometric View

It can be very helpful to develop a geometric view of the Fourier series
where x (t) is considered to be a vector and the basis functions are the
coordinate or basis vectors. The coe�cients become the projections of
x (t) on the coordinates. The ideas of a measure of distance, size, and
orthogonality are important and the de�nition of error is easy to picture.
This is done in [26], [37], [62] using Hilbert space methods.

1.1.3 Properties of the Fourier Series

The properties of the Fourier series are important in applying it to signal
analysis and to interpreting it. The main properties are given here using
the notation that the Fourier series of a real valued function x (t) over
{0 ≤ t ≤ T} is given by F{x (t)} = c (k) and x̃ (t) denotes the periodic
extensions of x (t).

1. Linear: F{x+ y} = F{x}+ F{y}
Idea of superposition. Also scalability: F{ax} = aF{x}

2. Extensions of x (t): x̃ (t) = x̃ (t+ T )
x̃ (t) is periodic.

3. Even and Odd Parts: x (t) = u (t) + jv (t) and C (k) = A (k) +
jB (k) = |C (k) | ejθ(k)

u v A B |C| θ

even 0 even 0 even 0

odd 0 0 odd even 0

0 even 0 even even π/2

0 odd odd 0 even π/2

Table 1.1

4. Convolution: If continuous cyclic convolution is de�ned by

y (t) = h (t) ◦ x (t) =
∫ T

0

h̃ (t− τ) x̃ (τ) dτ (1.15)
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6 CHAPTER 1. CONTINUOUS-TIME SIGNALS

then F{h (t) ◦ x (t)} = F{h (t)}F{x (t)}
5. Multiplication: If discrete convolution is de�ned by

e (n) = d (n) ∗ c (n) =
∞∑

m=−∞
d (m) c (n−m) (1.16)

then F{h (t) x (t)} = F{h (t)} ∗ F{x (t)}
This property is the inverse of property 4 (list, p. 5) and vice versa.

6. Parseval: 1
T

∫ T
0
|x (t) |2dt =

∑∞
k=−∞ |C (k) |2

This property says the energy calculated in the time domain is the
same as that calculated in the frequency (or Fourier) domain.

7. Shift: F{x̃ (t− t0)} = C (k) e−j2πt0k/T

A shift in the time domain results in a linear phase shift in the
frequency domain.

8. Modulate: F{x (t) ej2πKt/T } = C (k −K)
Modulation in the time domain results in a shift in the frequency
domain. This property is the inverse of property 7.

9. Orthogonality of basis functions:∫ T

0

e−j2πmt/T ej2πnt/T dt = T δ (n−m) = {
T if n = m

0 if n 6= m.

(1.17)
Orthogonality allows the calculation of coe�cients using inner prod-
ucts in (1.4) and (1.5). It also allows Parseval's Theorem in prop-
erty 6 (list, p. 6). A relaxed version of orthogonality is called �tight
frames" and is important in over-speci�ed systems, especially in
wavelets.

1.1.4 Examples

• An example of the Fourier series is the expansion of a square wave
signal with period 2π. The expansion is

x (t) =
4
π

[
sin (t) +

1
3
sin (3t) +

1
5
sin (5t) · · ·

]
. (1.18)

Because x (t) is odd, there are no cosine terms (all a (k) = 0) and,
because of its symmetries, there are no even harmonics (even k terms
are zero). The function is well de�ned and bounded; its derivative
is not, therefore, the coe�cients drop o� as 1

k .
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7

• A second example is a triangle wave of period 2π. This is a contin-
uous function where the square wave was not. The expansion of the
triangle wave is

x (t) =
4
π

[
sin (t)− 1

32
sin (3t) +

1
52
sin (5t) + · · ·

]
. (1.19)

Here the coe�cients drop o� as 1
k2 since the function and its �rst

derivative exist and are bounded.

Note the derivative of a triangle wave is a square wave. Examine the
series coe�cients to see this. There are many books and web sites on the
Fourier series that give insight through examples and demos.

1.1.5 Theorems on the Fourier Series

Four of the most important theorems in the theory of Fourier analysis
are the inversion theorem, the convolution theorem, the di�erentiation
theorem, and Parseval's theorem [13].

• The inversion theorem is the truth of the transform pair given in
(1.1), (1.4), and (1.5)..

• The convolution theorem is property 4 (list, p. 5).
• The di�erentiation theorem says that the transform of the derivative

of a function is jω times the transform of the function.
• Parseval's theorem is given in property 6 (list, p. 6).

All of these are based on the orthogonality of the basis function of the
Fourier series and integral and all require knowledge of the convergence
of the sums and integrals. The practical and theoretical use of Fourier
analysis is greatly expanded if use is made of distributions or generalized
functions (e.g. Dirac delta functions, δ (t)) [48], [3]. Because energy is
an important measure of a function in signal processing applications, the
Hilbert space of L2 functions is a proper setting for the basic theory and
a geometric view can be especially useful [26], [13].

The following theorems and results concern the existence and conver-
gence of the Fourier series and the discrete-time Fourier transform [46].
Details, discussions and proofs can be found in the cited references.

• If f (x) has bounded variation in the interval (−π, π), the Fourier
series corresponding to f (x) converges to the value f (x) at any
point within the interval, at which the function is continuous; it
converges to the value 1

2 [f (x+ 0) + f (x− 0)] at any such point at
which the function is discontinuous. At the points π,−π it converges
to the value 1

2 [f (−π + 0) + f (π − 0)]. [31]
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8 CHAPTER 1. CONTINUOUS-TIME SIGNALS

• If f (x) is of bounded variation in (−π, π), the Fourier series con-
verges to f (x), uniformly in any interval (a, b) in which f (x) is
continuous, the continuity at a and b being on both sides. [31]

• If f (x) is of bounded variation in (−π, π), the Fourier series con-
verges to 1

2 [f (x+ 0) + f (x− 0)], bounded throughout the interval
(−π, π). [31]

• If f (x) is bounded and if it is continuous in its domain at every
point, with the exception of a �nite number of points at which it may
have ordinary discontinuities, and if the domain may be divided into
a �nite number of parts, such that in any one of them the function is
monotone; or, in other words, the function has only a �nite number
of maxima and minima in its domain, the Fourier series of f (x) con-
verges to f (x) at points of continuity and to 1

2 [f (x+ 0) + f (x− 0)]
at points of discontinuity. [31], [12]

• If f (x) is such that, when the arbitrarily small neighborhoods of
a �nite number of points in whose neighborhood |f (x) | has no
upper bound have been excluded, f (x) becomes a function with
bounded variation, then the Fourier series converges to the value
1
2 [f (x+ 0) + f (x− 0)], at every point in (−π, π), except the points
of in�nite discontinuity of the function, provided the improper in-
tegral

∫ π
−π f (x) dx exist, and is absolutely convergent. [31]

• If f is of bounded variation, the Fourier series of f converges at every
point x to the value [f (x+ 0) + f (x− 0)] /2. If f is, in addition,
continuous at every point of an interval I = (a, b), its Fourier series
is uniformly convergent in I. [64]

• If a (k) and b (k) are absolutely summable, the Fourier series con-
verges uniformly to f (x) which is continuous. [46]

• If a (k) and b (k) are square summable, the Fourier series converges
to f (x) where it is continuous, but not necessarily uniformly. [46]

• Suppose that f (x) is periodic, of period X, is de�ned and bounded
on [0, X] and that at least one of the following four conditions is
satis�ed: (i) f is piecewise monotonic on [0, X], (ii) f has a �nite
number of maxima and minima on [0, X] and a �nite number of
discontinuities on [0, X], (iii) f is of bounded variation on [0, X], (iv)
f is piecewise smooth on [0, X]: then it will follow that the Fourier
series coe�cients may be de�ned through the de�ning integral, using
proper Riemann integrals, and that the Fourier series converges to
f (x) at a.a.x, to f (x) at each point of continuity of f , and to the
value 1

2 [f (x−) + f (x+)] at all x. [13]

Available for free at Connexions
<http://cnx.org/content/col11209/1.1>



9

• For any 1 ≤ p <∞ and any f ∈ Cp
(
S1
)
, the partial sums

Sn = Sn (f) =
∑
|k|≤n

^
f (k) ek (1.20)

converge to f , uniformly as n→∞; in fact, ||Sn−f ||∞ is bounded
by a constant multiple of n−p+1/2. [26]

The Fourier series expansion results in transforming a periodic, continuous
time function, x̃ (t), to two discrete indexed frequency functions, a (k) and
b (k) that are not periodic.

1.2 The Fourier Transform

Many practical problems in signal analysis involve either in�nitely long
or very long signals where the Fourier series is not appropriate. For these
cases, the Fourier transform (FT) and its inverse (IFT) have been de-
veloped. This transform has been used with great success in virtually
all quantitative areas of science and technology where the concept of fre-
quency is important. While the Fourier series was used before Fourier
worked on it, the Fourier transform seems to be his original idea. It can
be derived as an extension of the Fourier series by letting the length or
period T increase to in�nity or the Fourier transform can be indepen-
dently de�ned and then the Fourier series shown to be a special case of
it. The latter approach is the more general of the two, but the former is
more intuitive [48], [3].

1.2.1 De�nition of the Fourier Transform

The Fourier transform (FT) of a real-valued (or complex) function of the
real-variable t is de�ned by

X (ω) =
∫ ∞
−∞

x (t) e−jωt dt (1.21)

giving a complex valued function of the real variable ω representing
frequency. The inverse Fourier transform (IFT) is given by

x (t) =
1

2π

∫ ∞
−∞

X (ω) ejωt dω. (1.22)

Because of the in�nite limits on both integrals, the question of conver-
gence is important. There are useful practical signals that do not have
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10 CHAPTER 1. CONTINUOUS-TIME SIGNALS

Fourier transforms if only classical functions are allowed because of prob-
lems with convergence. The use of delta functions (distributions) in both
the time and frequency domains allows a much larger class of signals to
be represented [48].

1.2.2 Properties of the Fourier Transform

The properties of the Fourier transform are somewhat parallel to those of
the Fourier series and are important in applying it to signal analysis and
interpreting it. The main properties are given here using the notation
that the FT of a real valued function x (t) over all time t is given by
F{x} = X (ω).

1. Linear: F{x+ y} = F{x}+ F{y}
2. Even and Oddness: if x (t) = u (t) + jv (t) and X (ω) = A (ω) +
jB (ω) then

u v A B |X| θ

even 0 even 0 even 0

odd 0 0 odd even 0

0 even 0 even even π/2

0 odd odd 0 even π/2

Table 1.2

3. Convolution: If continuous convolution is de�ned by:

y (t) = h (t) ∗ x (t) =
∫∞
−∞ h (t− τ)x (τ) dτ =∫∞

−∞ h (λ)x (t− λ) dλ

(1.23)

then F{h (t) ∗ x (t)} = F{h (t)}F{x (t)}
4. Multiplication: F{h (t)x (t)} = 1

2πF{h (t)} ∗ F{x (t)}
5. Parseval:

∫∞
−∞ |x (t) |2dt = 1

2π

∫∞
−∞ |X (ω) |2dω

6. Shift: F{x (t− T )} = X (ω) e−jωT

7. Modulate: F{x (t) ej2πKt} = X (ω − 2πK)
8. Derivative: F{dxdt } = jωX (ω)
9. Stretch: F{x (at)} = 1

|a|X (ω/a)
10. Orthogonality:

∫∞
−∞ e−jω1tejω2t = 2πδ (ω1 − ω2)
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1.2.3 Examples of the Fourier Transform

Deriving a few basic transforms and using the properties allows a large
class of signals to be easily studied. Examples of modulation, sampling,
and others will be given.

• If x (t) = δ (t) then X (ω) = 1
• If x (t) = 1 then X (ω) = 2πδ (ω)
• If x (t) is an in�nite sequence of delta functions spaced T apart,

x (t) =
∑∞
n=−∞ δ (t− nT ), its transform is also an in�nite sequence

of delta functions of weight 2π/T spaced 2π/T apart, X (ω) =
2π
∑∞
k=−∞ δ (ω − 2πk/T ).

• Other interesting and illustrative examples can be found in [48], [3].

Note the Fourier transform takes a function of continuous time into a
function of continuous frequency, neither function being periodic. If �dis-
tribution" or �delta functions" are allowed, the Fourier transform of a
periodic function will be a in�nitely long string of delta functions with
weights that are the Fourier series coe�cients.

1.3 The Laplace Transform

The Laplace transform can be thought of as a generalization of the Fourier
transform in order to include a larger class of functions, to allow the use of
complex variable theory, to solve initial value di�erential equations, and
to give a tool for input-output description of linear systems. Its use in
system and signal analysis became popular in the 1950's and remains as
the central tool for much of continuous time system theory. The question
of convergence becomes still more complicated and depends on complex
values of s used in the inverse transform which must be in a �region of
convergence" (ROC).

1.3.1 De�nition of the Laplace Transform

The de�nition of the Laplace transform (LT) of a real valued function
de�ned over all positive time t is

F (s) =
∫ ∞
−∞

f (t) e−st dt (1.24)

and the inverse transform (ILT) is given by the complex contour integral

f (t) =
1

2πj

∫ c+j∞

c−j∞
F (s) est ds (1.25)
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