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1. Introduction

Robotic soccer is nowadays a popular research domain in the area of multi-robot systems.
RoboCup is an international joint project to promote research in artificial intelligence, robotics
and related fields. RoboCup chose soccer as the main problem aiming at innovations to be
applied for socially relevant problems. It includes several competition leagues, each one with
a specific emphasis, some only at software level, others at both hardware and software, with
single or multiple agents, cooperative and competitive.
In the context of RoboCup, the Middle Size League (MSL) is one of the most challenging. In
this league, each team is composed of up to 5 robots with a maximum size of 50cm × 50cm,
80cm height and a maximum weight of 40Kg, playing in a field of 18m × 12m. The rules of the
game are similar to the official FIFA rules, with minor changes required to adapt them for the
playing robots
CAMBADA, Cooperative Autonomous Mobile roBots with Advanced Distributed Architecture, is the
MSL Soccer team from the University of Aveiro. The project started in 2003, coordinated by
the Transverse Activity on Intelligent Robotics group of the Institute of Electronic and Telem-
atic Engineering of Aveiro (IEETA). This project involves people working on several areas
for building the mechanical structure of the robot, its hardware architecture and controllers
(Almeida et al., 2002; Azevedo et al., 2007) and the software development in areas such as im-
age analysis and processing (Caleiro et al., 2007; Cunha et al., 2007; Martins et al., 2008; Neves
et al., 2007; 2008), sensor and information fusion (Silva et al., 2008; 2009), reasoning and con-
trol (Lau et al., 2008), cooperative sensing approach based on a Real-Time Database (Almeida
et al., 2004), communications among robots (Santos et al., 2009; 2007) and the development of
an efficient basestation.
The main contribution of this chapter is to present the new advances in the areas described
above involving the development of an MSL team of soccer robots, taking the example of
the CAMBADA team that won the RoboCup 2008 and attained the third place in the last
edition of the MSL tournament at RoboCup 2009. CAMBADA also won the last three editions

∗This work was partially supported by project ACORD, Adaptive Coordination of Robotic Teams,
FCT/PTDC/EIA/70695/2006.
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of the Portuguese Robotics Open 2007-2009, which confirms the efficiency of the proposed
architecture.
This chapter is organized as follows. In Section 2 it is presented the layered and modular ar-
chitecture of the robot’s hardware. Section 3 describes the vision system of the robots, starting
in the calibration of the several parameters and presenting efficient algorithms for the detec-
tion of the colored objects and algorithms for the detection of arbitrary FIFA balls, a current
challenge in the MSL. In Section 4 it is presented the process of building the representation
of the environment and the algorithms for the integration of the several sources of informa-
tion received by the robot. Section 5 presents the architecture used in CAMBADA robots to
share information between them using a real-time database. Section 6 presents the methodol-
ogy developed for the communication between robots, using an adaptive TDMA transmission
control. In Section 7 it is presented the robots coordination model based on notions like strate-
gic positioning, role and formation. Section 8 presents the Base Station application, responsible
for the control of the agents, interpreting and sending high level instructions and monitoring
information of the robots. Finally, in Section 9 we draw some conclusions.

2. Hardware architecture

The CAMBADA robots (Fig. 1) were designed and completely built in-house. The baseline for
robot construction is a cylindrical envelope, with 485 mm in diameter. The mechanical struc-
ture of the players is layered and modular. Each layer can easily be replaced by an equivalent
one. The components in the lower layer, namely motors, wheels, batteries and an electromag-
netic kicker, are attached to an aluminum plate placed 8 cm above the floor. The second layer
contains the control electronics. The third layer contains a laptop computer, at 22.5 cm from
the floor, an omni-directional vision system, a frontal camera and an electronic compass, all
close to the maximum height of 80 cm. The players are capable of holonomic motion, based
on three omni-directional roller wheels.

Fig. 1. Robots used by the CAMBADA MSL robotic soccer team.

The general architecture of the CAMBADA robots has been described in (Almeida et al., 2004;
Silva et al., 2005). Basically, the robots follow a biomorphic paradigm, each being centered
on a main processing unit (a laptop), the brain, which is responsible for the higher-level be-
havior coordination, i.e. the coordination layer. This main processing unit handles external
communication with the other robots and has high bandwidth sensors, typically vision, di-
rectly attached to it. Finally, this unit receives low bandwidth sensing information and sends
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actuating commands to control the robot attitude by means of a distributed low-level sens-
ing/actuating system (Fig. 2), the nervous system.

Fig. 2. Hardware architecture with functional mapping.

The low-level sensing/actuating system follows the fine-grain distributed model where most
of the elementary functions, e.g. basic reactive behaviors and closed-loop control of complex
actuators, are encapsulated in small microcontroller-based nodes interconnected by means of
a network. For this purpose, Controller Area Network (CAN), a real-time fieldbus typical
in distributed embedded systems, has been chosen. This network is complemented with a
higher-level transmission control protocol to enhance its real-time performance, composabil-
ity and fault-tolerance, namely the FTT-CAN protocol (Flexible Time-Triggered communica-
tion over CAN) (Almeida et al., 2002). This protocol keeps all the information of periodic
flows within a master node, implemented on another basic module, which works like a mae-
stro triggering tasks and message transmissions.
The low-level sensing/actuation system executes four main functions as described in Fig. 3,
namely Motion, Odometry, Kick and System monitoring. The former provides holonomic
motion using 3 DC motors. The Odometry function combines the encoder readings from
the 3 motors and provides a coherent robot displacement information that is then sent to the
coordination layer. The Kick function includes the control of an electromagnetic kicker and of
a ball handler to dribble the ball.

Fig. 3. Layered software architecture of CAMBADA players.

The system monitor function monitors the robot batteries as well as the state of all nodes in the
low-level layer. Finally, the low-level control layer connects to the coordination layer through
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a gateway, which filters interactions within both layers, passing through the information that
is relevant across the layers, only. Such filtering reduces the overhead of handling unnecessary
receptions at each layer as well as the network bandwidth usage at the low-level side, thus
further reducing mutual interference across the layers.
A detailed description regarding the implementation of this architecture, namely the map-
ping between the functional architecture onto hardware and the information flows and their
synchronization are presented in (Azevedo et al., 2007).

3. Vision system

The vision system of the CAMBADA robots is based on an hybrid system, formed by an omni-
directional and a perspective sub-system, that together can analyze the environment around
the robots, both at close and long distances (Neves et al., 2008). The main modules of the
vision system are presented in Fig. 4.

Fig. 4. The software architecture of the vision system developed for the CAMBADA robotic
soccer team.

The information regarding close objects, like white lines of the field, other robots and the
ball, are acquired through the omnidirectional system, whereas the perspective system is used
to locate other robots and the ball at long distances, which are difficult to detect using the
omnidirectional vision system.

3.1 Inverse distance map

The use of a catadioptric omni-directional vision system based on a regular video camera
pointed at a hyperbolic mirror is a common solution for the main sensorial element found in
a significant number of autonomous mobile robot applications. For most practical applica-
tions, this setup requires the translation of the planar field of view, at the camera sensor plane,
into real world coordinates at the ground plane, using the robot as the center of this system.
In order to simplify this non-linear transformation, most practical solutions adopted in real
robots choose to create a mechanical geometric setup that ensures a symmetrical solution for
the problem by means of single viewpoint (SVP) approach. This, on the other hand, calls for a
precise alignment of the four major points comprising the vision setup: the mirror focus, the
mirror apex, the lens focus and the center of the image sensor. Furthermore, it also demands
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the sensor plane to be both parallel to the ground field and normal to the mirror axis of revolu-
tion, and the mirror foci to be coincident with the effective viewpoint and the camera pinhole
respectively. Although tempting, this approach requires a precision mechanical setup.
We developed a general solution to calculate the robot centered distances map on non-SVP
catadioptric setups, exploring a back-propagation ray-tracing approach and the mathematical
properties of the mirror surface. This solution effectively compensates for the misalignment
that may result either from a simple mechanical setup or from the use of low cost video cam-
eras. Therefore, precise mechanical alignment and high quality cameras are no longer pre-
requisites to obtain useful distance maps. The method can also extract most of the required
parameters from the acquired image itself, allowing it to be used for self-calibration purposes.
In order to allow further trimming of these parameters, two simple image feedback tools have
been developed.
The first one creates a reverse mapping of the acquired image into the real world distance
map. A fill-in algorithm is used to integrate image data in areas outside pixel mapping on
the ground plane. This produces a plane vision from above, allowing visual check of line
parallelism and circular asymmetries (Fig. 5). The second generates a visual grid with 0.5m
distances between both lines and columns, which is superimposed on the original image. This
provides an immediate visual clue for the need of possible further distance correction (Fig. 6).

Fig. 5. Acquired image after reverse-mapping into the distance map. On the left, the map
was obtained with all misalignment parameters set to zero. On the right, after automatic
correction.

Fig. 6. A 0.5m grid, superimposed on the original image. On the left, with all correction
parameters set to zero. On the right, the same grid after geometrical parameter extraction.
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With this tool it is also possible to determine some other important parameters, namely the
mirror center and the area of the image that will be processed by the object detection algo-
rithms (Fig. 7). A more detailed description of the algorithms can be found in (Cunha et al.,
2007).

Fig. 7. On the left, the position of the radial search lines used in the omnidirectional vision
system. On the right, an example of a robot mask used to select the pixels to be processed by
the omnidirectional vision sub-system. White points represent the area that will be processed.

3.2 Autonomous configuration of the digital camera parameters

An algorithm was developed to configure the most important features of the cameras, namely
exposure, white-balance, gain and brightness without human intervention (Neves et al., 2009).
The self-calibration process for a single robot requires a few seconds, including the time nec-
essary to interact with the application, which is considered fast in comparison to the several
minutes needed for manual calibration by an expert user. The experimental results obtained
show that the algorithm converges independently of the initial configuration of the camera.
Moreover, the images acquired after the proposed calibration algorithm were analyzed using
statistical measurements and these confirm that the images have the desired characteristics.
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Fig. 8. An example of the autonomous configuration algorithm obtained starting with all the
parameters of the camera set to the maximum value. In (a) the initial image acquired. In
(b) the image obtained after applying the autonomous calibration procedure. In (c) a set of
graphics representing the evolution of the camera parameters over time.

The proposed approach uses measurements extracted from a digital image to quantify the
image quality. A number of typical measurements used in the literature can be computed
from the image gray level histogram, namely, the mean (µ), the entropy (E), the absolute
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central moment (ACM) and the mean sample value (MSV). These measurements are used to
calibrate the exposure and gain. Moreover, the proposed algorithm analyzes a white area in
the image to calibrate the white-balance and a black area to calibrate the brightness.

3.3 Object detection

The vision software architecture is based on a distributed paradigm, grouping main tasks in
different modules. The software can be split in three main modules, namely the Utility Sub-
System, the Color Processing Sub-System and the Morphological Processing Sub-System, as can be
seen in Fig. 4. Each one of these sub-systems labels a domain area where their processes fit, as
the case of Acquire Image and Display Image in the Utility Sub-System. As can be seen in the Color
Processing Sub-System, proper color classification and extraction processes were developed,
along with an object detection process to extract information, through color analysis, from the
acquired image.
Image analysis in the RoboCup domain is simplified, since objects are color coded. This fact
is exploited by defining color classes, using a look-up-table (LUT) for fast color classification.
The table consists of 16777216 entries (24 bits: 8 bits for red, 8 bits for green and 8 bits for
blue), each 8 bits wide, occupying 16 MB in total. The pixel classification is carried out using
its color as an index into the table. The color calibration is done in HSV (Hue, Saturation and
Value) color space. In the current setup the image is acquired in RGB or YUV format and is
then converted to an image of labels using the appropriate LUT.
The image processing software uses radial search lines to analyze the color information. A
radial search line is a line that starts in the center of the robot with some angle and ends in the
limit of the image. The center of the robot in the omnidirectional subsystem is approximately
in the center of the image (an example is presented in Fig. 7), while in the perspective sub-
system the center of the robot is in the bottom of the image. The regions of the image that have
to be excluded from analysis (such as the robot itself, the sticks that hold the mirror and the
areas outside the mirror) are ignored through the use of a previously generated image mask,
as described in Section 3.1. The objects of interest (a ball, obstacles and the white lines) are
detected through algorithms that, using the color information collected by the radial search
lines, calculate the object position and/or their limits in an angular representation (distance
and angle). The white lines are detected using an algorithm that, for each search line, finds
the transition between green and white pixels. A more detailed description of the algorithms
can be found in (Neves et al., 2007; 2008).

Fig. 9. On the left, the images acquired by the omnidirectional vision system. In the center, the
corresponding image of labels. On the right, the color blobs detected in the images. A marks
over a ball points to its center of mass. The several marks near the white lines (magenta) are
the position of the white lines. Finally, the cyan marks denote the position of the obstacles.
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The Morphological Processing Sub-System consists of a color independent ball detection algo-
rithm, that will be described in the next section. Martins et al. (2008) presents preliminary
results using this approach.
In the final of the image processing pipeline, the position of the detected objects are sent to
the real-time database, described later in Section 5, after converting its position in the image
into the real position in the environment, using the inverse distance map obtained with the
algorithms and tools proposed in (Cunha et al., 2007) and briefly described before.

3.4 Arbitrary ball detection

The arbitrary FIFA ball recognition algorithm is based on the use of edge detection and the
circular Hough transform. The search for potential ball candidates is conducted taking ad-
vantage of morphological characteristics of the ball (round shape), using a feature extraction
technique known as the Hough transform. First used to identify lines in images, the Hough
transform has been generalized through the years to identify positions of arbitrary shapes,
most commonly circles or ellipses, by a voting procedure (Grimson and Huttenlocher, 1990;
Ser and Siu, 1993; Zhang and Liu, 2000).
To feed the Hough transform process, it is necessary a binary image with the edge information
of the objects. This image, Edges Image, is obtained using an edge detector operator. In the
following, we present an explanation of this process and its implementation.
To be possible to use this image processing system in real-time, we implemented efficient data
structures to process the image data (Neves et al., 2007; 2008). We used a two-thread approach
to perform the most time consuming operations in parallel, namely image segmentation, edge
detection and Hough transform, taking advantage of the dual core processor used by the
laptop computers of our robots.
The first image processing step in the morphological detection is the edge detection. It must
be as efficient and accurate as possible in order not to compromise the efficiency of the whole
system. Besides being fast to calculate, the intended resulting image must be absent of noise
as much as possible, with well defined contours and be tolerant to the motion blur introduced
by the movement of the ball and the robots.
Some popular edge detectors were tested, namely Sobel (Zin et al., 2007; Zou et al., 2006;
Zou and Dunsmuir, 1997), Laplace (Blaffert et al., 2000; Zou and Dunsmuir, 1997) and Canny
(Canny, 1986). According to our experiments, the Canny edge detector was the most de-
manding in terms of processing time. Even so, it was fast enough for real-time operation and,
because it provided the most effective contours, it was chosen.
The next step in the proposed approach is the use of the Hough transform to find points of
interest containing possible circular objects. After finding these points, a validation procedure
is used for choosing points containing a ball, according to our characterization. The voting
procedure of the Hough transform is carried out in a parameter space. Object candidates are
obtained as local maxima of a denoted Intensity Image (Fig. 10c)), that is constructed by the
Hough Transform block (Fig. 4).
Due to the special features of the Hough circular transform, a circular object in the Edges Image
would produce an intense peak in Intensity Image corresponding to the center of the object (as
can be seen in Fig. 10c)). On the contrary, a non-circular object would produce areas of low
intensity in the Intensity Image. However, as the ball moves away, its edge circle size decreases.
To solve this problem, information about the distance between the robot center and the ball is
used to adjust the Hough transform. We use the inverse mapping of our vision system (Cunha
et al., 2007) to estimate the radius of the ball as a function of distance.
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In some situations, particularly when the ball is not present in the field, false positives might
be produced. To solve this problem and improve the ball information reliability, we propose
a validation algorithm that discards false positives based on information from the Intensity
Image and the Acquired Image. This validation algorithm is based on two tests against which
each ball candidate is put through.
In the first test performed by the validation algorithm, the points with local maximum values
in the Intensity Image are considered if they are above a distance-dependent threshold. This
threshold depends on the distance of the ball candidate to the robot center, decreasing as this
distance increases. This first test removes some false ball candidates, leaving a reduced group
of points of interest.
Then, a test is made in the Acquired Image over each point of interest selected by the previous
test. This test is used to eliminate false balls that usually appear in the intersection of the lines
of the field and other robots (regions with several contours). To remove these false balls, we
analyze a square region of the image centered in the point of interest. We discard this point
of interest if the sum of all green pixels is over a certain percentage of the square area. Note
that the area of this square depends on the distance of the point of interest to the robot center,
decreasing as this distance increases. Choosing a square where the ball fits tightly makes this
test very effective, considering that the ball fills over 90% of the square. In both tests, we use
threshold values that were obtained experimentally.
Besides the color validation, it is also performed a validation of the morphology of the candi-
date, more precisely a circularity validation. Here, from the candidate point to the center of
the ball, it is performed a search of pixels at a distance r from the center. For each edge found
between the expected radius, the number of edges at that distance are determined. By the size
of the square which covers the possible ball and the number of edge pixels, it is calculated
the edges percentage. If the edges percentage is greater than 70, then the circularity of the
candidate is verified.
Figure 10 presents an example of the of the Morphological Processing Sub-System. As can be
observed, the balls in the Edges Image (Fig. 10 b)) have almost circular contours. Figure 10 c)
shows the resulting image after applying the circular Hough transform. Notice that the cen-
ter of the balls present a very high peak when compared to the rest of the image. The ball
considered was the closest to the robot due to the fact that it has the high peak in the image.

(a) (b) (c)

Fig. 10. Example of a captured image using the proposed approach. The cross over the ball
points out the detected position. In b) the image a), with the Canny edge detector applied. In
c), the image b) after applying the circular Hough transform.
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4. Sensor Fusion

Having the raw information, the Integrator module is responsible for building the represen-
tation of the environment. The integration has several sources of information input, being
the main input the raw information obtained by the cameras. Besides this information, the
integration also uses information given by other sensors, namely an electronic compass (for
localization purposes), an infra-red barrier sensor for ball engaged validation, odometry infor-
mation given by the motors encoders, robot battery status, past cycles worldstate data, shared
information obtained from team mate robots and coach information, both concerning game
states and team formation, obtained from an external agent acting as a coach.
The first task executed by the integration is the update of the low level internal status, by
updating the data structure values concerning battery and infra red ball barrier sensor. This is
information that goes directly into the structure, because no treatment or filtering is needed.
Afterwards, robot self-localization is made, followed by robot velocity estimation. The ball
information is then treated, followed by obstacle treatment. Finally, the game state and any
related issue are treated, for example, reset and update of timers, concerning setpieces.

4.1 Localization

Self-localization of the agent is an important issue for a soccer team, as strategic moves and
positioning must be defined by positions on the field. In the MSL, the environment is com-
pletely known, as every agent knows exactly the layout of the game field. Given the known
mapping, the agent has then to locate itself on it.
The CAMBADA team localization algorithm is based on the detected field lines, with fusion
information from the odometry sensors and an electronic compass. It is based on the approach
described in (Lauer et al., 2006), with some adaptations. It can be seen as an error minimization
task, with a derived measure of reliability of the calculated position so that a stochastic sensor
fusion process can be applied to increase the estimate accuracy (Lauer et al., 2006).
The idea is to analyze the detected line points, estimating a position, and through an error
function describe the fitness of the estimate. This is done by reducing the error of the matching
between the detected lines and the known field lines (Fig. 9). The error function must be
defined considering the substantial amount of noise that affect the detected line points which
would distort the representation estimate (Lauer et al., 2006).
Although the odometry measurement quality is much affected with time, within the reduced
cycle times achieved in the application, consecutive readings produce acceptable results and
thus, having the visual estimation, it is fused with the odometry values to refine the estimate.
This fusion is done based on a Kalman filter for the robot position estimated by odometry
and the robot position estimated by visual information. This approach allows the agent to
estimate its position even if no visual information is available. However, it is not reliable to
use only odometry values to estimate the position for more than a very few cycles, as slidings
and frictions on the wheels produce large errors on the estimations in short time.
The visually estimated orientation can be ambiguous, i.e. each point on the soccer field has a
symmetric position, relatively to the field center, and the robot detects exactly the same field
lines. To disambiguate, an electronic compass is used. The orientation estimated by the robot
is compared to the orientation given by the compass and if the error between them is larger
than a predefined threshold, actions are taken. If the error is really large, the robot assumes
a mirror position. If it is larger than the acceptance threshold, a counter is incremented. This
counter forces relocation if it reaches a given threshold.
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4.2 Ball integration

Within RoboCup several teams have used Kalman filters for the ball position estimation (Fer-
rein et al., 2006; Lauer et al., 2005; Marcelino et al., 2003; XU et al., 2006). In (Ferrein et al.,
2006) and (Marcelino et al., 2003) several information fusion methods are compared for the
integration of the ball position using several observers. In (Ferrein et al., 2006) the authors
conclude that the Kalman reset filter shows the best performance.
The information of the ball state (position and velocity) is, perhaps, the most important, as
it is the main object of the game and is the base over which most decisions are taken. Thus,
its integration has to be as reliable as possible. To accomplish this, a Kalman filter implemen-
tation was created to filter the estimated ball position given by the visual information, and a
linear regression was applied over filtered positions to estimate its velocity.

4.2.1 Ball position

It is assumed that the ball velocity is constant between cycles. Although that is not true,
due to the short time variations between cycles, around 40 milliseconds, and given the noisy
environment and measurement errors, it is a rather acceptable model for the ball movement.
Thus, no friction is considered to affect the ball, and the model doesn’t include any kind of
control over the ball. Therefore, given the Kalman filter formulation (described in (Bishop and
Welch, 2001)), the assumed state transition model is given by

Xk =

[

1 ∆T
0 1

]

Xk−1

where Xk is the state vector containing the position and velocity of the ball. Technically, there
are two vectors of this kind, one for each cartesian dimension (x,y). This velocity is only
internally estimated by the filter, as the robot sensors can only take measurements on the ball
position. After defining the state transition model based on the ball movement assumptions
described above and the observation model, the description of the measurements and process
noises are important issues to attend. The measurements noise can be statistically estimated
by taking measurements of a static ball position at known distances.
The standard deviation of those measurements can be used to calculate the variance and thus
define the measurements noise parameter.
A relation between the distance of the ball to the robot and the measurements standard devi-
ation can be modeled by a 2nd degree polynomial best fitting the data set in a least-squares
sense. Depending on the available data, a polynomial of another degree could be used, but
we should always keep in mind the computational weight of increasing complexity.
As for the process noise, this is not trivial to estimate, since there is no way to take indepen-
dent measurements of the process to estimate its standard deviation. The process noise is
represented by a matrix containing the covariances correspondent to the state variable vector.
Empirically, one could verify that forcing a near null process noise causes the filter to prac-
tically ignore the read measures, leading the filter to emphasize the model prediction. This
makes it too smooth and therefore inappropriate. On the other hand, if it is too high, the read
measures are taken into too much account and the filter returns the measures themselves.
To face this situation, one have to find a compromise between stability and reaction. Given
the nature of the two components of the filter state, position and speed, one may consider that
their errors do not correlate.
Because we assume a uniform movement model that we know is not the true nature of the
system, we know that the speed calculation of the model is not very accurate. A process

www.intechopen.com



�	�	�(	

��/.

noise covariance matrix was empirically estimated, based on several tests, so that a good
smoothness/reactivity relationship was kept.
Using the filter a-priori estimation, a system to detect great differences between the expected
and read positions was implemented, allowing to detect hard deviations on the ball path.

4.2.2 Ball velocity

The calculation of the ball velocity is a feature becoming more and more important over the
time. It allows that better decisions can be implemented based on the ball speed value and
direction. Assuming a ball movement model with constant ball velocity between cycles and
no friction considered, one could theoretically calculate the ball velocity by simple instanta-

neous velocity of the ball with the first order derivative of each component ∆D
∆T , being ∆D the

displacement on consecutive measures and ∆T the time interval between consecutive mea-
sures. However, given the noisy environment it is also predictable that this approach would
be greatly affected by that noise and thus its results would not be satisfactory (as it is easily
visible in Fig. 11.a).
To keep a calculation of the object velocity consistent with its displacement, an implementa-
tion of a linear regression algorithm was chosen. This approach based on linear regression
(Motulsky and Christopoulos, 2003) is similar to the velocity estimation described in (Lauer
et al., 2005). By keeping a buffer of the last m measures of the object position and sampling
instant (in this case buffers of 9 samples were used), one can calculate a regression line to fit
the positions of the object. Since the object position is composed by two coordinates (x,y), we
actually have two linear regression calculations, one for each dimension, although it is made
in a transparent way, so the description is presented generally, as if only one dimension was
considered.
When applied over the positions estimated by the Kalman filter, the linear regression velocity

estimations are much more accurate than the instant velocities calculated by ∆D
∆T , as visible in

Fig. 11.b).

a) b)

Fig. 11. Velocity representation using: In a): consecutive measures displacement; In b): linear
regression over Kalman filtered positions.

In order to try to make the regression converge more quickly on deviations of the ball path,
a reset feature was implemented, which allows deletion of the older values, keeping only the
n most recent ones, allowing a control of the used buffer size. This reset results from the
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interaction with the Kalman filter described earlier, which triggers the velocity reset when it
detects a hard deviation on the ball path.
Although in this case the Kalman filter internal functioning estimates a velocity, the obtained
values were tested to confirm if the linear regression of the ball positions was still needed.
Tests showed that the velocity estimated by the Kalman filter has a slower response than the
linear regression estimation when deviations occur. Given this, the linear regression was used
to estimate the velocity because quickness of convergence was preferred over the slightly
smoother approximation of the Kalman filter in the steady state. That is because in the game
environment, the ball is very dynamic, it constantly changes its direction and thus a conver-
gence in less than half the cycles is much preferred.

4.2.3 Team ball position sharing

Due to the highly important role that the ball has in a soccer game, when a robot cannot detect
it by its own visual sensors (omni or frontal camera), it may still know the position of the ball,
through sharing of that knowledge by the other team mates.
The ball data structure include a field with the number of cycles it was not visible by the robot,
meaning that the ball position given by the vision sensors can be the “last seen” position.
When the ball is not visible for more than a given number of cycles, the robot assumes that
it cannot detect the ball on its own. When that is the case, it uses the information of the ball
communicated by the other running team mates to know where the ball is. This can be done
through a function to get the statistics on a set of positions, mean and standard deviation, to
get the mean value of the position of the ball seen by the team mates.
Another approach is to simply use the ball position of the team mate that have more confi-
dence in the detection. Whatever the case, the robot assumes that ball position as its own.
When detecting the ball on its own, there is also the need to validate that information. Cur-
rently the seen ball is only considered if it is within a given margin inside the field of play as
there would be no point in trying to play with a ball outside the field. Fig. 12 illustrates the
general ball integration activity diagram.

Fig. 12. Ball integration activity diagram.
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4.3 Obstacle selection and identification

With the objective of refining the information of the obstacles, and have more meaningful and
human readable information, the obstacles are selected and a matching is attempted, in order
to try to identify them as team mates or opponents.
Due to the weak precision at long distances, a first selection of the obstacles is made by se-
lecting only the obstacles closer than a given distance as available for identification (currently
5 meters). Also, obstacles that are smaller than 10 centimeters wide or outside the field of
play margin are ignored. This is done because the MSL robots are rather big, and in game
situations small obstacles are not present inside the field. Also, it would be pointless to pay
attention to obstacles that are outside the field of play, since the surrounding environment is
completely ignorable for the game development.
To be able to distinguish obstacles, to identify which of them are team mates and which are
opponent robots, a fusion between the own visual information of the obstacles and the shared
team mates positions is made. By creating a circle around the team mate positions, a matching
of the estimated center of visible obstacle is made (Fig. 13), and the obstacle is identified as the
corresponding team mate in case of a positive matching (Figs. 14c)). This matching consists
on the existence of interception points between the team mate circle and the obstacle circle or
if the obstacle center is inside the team mate circle (the obstacle circle can be smaller, and thus
no interception points would exist).

Fig. 13. When a CAMBADA robot is on, the estimated centers of the detected obstacles are
compared with the known position of the team mates and tested; the left obstacle is within
the CAMBADA acceptance radius, the right one is not.

Since the obstacles detected can be large blobs, the above described identification algorithm
cannot be applied directly to the visually detected obstacles. If the detected obstacle fulfills
the minimum size requisites already described, it is selected as candidate for being a robot
obstacle. Its size is evaluated and classified as robot if it does not exceed the maximum size
allowed for MSL robots (MSL Technical Committee 1997-2009, 2008) (Fig. 14a) and 14b)).
If the obstacle exceeds the maximum size of an MSL robot, a division of the obstacle is made,
by analyzing its total size and verifying how many robots are in that obstacle. This is a com-
mon situation, robots clashing together and thus creating a compact black blob, originating a
big obstacle. After completing the division, each obstacle is processed as described before.
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a) b) c)

Fig. 14. Illustration of single obstacles identification. In a): image acquired from the robot
camera (obstacles for identification are marked); In b): the same image after processing; In c):
image of the control station. Each robot represents itself and robot 6 (the lighter gray) draws
all the 5 obstacles evaluated (squares with the same gray scale as itself). All team mates were
correctly identified (marked by its corresponding number over the obstacle square) and the
opponent is also represented with no number.

5. Real-time database

Similarly to other teams, our team software architecture emphasizes cooperative sensing as a
key capability to support the behavioral and decision-making processes in the robotic play-
ers. A common technique to achieve cooperative sensing is by means of a blackboard, which
is a database where each agent publishes the information that is generated internally and
that maybe requested by others. However, typical implementations of this technique seldom
account for the temporal validity (coherence) of the contained information with adequate ac-
curacy, since the timing information delivered by general-purpose operating systems such as
Linux is rather coarse. This is a problem when robots move fast (e.g. above 1m/s) because
their state information degrades faster, too, and temporal validity of state data becomes of the
same order of magnitude, or lower, than the operating system timing accuracy.
Another problem of typical implementations is that they are based on the client-server model
and thus, when a robot needs a datum, it has to communicate with the server holding the
blackboard, introducing an undesirable delay. To avoid this delay, we use two features: firstly,
the dissemination of the local state data is carried out using broadcasts, according to the
producer-consumer cooperation model, secondly, we replicate the blackboard according to
the distributed shared memory model. In this model, each node has local access to all the
process state variables that it requires. Those variables that are remote have a local image that
is updated automatically by an autonomous communication system (Fig. 15).
We call this replicated blackboard the Real-time Data Base (RTDB), (Almeida et al., 2004)
which holds the state data of each agent together with local images of the relevant state data
of the other team members. A specialized communication system triggers the required trans-
actions at an adequate rate to guarantee the freshness of the data.
Generally, the information within the RTDB holds the absolute positions and postures of all
players, as well as the position of the ball, goal areas and corners in global coordinates. This
approach allows a robot to easily use the other robots sensing capabilities to complement its
own. For example, if a robot temporarily loses track of the ball, it might use the position of
the ball as detected by another robot.
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Fig. 15. Each agent broadcasts periodically its subset state data that might be required by other
agents.

5.1 RTDB implementation

The RTDB is implemented over a block of shared memory. It contains two main areas: a
private area for local information, only, i.e., which is not to be broadcast to other robots; and
a shared area with global information. The shared area is further divided into a number of
areas, one corresponding to each agent in the team. One of the areas is written by the agent
itself and broadcast to the others while the remaining areas are used to store the information
received from the other agents.
The allocation of shared memory is carried out by means of a specific function call,
DB_init(), called once by every Linux process that needs access to the RTDB. The actual
allocation is executed only by the first such call. Subsequent calls just return the shared mem-
ory block handler and increment a process count. Conversely, the memory space used by the
RTDB is freed using the function call DB_free() that decreases the process count and, when
zero, releases the shared memory block.
The RTDB is accessed concurrently from Linux processes that capture and process images
and implement complex behaviors, and from tasks that manage the communication both with
the lower-level control layer (through the CAN gateway) and with the other agents (through
the wireless interface). The Linux processes access the RTDB with local non-blocking func-
tion calls, DB_put() and DB_get() that allow writing and reading records, respectively.
DB_get() further requires the specification of the agent from which the item to be read be-
longs to, in order to identify the respective area in the database.

6. Communications

In the MSL, the agents communicate using an IEEE 802.11 network, sharing a single channel
with the opposing team and using managed communication (through the access point), i.e.,
using a base station, and it is constrained to using a single channel, shared by, at least, both
teams in each game. In order to improve the timeliness of the communications, our team uses
a further transmission control protocol that minimizes collisions of transmissions within the
team. Each robot regularly broadcasts its own data while the remaining ones receive such
data and update their local structures. Beyond the robotic agents, there is also a coaching and
monitoring station connected to the team that allows following the evolution of the robots
status on-line and issuing high level team coordination commands.
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As referred above, agents communicate using an IEEE 802.11 network, sharing a single chan-
nel with the opposing team and using managed communication (through the access point).
This raises several difficulties because the access to the channel cannot be controlled and the
available bandwidth is roughly divided by 2.
Therefore, the only alternative left for each team is to adapt to the current channel conditions
and reduce access collisions among team members. This is achieved using an adaptive TDMA
transmission control, with a predefined round period called team update period (Ttup) that
sets the responsiveness of the global communication. Within such round, there is one single
slot allocated to each team member so that all slots in the round are separated as much as

possible (Fig. 16). This allows calculating the target inter-slot period Txwin as
Ttup

N , where N is
the number of running agents.

Fig. 16. TDMA round indicating the slots allocated to each robot.

The transmissions generated by each running agent are scheduled within the communication
process, according to the production periods specified in the RTDB records. Currently a rate-
monotonic scheduler is used. When the respective TDMA slot comes, all currently scheduled
transmissions are piggybacked on one single 802.11 frame and sent to the channel. The re-
quired synchronization is based on the reception of the frames sent by the other agents during
Ttup. With the reception instants of those frames and the target inter-slot period Txwin it is
possible to generate the next transmission instant. If these delays affect all TDMA frames in
a round, then the whole round is delayed from then on, thus its adaptive nature. Figure 17
shows a TDMA round indicating the slots allocated to each agent and the adaptation of the
round duration.

Fig. 17. An adaptive TDMA round.

When a robot transmits at time tnow it sets its own transmission instant tnext = tnow + Ttup, i.e.
one round after. However, it continues monitoring the arrival of the frames from the other
robots. When the frame from robot k arrives, the delay δk of the effective reception instant
with respect to the expected instant is calculated. If this delay is within a validity window
[0, ∆], with ∆ being a global configuration parameter, the next transmission instant is delayed
according to the longest such delay among the frames received in one round (Fig. 17), i.e.,

tnext = tnow + Ttup + maxk(δk)

On the other hand, if the reception instant is outside that validity window, or the frame is not
received, then (δk) is set to 0 and does not contribute to update tnext.
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