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1.1 Introduction
Computer science is a tremendously broad academic discipline. The areas of globally distributed systems, artificial
intelligence, robotics, graphics, security, scientific computing, computer architecture, and dozens of emerging sub-
fields each expand with new techniques and discoveries every year. The rapid progress of computer science has
left few aspects of human life unaffected. Commerce, communication, science, art, leisure, and politics have all
been reinvented as computational domains.

The tremendous productivity of computer science is only possible because it is built upon an elegant and pow-
erful set of fundamental ideas. All computing begins with representing information, specifying logic to process it,
and designing abstractions that manage the complexity of that logic. Mastering these fundamentals will require us
to understand precisely how computers interpret computer programs and carry out computational processes.

These fundamental ideas have long been taught at Berkeley using the classic textbook Structure and Inter-
pretation of Computer Programs (SICP) by Harold Abelson and Gerald Jay Sussman with Julie Sussman. These
lecture notes borrow heavily from that textbook, which the original authors have kindly licensed for adaptation
and reuse.

The embarkment of our intellectual journey requires no revision, nor should we expect that it ever will.

We are about to study the idea of a computational process. Computational processes are abstract
beings that inhabit computers. As they evolve, processes manipulate other abstract things called data.
The evolution of a process is directed by a pattern of rules called a program. People create programs
to direct processes. In effect, we conjure the spirits of the computer with our spells.

The programs we use to conjure processes are like a sorcerer’s spells. They are carefully composed
from symbolic expressions in arcane and esoteric programming languages that prescribe the tasks we
want our processes to perform.

A computational process, in a correctly working computer, executes programs precisely and accu-
rately. Thus, like the sorcerer’s apprentice, novice programmers must learn to understand and to
anticipate the consequences of their conjuring.

—Abelson and Sussman, SICP (1993)

1.1.1 Programming in Python
A language isn’t something you learn so much as something you join.

—Arika Okrent

In order to define computational processes, we need a programming language; preferably one many humans
and a great variety of computers can all understand. In this course, we will learn the Python language.

Python is a widely used programming language that has recruited enthusiasts from many professions: web pro-
grammers, game engineers, scientists, academics, and even designers of new programming languages. When you
learn Python, you join a million-person-strong community of developers. Developer communities are tremen-
dously important institutions: members help each other solve problems, share their code and experiences, and
collectively develop software and tools. Dedicated members often achieve celebrity and widespread esteem for
their contributions. Perhaps someday you will be named among these elite Pythonistas.

The Python language itself is the product of a large volunteer community that prides itself on the diversity
of its contributors. The language was conceived and first implemented by Guido van Rossum in the late 1980’s.
The first chapter of his Python 3 Tutorial explains why Python is so popular, among the many languages available
today.

Python excels as an instructional language because, throughout its history, Python’s developers have empha-
sized the human interpretability of Python code, reinforced by the Zen of Python guiding principles of beauty,
simplicity, and readability. Python is particularly appropriate for this course because its broad set of features sup-
port a variety of different programming styles, which we will explore. While there is no single way to program in
Python, there are a set of conventions shared across the developer community that facilitate the process of reading,
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understanding, and extending existing programs. Hence, Python’s combination of great flexibility and accessibil-
ity allows students to explore many programming paradigms, and then apply their newly acquired knowledge to
thousands of ongoing projects.

These notes maintain the spirit of SICP by introducing the features of Python in lock step with techniques for
abstraction design and a rigorous model of computation. In addition, these notes provide a practical introduction
to Python programming, including some advanced language features and illustrative examples. Learning Python
will come naturally as you progress through the course.

However, Python is a rich language with many features and uses, and we consciously introduce them slowly
as we layer on fundamental computer science concepts. For experienced students who want to inhale all of the
details of the language quickly, we recommend reading Mark Pilgrim’s book Dive Into Python 3, which is freely
available online. The topics in that book differ substantially from the topics of this course, but the book contains
very valuable practical information on using the Python language. Be forewarned: unlike these notes, Dive Into
Python 3 assumes substantial programming experience.

The best way to get started programming in Python is to interact with the interpreter directly. This section
describes how to install Python 3, initiate an interactive session with the interpreter, and start programming.

1.1.2 Installing Python 3
As with all great software, Python has many versions. This course will use the most recent stable version of
Python 3 (currently Python 3.2). Many computers have older versions of Python installed already, but those will
not suffice for this course. You should be able to use any computer for this course, but expect to install Python 3.
Don’t worry, Python is free.

Dive Into Python 3 has detailed installation instructions for all major platforms. These instructions mention
Python 3.1 several times, but you’re better off with Python 3.2 (although the differences are insignificant for this
course). All instructional machines in the EECS department have Python 3.2 already installed.

1.1.3 Interactive Sessions
In an interactive Python session, you type some Python code after the prompt, >>>. The Python interpreter reads
and evaluates what you type, carrying out your various commands.

There are several ways to start an interactive session, and they differ in their properties. Try them all to find
out what you prefer. They all use exactly the same interpreter behind the scenes.

• The simplest and most common way is to run the Python 3 application. Type python3 at a terminal prompt
(Mac/Unix/Linux) or open the Python 3 application in Windows.

• A more user-friendly application for those learning the language is called Idle 3 (idle3). Idle colorizes
your code (called syntax highlighting), pops up usage hints, and marks the source of some errors. Idle is
always bundled with Python, so you have already installed it.

• The Emacs editor can run an interactive session inside one of its buffers. While slightly more challenging
to learn, Emacs is a powerful and versatile editor for any programming language. Read the 61A Emacs
Tutorial to get started. Many programmers who invest the time to learn Emacs never switch editors again.

In any case, if you see the Python prompt, >>>, then you have successfully started an interactive session.
These notes depict example interactions using the prompt, followed by some input.

>>> 2 + 2
4

Controls: Each session keeps a history of what you have typed. To access that history, press <Control>-P
(previous) and <Control>-N (next). <Control>-D exits a session, which discards this history.

1.1.4 First Example
And, as imagination bodies forth
The forms of things to unknown, and the poet’s pen
Turns them to shapes, and gives to airy nothing
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A local habitation and a name.

—William Shakespeare, A Midsummer-Night’s Dream

To give Python the introduction it deserves, we will begin with an example that uses several language features.
In the next section, we will have to start from scratch and build up the language piece by piece. Think of this
section as a sneak preview of powerful features to come.

Python has built-in support for a wide range of common programming activities, like manipulating text, dis-
playing graphics, and communicating over the Internet. The import statement

>>> from urllib.request import urlopen

loads functionality for accessing data on the Internet. In particular, it makes available a function called
urlopen, which can access the content at a uniform resource locator (URL), which is a location of something
on the Internet.

Statements & Expressions. Python code consists of statements and expressions. Broadly, computer programs
consist of instructions to either

1. Compute some value

2. Carry out some action

Statements typically describe actions. When the Python interpreter executes a statement, it carries out the
corresponding action. On the other hand, expressions typically describe computations that yield values. When
Python evaluates an expression, it computes its value. This chapter introduces several types of statements and
expressions.

The assignment statement

>>> shakespeare = urlopen(’http://inst.eecs.berkeley.edu/~cs61a/fa11/shakespeare.txt’)

associates the name shakespeare with the value of the expression that follows. That expression applies the
urlopen function to a URL that contains the complete text of William Shakespeare’s 37 plays, all in a single
text document.

Functions. Functions encapsulate logic that manipulates data. A web address is a piece of data, and the text
of Shakespeare’s plays is another. The process by which the former leads to the latter may be complex, but we
can apply that process using only a simple expression because that complexity is tucked away within a function.
Functions are the primary topic of this chapter.

Another assignment statement

>>> words = set(shakespeare.read().decode().split())

associates the name words to the set of all unique words that appear in Shakespeare’s plays, all 33,721 of
them. The chain of commands to read, decode, and split, each operate on an intermediate computational
entity: data is read from the opened URL, that data is decoded into text, and that text is split into words. All of
those words are placed in a set.

Objects. A set is a type of object, one that supports set operations like computing intersections and testing
membership. An object seamlessly bundles together data and the logic that manipulates that data, in a way that
hides the complexity of both. Objects are the primary topic of Chapter 2.

The expression

>>> {w for w in words if len(w) >= 5 and w[::-1] in words}
{’madam’, ’stink’, ’leets’, ’rever’, ’drawer’, ’stops’, ’sessa’,
’repaid’, ’speed’, ’redder’, ’devil’, ’minim’, ’spots’, ’asses’,
’refer’, ’lived’, ’keels’, ’diaper’, ’sleek’, ’steel’, ’leper’,
’level’, ’deeps’, ’repel’, ’reward’, ’knits’}

is a compound expression that evaluates to the set of Shakespearian words that appear both forward and in
reverse. The cryptic notation w[::-1] enumerates each letter in a word, but the -1 says to step backwards
(:: here means that the positions of the first and last characters to enumerate are defaulted.) When you enter an
expression in an interactive session, Python prints its value on the following line, as shown.
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Interpreters. Evaluating compound expressions requires a precise procedure that interprets code in a pre-
dictable way. A program that implements such a procedure, evaluating compound expressions and statements, is
called an interpreter. The design and implementation of interpreters is the primary topic of Chapter 3.

When compared with other computer programs, interpreters for programming languages are unique in their
generality. Python was not designed with Shakespeare or palindromes in mind. However, its great flexibility
allowed us to process a large amount of text with only a few lines of code.

In the end, we will find that all of these core concepts are closely related: functions are objects, objects are
functions, and interpreters are instances of both. However, developing a clear understanding of each of these
concepts and their role in organizing code is critical to mastering the art of programming.

1.1.5 Practical Guidance: Errors
Python is waiting for your command. You are encouraged to experiment with the language, even though you may
not yet know its full vocabulary and structure. However, be prepared for errors. While computers are tremendously
fast and flexible, they are also extremely rigid. The nature of computers is described in Stanford’s introductory
course as

The fundamental equation of computers is: computer = powerful + stupid

Computers are very powerful, looking at volumes of data very quickly. Computers can perform
billions of operations per second, where each operation is pretty simple.

Computers are also shockingly stupid and fragile. The operations that they can do are extremely rigid,
simple, and mechanical. The computer lacks anything like real insight .. it’s nothing like the HAL
9000 from the movies. If nothing else, you should not be intimidated by the computer as if it’s some
sort of brain. It’s very mechanical underneath it all.

Programming is about a person using their real insight to build something useful, constructed out of
these teeny, simple little operations that the computer can do.

—Francisco Cai and Nick Parlante, Stanford CS101

The rigidity of computers will immediately become apparent as you experiment with the Python interpreter:
even the smallest spelling and formatting changes will cause unexpected outputs and errors.

Learning to interpret errors and diagnose the cause of unexpected errors is called debugging. Some guiding
principles of debugging are:

1. Test incrementally: Every well-written program is composed of small, modular components that can
be tested individually. Test everything you write as soon as possible to catch errors early and gain
confidence in your components.

2. Isolate errors: An error in the output of a compound program, expression, or statement can typically
be attributed to a particular modular component. When trying to diagnose a problem, trace the error
to the smallest fragment of code you can before trying to correct it.

3. Check your assumptions: Interpreters do carry out your instructions to the letter --- no more and no
less. Their output is unexpected when the behavior of some code does not match what the programmer
believes (or assumes) that behavior to be. Know your assumptions, then focus your debugging effort
on verifying that your assumptions actually hold.

4. Consult others: You are not alone! If you don’t understand an error message, ask a friend, instructor,
or search engine. If you have isolated an error, but can’t figure out how to correct it, ask someone else
to take a look. A lot of valuable programming knowledge is shared in the context of team problem
solving.

Incremental testing, modular design, precise assumptions, and teamwork are themes that persist throughout
this course. Hopefully, they will also persist throughout your computer science career.
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1.2 The Elements of Programming
A programming language is more than just a means for instructing a computer to perform tasks. The language also
serves as a framework within which we organize our ideas about processes. Programs serve to communicate those
ideas among the members of a programming community. Thus, programs must be written for people to read, and
only incidentally for machines to execute.

When we describe a language, we should pay particular attention to the means that the language provides
for combining simple ideas to form more complex ideas. Every powerful language has three mechanisms for
accomplishing this:

• primitive expressions and statements, which represent the simplest building blocks that the language
provides,

• means of combination, by which compound elements are built from simpler ones, and

• means of abstraction, by which compound elements can be named and manipulated as units.

In programming, we deal with two kinds of elements: functions and data. (Soon we will discover that they
are really not so distinct.) Informally, data is stuff that we want to manipulate, and functions describe the rules for
manipulating the data. Thus, any powerful programming language should be able to describe primitive data and
primitive functions and should have methods for combining and abstracting both functions and data.

1.2.1 Expressions
Having experimented with the full Python interpreter, we now must start anew, methodically developing the
Python language piece by piece. Be patient if the examples seem simplistic --- more exciting material is soon
to come.

We begin with primitive expressions. One kind of primitive expression is a number. More precisely, the
expression that you type consists of the numerals that represent the number in base 10.

>>> 42
42

Expressions representing numbers may be combined with mathematical operators to form a compound ex-
pression, which the interpreter will evaluate:

>>> -1 - -1
0
>>> 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
0.9921875

These mathematical expressions use infix notation, where the operator (e.g., +, -, *, or /) appears in between
the operands (numbers). Python includes many ways to form compound expressions. Rather than attempt to
enumerate them all immediately, we will introduce new expression forms as we go, along with the language
features that they support.

1.2.2 Call Expressions
The most important kind of compound expression is a call expression, which applies a function to some arguments.
Recall from algebra that the mathematical notion of a function is a mapping from some input arguments to an
output value. For instance, the max function maps its inputs to a single output, which is the largest of the inputs.
A function in Python is more than just an input-output mapping; it describes a computational process. However,
the way in which Python expresses function application is the same as in mathematics.

>>> max(7.5, 9.5)
9.5

This call expression has subexpressions: the operator precedes parentheses, which enclose a comma-delimited
list of operands. The operator must be a function. The operands can be any values; in this case they are numbers.
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When this call expression is evaluated, we say that the function max is called with arguments 7.5 and 9.5, and
returns a value of 9.5.

The order of the arguments in a call expression matters. For instance, the function pow raises its first argument
to the power of its second argument.

>>> pow(100, 2)
10000
>>> pow(2, 100)
1267650600228229401496703205376

Function notation has several advantages over the mathematical convention of infix notation. First, functions
may take an arbitrary number of arguments:

>>> max(1, -2, 3, -4)
3

No ambiguity can arise, because the function name always precedes its arguments.
Second, function notation extends in a straightforward way to nested expressions, where the elements are

themselves compound expressions. In nested call expressions, unlike compound infix expressions, the structure
of the nesting is entirely explicit in the parentheses.

>>> max(min(1, -2), min(pow(3, 5), -4))
-2

There is no limit (in principle) to the depth of such nesting and to the overall complexity of the expressions
that the Python interpreter can evaluate. However, humans quickly get confused by multi-level nesting. An
important role for you as a programmer is to structure expressions so that they remain interpretable by yourself,
your programming partners, and others who may read your code in the future.

Finally, mathematical notation has a great variety of forms: multiplication appears between terms, exponents
appear as superscripts, division as a horizontal bar, and a square root as a roof with slanted siding. Some of this
notation is very hard to type! However, all of this complexity can be unified via the notation of call expressions.
While Python supports common mathematical operators using infix notation (like + and -), any operator can be
expressed as a function with a name.

1.2.3 Importing Library Functions
Python defines a very large number of functions, including the operator functions mentioned in the preceding
section, but does not make their names available by default, so as to avoid complete chaos. Instead, it organizes the
functions and other quantities that it knows about into modules, which together comprise the Python Library. To
use these elements, one imports them. For example, the math module provides a variety of familiar mathematical
functions:

>>> from math import sqrt, exp
>>> sqrt(256)
16.0
>>> exp(1)
2.718281828459045

and the operator module provides access to functions corresponding to infix operators:

>>> from operator import add, sub, mul
>>> add(14, 28)
42
>>> sub(100, mul(7, add(8, 4)))
16

An import statement designates a module name (e.g., operator or math), and then lists the named
attributes of that module to import (e.g., sqrt or exp).

The Python 3 Library Docs list the functions defined by each module, such as the math module. However,
this documentation is written for developers who know the whole language well. For now, you may find that
experimenting with a function tells you more about its behavior than reading the documemtation. As you become
familiar with the Python language and vocabulary, this documentation will become a valuable reference source.
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1.2.4 Names and the Environment
A critical aspect of a programming language is the means it provides for using names to refer to computational
objects. If a value has been given a name, we say that the name binds to the value.

In Python, we can establish new bindings using the assignment statement, which contains a name to the left of
= and a value to the right:

>>> radius = 10
>>> radius
10
>>> 2 * radius
20

Names are also bound via import statements.

>>> from math import pi
>>> pi * 71 / 223
1.0002380197528042

We can also assign multiple values to multiple names in a single statement, where names and expressions are
separated by commas.

>>> area, circumference = pi * radius * radius, 2 * pi * radius
>>> area
314.1592653589793
>>> circumference
62.83185307179586

The = symbol is called the assignment operator in Python (and many other languages). Assignment is Python’s
simplest means of abstraction, for it allows us to use simple names to refer to the results of compound operations,
such as the area computed above. In this way, complex programs are constructed by building, step by step,
computational objects of increasing complexity.

The possibility of binding names to values and later retrieving those values by name means that the interpreter
must maintain some sort of memory that keeps track of the names, values, and bindings. This memory is called
an environment.

Names can also be bound to functions. For instance, the name max is bound to the max function we have been
using. Functions, unlike numbers, are tricky to render as text, so Python prints an identifying description instead,
when asked to print a function:

>>> max
<built-in function max>

We can use assignment statements to give new names to existing functions.

>>> f = max
>>> f
<built-in function max>
>>> f(3, 4)
4

And successive assignment statements can rebind a name to a new value.

>>> f = 2
>>> f
2

In Python, the names bound via assignment are often called variable names because they can be bound to a
variety of different values in the course of executing a program.
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1.2.5 Evaluating Nested Expressions
One of our goals in this chapter is to isolate issues about thinking procedurally. As a case in point, let us consider
that, in evaluating nested call expressions, the interpreter is itself following a procedure.

To evaluate a call expression, Python will do the following:

1. Evaluate the operator and operand subexpressions, then

2. Apply the function that is the value of the operator subexpression to the arguments that are the values
of the operand subexpressions.

Even this simple procedure illustrates some important points about processes in general. The first step dictates
that in order to accomplish the evaluation process for a call expression we must first evaluate other expressions.
Thus, the evaluation procedure is recursive in nature; that is, it includes, as one of its steps, the need to invoke the
rule itself.

For example, evaluating

>>> mul(add(2, mul(4, 6)), add(3, 5))
208

requires that this evaluation procedure be applied four times. If we draw each expression that we evaluate, we
can visualize the hierarchical structure of this process.

This illustration is called an expression tree. In computer science, trees grow from the top down. The objects
at each point in a tree are called nodes; in this case, they are expressions paired with their values.

Evaluating its root, the full expression, requires first evaluating the branches that are its subexpressions. The
leaf expressions (that is, nodes with no branches stemming from them) represent either functions or numbers. The
interior nodes have two parts: the call expression to which our evaluation rule is applied, and the result of that
expression. Viewing evaluation in terms of this tree, we can imagine that the values of the operands percolate
upward, starting from the terminal nodes and then combining at higher and higher levels.

Next, observe that the repeated application of the first step brings us to the point where we need to evaluate,
not call expressions, but primitive expressions such as numerals (e.g., 2) and names (e.g., add). We take care of
the primitive cases by stipulating that

• A numeral evaluates to the number it names,

• A name evaluates to the value associated with that name in the current environment.

Notice the important role of an environment in determining the meaning of the symbols in expressions. In
Python, it is meaningless to speak of the value of an expression such as

>>> add(x, 1)
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without specifying any information about the environment that would provide a meaning for the name x (or
even for the name add). Environments provide the context in which evaluation takes place, which plays an
important role in our understanding of program execution.

This evaluation procedure does not suffice to evaluate all Python code, only call expressions, numerals, and
names. For instance, it does not handle assignment statements. Executing

>>> x = 3

does not return a value nor evaluate a function on some arguments, since the purpose of assignment is instead
to bind a name to a value. In general, statements are not evaluated but executed; they do not produce a value but
instead make some change. Each type of statement or expression has its own evaluation or execution procedure,
which we will introduce incrementally as we proceed.

A pedantic note: when we say that “a numeral evaluates to a number,” we actually mean that the Python
interpreter evaluates a numeral to a number. It is the interpreter which endows meaning to the programming
language. Given that the interpreter is a fixed program that always behaves consistently, we can loosely say that
numerals (and expressions) themselves evaluate to values in the context of Python programs.

1.2.6 Function Diagrams
As we continue to develop a formal model of evaluation, we will find that diagramming the internal state of
the interpreter helps us track the progress of our evaluation procedure. An essential part of these diagrams is a
representation of a function.

Pure functions. Functions have some input (their arguments) and return some output (the result of applying
them). The built-in function

>>> abs(-2)
2

can be depicted as a small machine that takes input and produces output.

The function abs is pure. Pure functions have the property that applying them has no effects beyond returning
a value.

Non-pure functions. In addition to returning a value, applying a non-pure function can generate side effects,
which make some change to the state of the interpreter or computer. A common side effect is to generate additional
output beyond the return value, using the print function.

>>> print(-2)
-2
>>> print(1, 2, 3)
1 2 3

While print and absmay appear to be similar in these examples, they work in fundamentally different ways.
The value that print returns is always None, a special Python value that represents nothing. The interactive
Python interpreter does not automatically print the value None. In the case of print, the function itself is
printing output as a side effect of being called.

A nested expression of calls to print highlights the non-pure character of the function.
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>>> print(print(1), print(2))
1
2
None None

If you find this output to be unexpected, draw an expression tree to clarify why evaluating this expression
produces this peculiar output.

Be careful with print! The fact that it returns None means that it should not be the expression in an
assignment statement.

>>> two = print(2)
2
>>> print(two)
None

Signatures. Functions differ in the number of arguments that they are allowed to take. To track these require-
ments, we draw each function in a way that shows the function name and names of its arguments. The function
abs takes only one argument called number; providing more or fewer will result in an error. The function
print can take an arbitrary number of arguments, hence its rendering as print(...). A description of the
arguments that a function can take is called the function’s signature.

1.3 Defining New Functions
We have identified in Python some of the elements that must appear in any powerful programming language:

1. Numbers and arithmetic operations are built-in data and functions.

2. Nested function application provides a means of combining operations.

3. Binding names to values provides a limited means of abstraction.

Now we will learn about function definitions, a much more powerful abstraction technique by which a name
can be bound to compound operation, which can then be referred to as a unit.

We begin by examining how to express the idea of “squaring.” We might say, “To square something, multiply
it by itself.” This is expressed in Python as

>>> def square(x):
return mul(x, x)

which defines a new function that has been given the name square. This user-defined function is not built into
the interpreter. It represents the compound operation of multiplying something by itself. The x in this definition
is called a formal parameter, which provides a name for the thing to be multiplied. The definition creates this
user-defined function and associates it with the name square.

Function definitions consist of a def statement that indicates a <name> and a list of named <formal
parameters>, then a return statement, called the function body, that specifies the <return expression>
of the function, which is an expression to be evaluated whenever the function is applied.

def <name>(<formal parameters>): return <return expression>

The second line must be indented! Convention dictates that we indent with four spaces, rather than a tab. The
return expression is not evaluated right away; it is stored as part of the newly defined function and evaluated only
when the function is eventually applied. (Soon, we will see that the indented region can span multiple lines.)

Having defined square, we can apply it with a call expression:

>>> square(21)
441
>>> square(add(2, 5))
49
>>> square(square(3))
81

11



We can also use square as a building block in defining other functions. For example, we can easily define a
function sum_squares that, given any two numbers as arguments, returns the sum of their squares:

>>> def sum_squares(x, y):
return add(square(x), square(y))

>>> sum_squares(3, 4)
25

User-defined functions are used in exactly the same way as built-in functions. Indeed, one cannot tell from the
definition of sum_squares whether square is built into the interpreter, imported from a module, or defined
by the user.

1.3.1 Environments
Our subset of Python is now complex enough that the meaning of programs is non-obvious. What if a formal
parameter has the same name as a built-in function? Can two functions share names without confusion? To
resolve such questions, we must describe environments in more detail.

An environment in which an expression is evaluated consists of a sequence of frames, depicted as boxes. Each
frame contains bindings, which associate a name with its corresponding value. There is a single global frame that
contains name bindings for all built-in functions (only abs and max are shown). We indicate the global frame
with a globe symbol.

Assignment and import statements add entries to the first frame of the current environment. So far, our envi-
ronment consists only of the global frame.

>>> from math import pi
>>> tau = 2 * pi

A def statement also binds a name to the function created by the definition. The resulting environment after
defining square appears below:
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These environment diagrams show the bindings of the current environment, along with the values (which are
not part of any frame) to which names are bound. Notice that the name of a function is repeated, once in the
frame, and once as part of the function itself. This repetition is intentional: many different names may refer to the
same function, but that function itself has only one intrinsic name. However, looking up the value for a name in
an environment only inspects name bindings. The intrinsic name of a function does not play a role in looking up
names. In the example we saw earlier,

>>> f = max
>>> f
<built-in function max>

The name max is the intrinsic name of the function, and that’s what you see printed as the value for f. In
addition, both the names max and f are bound to that same function in the global environment.

As we proceed to introduce additional features of Python, we will have to extend these diagrams. Every time
we do, we will list the new features that our diagrams can express.

New environment Features: Assignment and user-defined function definition.

1.3.2 Calling User-Defined Functions
To evaluate a call expression whose operator names a user-defined function, the Python interpreter follows a
process similar to the one for evaluating expressions with a built-in operator function. That is, the interpreter
evaluates the operand expressions, and then applies the named function to the resulting arguments.

The act of applying a user-defined function introduces a second local frame, which is only accessible to that
function. To apply a user-defined function to some arguments:

1. Bind the arguments to the names of the function’s formal parameters in a new local frame.

2. Evaluate the body of the function in the environment beginning at that frame and ending at the global
frame.

The environment in which the body is evaluated consists of two frames: first the local frame that contains
argument bindings, then the global frame that contains everything else. Each instance of a function application
has its own independent local frame.
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This figure includes two different aspects of the Python interpreter: the current environment, and a part of
the expression tree related to the current line of code being evaluated. We have depicted the evaluation of a call
expression that has a user-defined function (in blue) as a two-part rounded rectangle. Dotted arrows indicate which
environment is used to evaluate the expression in each part.

• The top half shows the call expression being evaluated. This call expression is not internal to any function,
so it is evaluated in the global environment. Thus, any names within it (such as square) are looked up in
the global frame.

• The bottom half shows the body of the square function. Its return expression is evaluated in the new
environment introduced by step 1 above, which binds the name of square’s formal parameter x to the
value of its argument, -2.

The order of frames in an environment affects the value returned by looking up a name in an expression. We
stated previously that a name is evaluated to the value associated with that name in the current environment. We
can now be more precise:

• A name evaluates to the value bound to that name in the earliest frame of the current environment in which
that name is found.

Our conceptual framework of environments, names, and functions constitutes a model of evaluation; while
some mechanical details are still unspecified (e.g., how a binding is implemented), our model does precisely and
correctly describe how the interpreter evaluates call expressions. In Chapter 3 we shall see how this model can
serve as a blueprint for implementing a working interpreter for a programming language.

New environment Feature: Function application.

1.3.3 Example: Calling a User-Defined Function
Let us again consider our two simple definitions:

>>> from operator import add, mul
>>> def square(x):

return mul(x, x)

>>> def sum_squares(x, y):
return add(square(x), square(y))
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And the process that evaluates the following call expression:

>>> sum_squares(5, 12)
169

Python first evaluates the name sum_squares, which is bound to a user-defined function in the global frame.
The primitive numeric expressions 5 and 12 evaluate to the numbers they represent.

Next, Python applies sum_squares, which introduces a local frame that binds x to 5 and y to 12.

In this diagram, the local frame points to its successor, the global frame. All local frames must point to a
predecessor, and these links define the sequence of frames that is the current environment.

The body of sum_squares contains this call expression:

add ( square(x) , square(y) )
________ _________ _________

"operator" "operand 0" "operand 1"

All three subexpressions are evalauted in the current environment, which begins with the frame labeled
sum_squares. The operator subexpression add is a name found in the global frame, bound to the built-in function
for addition. The two operand subexpressions must be evaluated in turn, before addition is applied. Both operands
are evaluated in the current environment beginning with the frame labeled sum_squares. In the following
environment diagrams, we will call this frame A and replace arrows pointing to this frame with the label A as well.

In operand 0, square names a user-defined function in the global frame, while x names the number 5 in
the local frame. Python applies square to 5 by introducing yet another local frame that binds x to 5.
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Using this local frame, the body expression mul(x, x) evaluates to 25.
Our evaluation procedure now turns to operand 1, for which y names the number 12. Python evaluates

the body of square again, this time introducing yet another local environment frame that binds x to 12. Hence,
operand 1 evaluates to 144.

Finally, applying addition to the arguments 25 and 144 yields a final value for the body of sum_squares:
169.

This figure, while complex, serves to illustrate many of the fundamental ideas we have developed so far.
Names are bound to values, which spread across many local frames that all precede a single global frame that
contains shared names. Expressions are tree-structured, and the environment must be augmented each time a
subexpression contains a call to a user-defined function.

All of this machinery exists to ensure that names resolve to the correct values at the correct points in the
expression tree. This example illustrates why our model requires the complexity that we have introduced. All
three local frames contain a binding for the name x, but that name is bound to different values in different frames.
Local frames keep these names separate.
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1.3.4 Local Names
One detail of a function’s implementation that should not affect the function’s behavior is the implementer’s choice
of names for the function’s formal parameters. Thus, the following functions should provide the same behavior:

>>> def square(x):
return mul(x, x)

>>> def square(y):
return mul(y, y)

This principle -- that the meaning of a function should be independent of the parameter names chosen by its
author -- has important consequences for programming languages. The simplest consequence is that the parameter
names of a function must remain local to the body of the function.

If the parameters were not local to the bodies of their respective functions, then the parameter x in square
could be confused with the parameter x in sum_squares. Critically, this is not the case: the binding for x in
different local frames are unrelated. Our model of computation is carefully designed to ensure this independence.

We say that the scope of a local name is limited to the body of the user-defined function that defines it. When
a name is no longer accessible, it is out of scope. This scoping behavior isn’t a new fact about our model; it is a
consequence of the way environments work.

1.3.5 Practical Guidance: Choosing Names
The interchangeabily of names does not imply that formal parameter names do not matter at all. To the contrary,
well-chosen function and parameter names are essential for the human interpretability of function definitions!

The following guidelines are adapted from the style guide for Python code, which serves as a guide for all
(non-rebellious) Python programmers. A shared set of conventions smooths communication among members of a
programming community. As a side effect of following these conventions, you will find that your code becomes
more internally consistent.

1. Function names should be lowercase, with words separated by underscores. Descriptive names are
encouraged.

2. Function names typically evoke operations applied to arguments by the interpreter (e.g., print, add,
square) or the name of the quantity that results (e.g., max, abs, sum).

3. Parameter names should be lowercase, with words separated by underscores. Single-word names are
preferred.

4. Parameter names should evoke the role of the parameter in the function, not just the type of value that
is allowed.

5. Single letter parameter names are acceptable when their role is obvious, but never use “l” (lowercase
ell), “O” (capital oh), or “I” (capital i) to avoid confusion with numerals.

Review these guidelines periodically as you write programs, and soon your names will be delightfully Pythonic.

1.3.6 Functions as Abstractions
Though it is very simple, sum_squares exemplifies the most powerful property of user-defined functions. The
function sum_squares is defined in terms of the function square, but relies only on the relationship that
square defines between its input arguments and its output values.

We can write sum_squares without concerning ourselves with how to square a number. The details of how
the square is computed can be suppressed, to be considered at a later time. Indeed, as far as sum_squares is
concerned, square is not a particular function body, but rather an abstraction of a function, a so-called functional
abstraction. At this level of abstraction, any function that computes the square is equally good.

Thus, considering only the values they return, the following two functions for squaring a number should be
indistinguishable. Each takes a numerical argument and produces the square of that number as the value.
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