Biopython Tutorial and Cookbook

Jeff Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck,
Michiel de Hoon, Peter Cock, Tiago Antao, Eric Talevich, Bartek Wilczyniski

Last Update — 16 December 2015 (Biopython 1.66+)

Contents

Introduction
1.1 What is Biopython? o e
1.2 What can I find in the Biopython package
1.3 Imstalling Biopython L
1.4 Frequently Asked Questions (FAQ)
Quick Start — What can you do with Biopython?
2.1 General overview of what Biopython provides
2.2 Working with sequences L
2.3 Awusage example e
2.4 Parsing sequence file formats L e e
2.4.1 Simple FASTA parsing exampleo o
2.4.2 Simple GenBank parsing example oL Lo L
2.4.3 I love parsing — please don’t stop talking about it!
2.5 Connecting with biological databases o o
2.6 What todomnext e

Sequence objects

3.1 Sequences and Alphabets
3.2 Sequences act like strings Lo e
3.3 Slicing a SeqUence oL e e e e e e e e
3.4 Turning Seq objects into strings
3.5 Concatenating or adding sequences e e
3.6 Changing case o it i e e e
3.7 Nucleotide sequences and (reverse) complements
3.8 Transcriptiono e e e e e e
3.9 Translation o L e e e e
3.10 Translation Tables e e e
3.11 Comparing Seq objects L e e
3.12 MutableSeq objects L
3.13 UnknownSeq objects e e
3.14 Working with strings directly L o
Sequence annotation objects
4.1 The SeqRecord object oL
4.2 Creating a SeqRecord e e
4.2.1 SeqRecord objects from scratch oL
4.2.2 SeqRecord objects from FASTA files
4.2.3 SeqRecord objects from GenBank fileso o000
4.3 Feature, location and position objects e

—_
—_ o0 o o o

[

15
15
16
17
17
18
18
18
19

20
20
21
22
23
23
25
25
26
27
29
30
31
33
34

4.3.1 SeqFeature objects e 39

4.3.2 Positions and locations e 40
4.3.3 Sequence described by a feature or location oL 43
4.4 CompariSOIl . . .« . v i e e e e e e e e e e e 44
4.5 References oL e e e 44
4.6 The format method L 45
4.7 Slicing a SeqRecord oL 45
4.8 Adding SeqRecord objects 47
4.9 Reverse-complementing SeqRecord objects oL oL oo 49
Sequence Input/Output 51
5.1 Parsing or Reading Sequences e 51
5.1.1 Reading Sequence Files L o 51
5.1.2 Tterating over the records in a sequence file 52
5.1.3 Getting a list of the records in a sequence file 53
5.1.4 Extracting data L Lo 54
5.2 Parsing sequences from compressed files o Lo 56
5.3 Parsing sequences from thenet L oL oo oL o 57
5.3.1 Parsing GenBank records from theneto oo, 57
5.3.2 Parsing SwissProt sequences from thenet L 0oL 58
5.4 Sequence files as Dictionaries L L e 58
5.4.1 Sequence files as Dictionaries — In memory L oL 0oL 59
5.4.2 Sequence files as Dictionaries — Indexed files 61
5.4.3 Sequence files as Dictionaries — Database indexed files 63
5.4.4 Indexing compressed files Lo 63
5.4.5 Discussiono e e e 64
5.5 Writing Sequence Files oL e 65
5.5.1 Round trips oL e 66
5.5.2 Converting between sequence file formats o 0oL 67
5.5.3 Converting a file of sequences to their reverse complements 67
5.5.4 Getting your SeqRecord objects as formatted strings 68
Multiple Sequence Alignment objects 70
6.1 Parsing or Reading Sequence Alignments Lo o 70
6.1.1 Single Alignments e e e e 71
6.1.2 Multiple Alignments 73
6.1.3 Ambiguous Alignments 75
6.2 Writing Alignments e e e 77
6.2.1 Converting between sequence alignment file formats 78
6.2.2 Getting your alignment objects as formatted strings 80
6.3 Manipulating Alignments 81
6.3.1 Slicing alignments e 81
6.3.2 Alignments as arTaysttt e e e e e e e e e e e 84
6.4 Alignment Tools e e 84
6.4.1 ClustalW 0 e 85
6.4.2 MUSCLE e 86
6.4.3 MUSCLE using stdout e 87
6.4.4 MUSCLE using stdin and stdout oo 88
6.4.5 EMBOSS needle and water Lo 90

7 BLAST

7.1 Running BLAST over the Internet oo
7.2 Running BLAST locally
7.2.1 Introduction oL e
7.2.2 Standalone NCBI BLAST+ o e
7.2.3 Other versions of BLAST

7.3 Parsing BLAST output e

7.4 The BLAST record class e

7.5 Deprecated BLAST parsers i i vt ii e
7.5.1 Parsing plain-text BLAST output L
7.5.2 Parsing a plain-text BLAST file full of BLAST runs
7.5.3 Finding a bad record somewhere in a huge plain-text BLAST file

7.6 Dealing with PSI-BLAST e

7.7 Dealing with RPS-BLAST

8 BLAST and other sequence search tools (experimental code)

8.1 The SearchlO object model e
8.1.1 QueryResult e
8.1.2 Hit . . . o o o e
8.1.3 HSP . . o e
8.1.4 HSPFragment e e

8.2 A note about standards and conventionso

8.3 Reading search output files

8.4 Dealing with large search output files with indexing

8.5 Writing and converting search output files L o0 oL

9 Accessing NCBI’s Entrez databases

9.1 Entrez Guidelines L e e e

9.2 Elnfo: Obtaining information about the Entrez databases

9.3 ESearch: Searching the Entrez databases.

9.4 EPost: Uploading a list of identifiers

9.5 ESummary: Retrieving summaries from primary IDs oL,

9.6 EFetch: Downloading full records from Entrez

9.7 ELink: Searching for related items in NCBI Entrez

9.8 EGQuery: Global Query - counts for search terms

9.9 ESpell: Obtaining spelling suggestions o e

9.10 Parsing huge Entrez XML files e

9.11 Handling errors o o L e e e e

9.12 Specialized parserso e e e e
9.12.1 Parsing Medline records L L e
9.12.2 Parsing GEO records L e e e e
9.12.3 Parsing UniGene records o oL o e e e e e

9.13 USIN a PIOXY . .« . v v v v vt it e e e e e e e

9.14 Exampleso e e
9.14.1 PubMed and Medline L
9.14.2 Searching, downloading, and parsing Entrez Nucleotide records
9.14.3 Searching, downloading, and parsing GenBank records
9.14.4 Finding the lineage of an organism Lo Lo

9.15 Using the history and WebEnvo Lo
9.15.1 Searching for and downloading sequences using the history
9.15.2 Searching for and downloading abstracts using the history
9.15.3 Searching for citations

10 Swiss-Prot and ExPASy 148

11

10.1 Parsing Swiss-Prot files L 148
10.1.1 Parsing Swiss-Prot records L oL o 148
10.1.2 Parsing the Swiss-Prot keyword and category list 150

10.2 Parsing Prosite records oL 151

10.3 Parsing Prosite documentation recordso L Lo 152

10.4 Parsing Enzyme recordso L 152

10.5 Accessing the ExPASy server e 154
10.5.1 Retrieving a Swiss-Prot record L o oo 154
10.5.2 Searching Swiss-Prot e 155
10.5.3 Retrieving Prosite and Prosite documentation records 155

10.6 Scanning the Prosite database 156

Going 3D: The PDB module 158

11.1 Reading and writing crystal structure files L oL oL o 158
11.1.1 Readinga PDBfile. e 158
11.1.2 Reading an mmCIF file 159
11.1.3 Reading files in the PDB XML format 159
11.1.4 Writing PDB files o . 0L e 159

11.2 Structure representation oL oL e 160
11.2.1 Structure o o o e e e e 162
11.2.2 Model o e e 163
11.2.3 Chain o e e 163
11.2.4 Residue o e 163
11.2.5 Atom . . . o o e 164
11.2.6 Extracting a specific Atom/Residue/Chain/Model from a Structure. 165

11.3 Disorder o o e e e e e 166
11.3.1 General approach e 166
11.3.2 Disordered atoms e e e e 166
11.3.3 Disordered residueso e 166

11.4 Hetero residues L e e e e e e 167
11.4.1 Associated problems L 167
11.4.2 Water residues o L e e e 167
11.4.3 Other hetero residues e 167

11.5 Navigating through a Structure objecto L 167

11.6 Analyzing structures L e 170
11.6.1 Measuring distances oL e e e e e e e e e 170
11.6.2 Measuring angles 170
11.6.3 Measuring torsion angles. L oL 170
11.6.4 Determining atom-atom contactso L0 171
11.6.5 Superimposing two structures Lo 171
11.6.6 Mapping the residues of two related structures onto each other 171
11.6.7 Calculating the Half Sphere Exposure 171
11.6.8 Determining the secondary structure L L Lo 172
11.6.9 Calculating the residue depth o 172

11.7 Common problems in PDB files L 173
11.7.1 Examples oL e e e e 173
11.7.2 Automatic correctiono 174
11.7.3 Fatal errors e e e 174

11.8 Accessing the Protein Data Bank o o 175
11.8.1 Downloading structures from the Protein Data Bank 175
11.8.2 Downloading the entire PDB o oo 175

11.8.3 Keeping a local copy of the PDBuptodate 175

11.9 General questions L e e 176
11.9.1 How well tested is Bio.PDB? 176
11.9.2 How fast is it? o e 176
11.9.3 Is there support for molecular graphics? L. 176
11.9.4 Who’s using Bio.PDB? e e 176

12 Bio.PopGen: Population genetics 177

12.1 GenePop o o 177

12.2 Coalescent simulation L L 179
12.2.1 Creating scenarios« o v v i ittt e e 179
12.2.2 Running Fastsimcoal2 L 181

12.3 Other applications L e e e e 182
12.3.1 FDist: Detecting selection and molecular adaptation 182

12.4 Future Developments L e e 185

13 Phylogenetics with Bio.Phylo 186

13.1 Demo: What’s in a Tree? e 186
13.1.1 Coloring branches within a tree, 187

13.2 T/O functions o o vt 190

13.3 View and export trees e 191

13.4 Using Tree and Clade objects 195
13.4.1 Search and traversal methods L L oo 195
13.4.2 Information methods L 197
13.4.3 Modification methods L e 197
13.4.4 Features of PhyloXML trees o o e 198

13.5 Running external applications Lo 198

13.6 PAML integration e e 199

13.7 Future plans. oL e e 199

14 Sequence motif analysis using Bio.motifs 201

14.1 Motif objects e e e e 201
14.1.1 Creating a motif from instances L L o 201
14.1.2 Creating a sequence 10g0 e e 203

14.2 Reading motifs L L 204
14.2.1 JASPAR . . . o e 204
14.2.2 MEME o e 210
14.2.3 TRANSFAC e 213

14.3 Writing motifs L e e e 216

14.4 Position-Weight Matrices L L 217

14.5 Position-Specific Scoring Matrices L L L 218

14.6 Searching for instances Lo 219
14.6.1 Searching for exact matches L oL L 219
14.6.2 Searching for matches using the PSSM score 220
14.6.3 Selecting a score threshold L o 220

14.7 Each motif object has an associated Position-Specific Scoring Matrix 221

14.8 Comparing motifs L 224

14.9 De novo motif finding L 225
14.9.1 MEME . . . 0 0o 225
14.9.2 AlignAce e e 226

14.10Useful links o e 227

15 Cluster analysis
15.1 Distance functions

15.2 Calculating cluster properties L

15.3 Partitioning algorithms .
15.4 Hierarchical clustering . .
15.5 Self-Organizing Maps . . .

15.6 Principal Component Analysis L
15.7 Handling Cluster/TreeView-type files o i

15.8 Example calculation . . .
15.9 Auxiliary functions

16 Supervised learning methods
16.1 The Logistic Regression Model
16.1.1 Background and Purpose e

16.1.2 Training the logistic

regression model oL Lo

16.1.3 Using the logistic regression model for classification

16.1.4 Logistic Regression,
16.2 k-Nearest Neighbors . . .

Linear Discriminant Analysis, and Support Vector Machines . . .

16.2.1 Background and purpose L. Lo e
16.2.2 Initializing a k-nearest neighbors model 0L
16.2.3 Using a k-nearest neighbors model for classification

16.3 Naive Bayes
16.4 Maximum Entropy
16.5 Markov Models

17 Graphics including GenomeDiagram

17.1 GenomeDiagram
17.1.1 Introduction . . .

17.1.2 Diagrams, tracks, feature-sets and features
17.1.3 A top down example L e
17.1.4 A bottom up example L
17.1.5 Features without a SeqFeature

17.1.6 Feature captions .
17.1.7 Feature sigils . . .
17.1.8 Arrow sigils
17.1.9 A nice example . .
17.1.10 Multiple tracks . .

17.1.11 Cross-Links between tracks

17.1.12 Further options . .
17.1.13 Converting old code
17.2 Chromosomes

17.2.1 Simple Chromosomes
17.2.2 Annotated Chromosomes

18 KEGG
18.1 Parsing KEGG records . .
18.2 Querying the KEGG API

228
229
232
234
237
241
243
244
249
249

250
250
250
251
253
255
255
255
256
256
258
258
258

259
259
259
259
260
262
262
263
265
265
269
270
273
277
278
278
278
281

19 Cookbook — Cool things to do with it
19.1 Working with sequence files L
19.1.1 Filtering a sequence file L oL
19.1.2 Producing randomised genomes L0
19.1.3 Translating a FASTA file of CDS entries
19.1.4 Making the sequences in a FASTA file upper case
19.1.5 Sorting a sequence file L e
19.1.6 Simple quality filtering for FASTQ files
19.1.7 Trimming off primer sequences Lo
19.1.8 Trimming off adaptor sequences L L oL o
19.1.9 Converting FASTQ files o o
19.1.10 Converting FASTA and QUAL files into FASTQ files
19.1.11Indexing a FASTQ file o o o e
19.1.12Converting SFF files o .
19.1.13 Identifying open reading frames oL o
19.2 Sequence parsing plus simple plots oL
19.2.1 Histogram of sequence lengths
19.2.2 Plot of sequence GC% e
19.2.3 Nucleotide dot plots e
19.2.4 Plotting the quality scores of sequencing read data
19.3 Dealing with alignments L L L
19.3.1 Calculating summary information L Lo
19.3.2 Calculating a quick consensus sequence oo
19.3.3 Position Specific Score Matrices e
19.3.4 Information Content e
19.4 Substitution Matrices L e
19.4.1 Using common substitution matrices L oL
19.4.2 Creating your own substitution matrix from an alignment
19.5 BioSQL — storing sequences in a relational database

20 The Biopython testing framework
20.1 Running the tests e
20.1.1 Running the tests using Tox L
20.2 Writing tests L
20.2.1 Writing a print-and-compare test L Lo
20.2.2 Writing a unittest-based test Lo Lo
20.3 Writing doctests L e e e e

21 Advanced
21.1 Parser Design e e e e e
21.2 Substitution Matrices e e e e e e
21.2.1 SubsMat e
21.2.2 FreqTable e

22 Where to go from here — contributing to Biopython
22.1 Bug Reports + Feature Requests o L
22.2 Mailing lists and helping newcomers L L s
22.3 Contributing Documentation oL L
22.4 Contributing cookbook examples L L
22.5 Maintaining a distribution for a platform o oo 0oL
22.6 Contributing Unit Tests 0 e
22.7 Contributing Code e

286
286
286
287
288
289
289
290
291
292
293
295
295
296
297
299
299
300
301
303
304
305
305
306
307
309
309
309
310

311
311
312
312
313
314
317

319
319
319
319
322

23 Appendix: Useful stuff about Python
23.1 What the heck is a handle?
23.1.1 Creating a handle from astring L L

Chapter 1

Introduction

1.1 What is Biopython?

The Biopython Project is an international association of developers of freely available Python (http://www.
python.org) tools for computational molecular biology. Python is an object oriented, interpreted, flexible
language that is becoming increasingly popular for scientific computing. Python is easy to learn, has a very
clear syntax and can easily be extended with modules written in C, C++ or FORTRAN.

The Biopython web site (http://www.biopython.org) provides an online resource for modules, scripts,
and web links for developers of Python-based software for bioinformatics use and research. Basically, the
goal of Biopython is to make it as easy as possible to use Python for bioinformatics by creating high-quality,
reusable modules and classes. Biopython features include parsers for various Bioinformatics file formats
(BLAST, Clustalw, FASTA, Genbank,...), access to online services (NCBI, Expasy,...), interfaces to common
and not-so-common programs (Clustalw, DSSP, MSMS...), a standard sequence class, various clustering
modules, a KD tree data structure etc. and even documentation.

Basically, we just like to program in Python and want to make it as easy as possible to use Python for
bioinformatics by creating high-quality, reusable modules and scripts.

1.2 What can I find in the Biopython package

The main Biopython releases have lots of functionality, including;:

e The ability to parse bioinformatics files into Python utilizable data structures, including support for
the following formats:

— Blast output — both from standalone and WWW Blast
— Clustalw

— FASTA

— GenBank

— PubMed and Medline

— ExPASy files, like Enzyme and Prosite

— SCOP, including ‘dom’ and ‘lin’ files

— UniGene

— SwissProt

e Files in the supported formats can be iterated over record by record or indexed and accessed via a
Dictionary interface.

http://www.python.org
http://www.python.org
http://www.biopython.org

e Code to deal with popular on-line bioinformatics destinations such as:

— NCBI - Blast, Entrez and PubMed services

— ExPASy — Swiss-Prot and Prosite entries, as well as Prosite searches
e Interfaces to common bioinformatics programs such as:

— Standalone Blast from NCBI
— Clustalw alignment program
— EMBOSS command line tools

e A standard sequence class that deals with sequences, ids on sequences, and sequence features.

e Tools for performing common operations on sequences, such as translation, transcription and weight
calculations.

e Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector
Machines.

e Code for dealing with alignments, including a standard way to create and deal with substitution
matrices.

e Code making it easy to split up parallelizable tasks into separate processes.
e GUlI-based programs to do basic sequence manipulations, translations, BLASTing, etc.

e Extensive documentation and help with using the modules, including this file, on-line wiki documen-
tation, the web site, and the mailing list.

e Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava
projects.

We hope this gives you plenty of reasons to download and start using Biopython!

1.3 Installing Biopython

All of the installation information for Biopython was separated from this document to make it easier to keep
updated.

The short version is go to our downloads page (http://biopython.org/wiki/Download), download and
install the listed dependencies, then download and install Biopython. Biopython runs on many platforms
(Windows, Mac, and on the various flavors of Linux and Unix). For Windows we provide pre-compiled click-
and-run installers, while for Unix and other operating systems you must install from source as described in
the included README file. This is usually as simple as the standard commands:

python setup.py build
python setup.py test
sudo python setup.py install

(You can in fact skip the build and test, and go straight to the install — but its better to make sure everything
seems to be working.)

The longer version of our installation instructions covers installation of Python, Biopython dependencies
and Biopython itself. It is available in PDF (http://biopython.org/DIST/docs/install/Installation.
pdf) and HTML formats (http://biopython.org/DIST/docs/install/Installation.html).

10

http://biopython.org/wiki/Download
http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.html

1.4 Frequently Asked Questions (FAQ)

1. How do I cite Biopython in a scientific publication?
Please cite our application note [1, Cock et al., 2009] as the main Biopython reference. In addition,
please cite any publications from the following list if appropriate, in particular as a reference for specific
modules within Biopython (more information can be found on our website):

e For the official project announcement: [13, Chapman and Chang, 2000];
For Bio.PDB: [18, Hamelryck and Manderick, 2003];
For Bio.Cluster: [14, De Hoon et al., 2004];

For Bio.Graphics.GenomeDiagram: [2, Pritchard et al., 2006];
For Bio.Phylo and Bio.Phylo.PAML: [9, Talevich et al., 2012];

For the FASTQ file format as supported in Biopython, BioPerl, BioRuby, BioJava, and EMBOSS:
[7, Cock et al., 2010].

2. How should I capitalize “Biopython”? Is “BioPython” OK?
The correct capitalization is “Biopython”, not “BioPython” (even though that would have matched
BioPerl, BioJava and BioRuby).

3. What is going wrong with my print commands?
This tutorial now uses the Python 3 style print function. As of Biopython 1.62, we support both
Python 2 and Python 3. The most obvious language difference is the print statement in Python 2
became a print function in Python 3.

For example, this will only work under Python 2:

>>> print "Hello World!"
Hello World!

If you try that on Python 3 you'll get a SyntaxError. Under Python 3 you must write:

>>> print ("Hello World!")
Hello World!

Surprisingly that will also work on Python 2 — but only for simple examples printing one thing. In
general you need to add this magic line to the start of your Python scripts to use the print function
under Python 2.6 and 2.7:

from __future__ import print_function

If you forget to add this magic import, under Python 2 you’ll see extra brackets produced by trying
to use the print function when Python 2 is interpreting it as a print statement and a tuple.

4. How do I find out what version of Biopython I have installed?
Use this:

>>> import Bio
>>> print(Bio.__version__)

11

10.

11.

12.

13.

If the “import Bio” line fails, Biopython is not installed. Note that those are double underscores
before and after version. If the second line fails, your version is very out of date. If the version string
ends with a plus, you don’t have an official release, but a snapshot of the in development code.

Where is the latest version of this document?
If you download a Biopython source code archive, it will include the relevant version in both HTML
and PDF formats. The latest published version of this document (updated at each release) is online:

e http://biopython.org/DIST/docs/tutorial/Tutorial.html
e http://biopython.org/DIST/docs/tutorial/Tutorial.pdf

If you are using the very latest unreleased code from our repository you can find copies of the in-progress
tutorial here:

e http://biopython.org/DIST/docs/tutorial/Tutorial-dev.html
e http://biopython.org/DIST/docs/tutorial/Tutorial-dev.pdf

What is wrong with my sequence comparisons?

There was a major change in Biopython 1.65 making the Seq and MutableSeq classes (and subclasses)
use simple string-based comparison (ignoring the alphabet other than if giving a warning), which you
can do explicitly with str(seql) == str(seq2).

Older versions of Biopython would use instance-based comparison for Seq objects which you can do
explicitly with id(seql) == id(seq2).

If you still need to support old versions of Biopython, use these explicit forms to avoid problems. See
Section 3.11.

Why is the Seq object missing the upper & lower methods described in this Tutorial?

You need Biopython 1.53 or later. Alternatively, use str(my_seq) .upper() to get an upper case
string. If you need a Seq object, try Seq(str(my_seq) .upper ()) but be careful about blindly re-using
the same alphabet.

Why doesn’t the Seq object translation method support the cds option described in this Tutorial?
You need Biopython 1.51 or later.

What file formats do Bio.SeqI0 and Bio.AlignI0 read and write?
Check the built in docstrings (from Bio import SeqI0, then help(SeqI0)),or see http://biopython.
org/wiki/SeqI0 and http://biopython.org/wiki/AlignI0 on the wiki for the latest listing.

Why won’t the Bio.SeqI0 and Bio.AlignIO functions parse, read and write take filenames? They
insist on handles!

You need Biopython 1.54 or later, or just use handles explicitly (see Section 23.1). It is especially
important to remember to close output handles explicitly after writing your data.

Why won’t the Bio.SeqIO.write() and Bio.AlignIO.write() functions accept a single record or
alignment? They insist on a list or iterator!
You need Biopython 1.54 or later, or just wrap the item with [...] to create a list of one element.

Why doesn’t str(...) give me the full sequence of a Seq object?
You need Biopython 1.45 or later.

Why doesn’t Bio.Blast work with the latest plain text NCBI blast output?

The NCBI keep tweaking the plain text output from the BLAST tools, and keeping our parser up
to date is/was an ongoing struggle. If you aren’t using the latest version of Biopython, you could
try upgrading. However, we (and the NCBI) recommend you use the XML output instead, which is
designed to be read by a computer program.

12

http://biopython.org/DIST/docs/tutorial/Tutorial.html
http://biopython.org/DIST/docs/tutorial/Tutorial.pdf
http://biopython.org/DIST/docs/tutorial/Tutorial-dev.html
http://biopython.org/DIST/docs/tutorial/Tutorial-dev.pdf
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Why doesn’t Bio.Entrez.parse() work? The module imports fine but there is no parse function!
You need Biopython 1.52 or later.

Why has my script using Bio.Entrez.efetch() stopped working?

This could be due to NCBI changes in February 2012 introducing EFetch 2.0. First, they changed
the default return modes - you probably want to add retmode="text" to your call. Second, they are
now stricter about how to provide a list of IDs — Biopython 1.59 onwards turns a list into a comma
separated string automatically.

Why doesn’t Bio.Blast.NCBIWWW.gblast() give the same results as the NCBI BLAST website?

You need to specify the same options — the NCBI often adjust the default settings on the website, and
they do not match the QBLAST defaults anymore. Check things like the gap penalties and expectation
threshold.

Why doesn’t Bio.Blast.NCBIXML.read() work? The module imports but there is no read function!
You need Biopython 1.50 or later. Or, use next(Bio.Blast.NCBIXML.parse(...)) instead.

Why doesn’t my SeqRecord object have a letter_annotations attribute?
Per-letter-annotation support was added in Biopython 1.50.

Why can’t I slice my SeqRecord to get a sub-record?
You need Biopython 1.50 or later.

Why can’t I add SeqRecord objects together?
You need Biopython 1.53 or later.

Why doesn’t Bio.SeqI0.convert() or Bio.AlignIO.convert() work? The modules import fine but
there is mo convert function!

You need Biopython 1.52 or later. Alternatively, combine the parse and write functions as described
in this tutorial (see Sections 5.5.2 and 6.2.1).

Why doesn’t Bio.Seql0.index () work? The module imports fine but there is no index function!
You need Biopython 1.52 or later.

Why doesn’t Bio.Seql0.index_db() work? The module imports fine but there is no indez_db function!
You need Biopython 1.57 or later (and a Python with SQLite3 support).

Where is the MultipleSeqAlignment object? The Bio.Align module imports fine but this class isn’t
there!

You need Biopython 1.54 or later. Alternatively, the older Bio.Align.Generic.Alignment class sup-
ports some of its functionality, but using this is now discouraged.

Why can’t I run command line tools directly from the application wrappers?
You need Biopython 1.55 or later. Alternatively, use the Python subprocess module directly.

I looked in a directory for code, but I couldn’t find the code that does something. Where’s it hidden?
One thing to know is that we put code in __init__.py files. If you are not used to looking for code
in this file this can be confusing. The reason we do this is to make the imports easier for users. For
instance, instead of having to do a “repetitive” import like from Bio.GenBank import GenBank, you
can just use from Bio import GenBank.

Why does the code from CVS seem out of date?

In late September 2009, just after the release of Biopython 1.52; we switched from using CVS to git,
a distributed version control system. The old CVS server will remain available as a static and read
only backup, but if you want to grab the latest code, you’ll need to use git instead. See our website
for more details.

13

28. Why doesn’t Bio.Fasta work?
We deprecated the Bio.Fasta module in Biopython 1.51 (August 2009) and removed it in Biopython
1.55 (August 2010). There is a brief example showing how to convert old code to use Bio.SeqI0
instead in the DEPRECATED file.

For more general questions, the Python FAQ pages http://www.python.org/doc/faq/ may be useful.

14

http://biopython.org/SRC/biopython/DEPRECATED
http://www.python.org/doc/faq/

Chapter 2

Quick Start — What can you do with
Biopython?

This section is designed to get you started quickly with Biopython, and to give a general overview of what is
available and how to use it. All of the examples in this section assume that you have some general working
knowledge of Python, and that you have successfully installed Biopython on your system. If you think you
need to brush up on your Python, the main Python web site provides quite a bit of free documentation to
get started with (http://www.python.org/doc/).

Since much biological work on the computer involves connecting with databases on the internet, some of
the examples will also require a working internet connection in order to run.

Now that that is all out of the way, let’s get into what we can do with Biopython.

2.1 General overview of what Biopython provides

As mentioned in the introduction, Biopython is a set of libraries to provide the ability to deal with “things”
of interest to biologists working on the computer. In general this means that you will need to have at
least some programming experience (in Python, of course!) or at least an interest in learning to program.
Biopython’s job is to make your job easier as a programmer by supplying reusable libraries so that you
can focus on answering your specific question of interest, instead of focusing on the internals of parsing a
particular file format (of course, if you want to help by writing a parser that doesn’t exist and contributing
it to Biopython, please go ahead!). So Biopython’s job is to make you happy!

One thing to note about Biopython is that it often provides multiple ways of “doing the same thing.”
Things have improved in recent releases, but this can still be frustrating as in Python there should ideally
be one right way to do something. However, this can also be a real benefit because it gives you lots of
flexibility and control over the libraries. The tutorial helps to show you the common or easy ways to do
things so that you can just make things work. To learn more about the alternative possibilities, look in the
Cookbook (Chapter 19, this has some cools tricks and tips), the Advanced section (Chapter 21), the built
in “docstrings” (via the Python help command, or the API documentation) or ultimately the code itself.

2.2 Working with sequences

Disputably (of course!), the central object in bioinformatics is the sequence. Thus, we’ll start with a quick
introduction to the Biopython mechanisms for dealing with sequences, the Seq object, which we’ll discuss in
more detail in Chapter 3.

Most of the time when we think about sequences we have in my mind a string of letters like ‘AGTACACTGGT’.
You can create such Seq object with this sequence as follows - the “>>>” represents the Python prompt

15

http://www.python.org/doc/
http://biopython.org/DIST/docs/api/

followed by what you would type in:

>>> from Bio.Seq import Seq
>>> my_seq = Seq("AGTACACTGGT")
>>> my_seq

Seq(’AGTACACTGGT’, Alphabet())
>>> print(my_seq)

AGTACACTGGT

>>> my_seq.alphabet

Alphabet ()

What we have here is a sequence object with a generic alphabet - reflecting the fact we have not spec-
ified if this is a DNA or protein sequence (okay, a protein with a lot of Alanines, Glycines, Cysteines and
Threonines!). We’ll talk more about alphabets in Chapter 3.

In addition to having an alphabet, the Seq object differs from the Python string in the methods it
supports. You can’t do this with a plain string:

>>> my_seq

Seq(’AGTACACTGGT’, Alphabet())
>>> my_seq.complement ()
Seq(’TCATGTGACCA’, Alphabet())
>>> my_seq.reverse_complement ()
Seq(?ACCAGTGTACT’, Alphabet())

The next most important class is the SeqRecord or Sequence Record. This holds a sequence (as a Seq
object) with additional annotation including an identifier, name and description. The Bio.SeqI0 module
for reading and writing sequence file formats works with SeqRecord objects, which will be introduced below
and covered in more detail by Chapter 5.

This covers the basic features and uses of the Biopython sequence class. Now that you've got some idea
of what it is like to interact with the Biopython libraries, it’s time to delve into the fun, fun world of dealing
with biological file formats!

2.3 A usage example

Before we jump right into parsers and everything else to do with Biopython, let’s set up an example to
motivate everything we do and make life more interesting. After all, if there wasn’t any biology in this
tutorial, why would you want you read it?

Since I love plants, I think we’re just going to have to have a plant based example (sorry to all the fans
of other organisms out there!). Having just completed a recent trip to our local greenhouse, we’ve suddenly
developed an incredible obsession with Lady Slipper Orchids (if you wonder why, have a look at some Lady
Slipper Orchids photos on Flickr, or try a Google Image Search).

Of course, orchids are not only beautiful to look at, they are also extremely interesting for people studying
evolution and systematics. So let’s suppose we’re thinking about writing a funding proposal to do a molecular
study of Lady Slipper evolution, and would like to see what kind of research has already been done and how
we can add to that.

After alittle bit of reading up we discover that the Lady Slipper Orchids are in the Orchidaceae family and
the Cypripedioideae sub-family and are made up of 5 genera: Cypripedium, Paphiopedilum, Phragmipedium,
Selenipedium and Mexipedium.

That gives us enough to get started delving for more information. So, let’s look at how the Biopython
tools can help us. We'll start with sequence parsing in Section 2.4, but the orchids will be back later on as
well - for example we’ll search PubMed for papers about orchids and extract sequence data from GenBank in
Chapter 9, extract data from Swiss-Prot from certain orchid proteins in Chapter 10, and work with Clustal W
multiple sequence alignments of orchid proteins in Section 6.4.1.

16

http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://images.google.com/images?q=lady%20slipper%20orchid

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

» HTML (Free /Available to everyone)

» PDF /TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

» Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

N\~
Ej Free-Ebooks.net

http://www.free-ebooks.net/

