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1. Introduction     

The problem of parameter identification characterizes a typical inverse problem in 
engineering. It arises from the difficulty in building theoretical models that are able to 
represent satisfactorily physical phenomena under real operating conditions. Considering 
the possibility of using more complex models along with the information provided by 
experimental data, the parameters obtained through an inverse problem approach may then 
be used to simulate the behavior of the system for different operation conditions. 
Traditionally, this kind of problem has been treated by using either classical or deterministic 
optimization techniques (Baltes et al., 1994; Cazzador and Lubenova, 1995; Su and Silva 
Neto, 2001; Silva Neto and Özişik 1993ab, 1994; Yan et al., 2008; Yang et al., 2009). In the 
recent years however, the use of non-deterministic techniques or the coupling of these 
techniques with classical approaches thus forming a hybrid methodology became very 
popular due to the simplicity and robustness of evolutionary techniques (Wang et al., 2001; 
Silva Neto and Soeiro, 2002, 2003; Silva Neto and Silva Neto, 2003; Lobato and Steffen Jr., 
2007; Lobato et al., 2008, 2009, 2010). 
The solution of inverse problems has several relevant applications in engineering and 
medicine. A lot of attention has been devoted to the estimation of boundary and initial 
conditions in heat conduction problems (Alifanov, 1974, Beck et al., 1985, Denisov and 
Solov’yera, 1993, Muniz et al., 1999) as well as thermal properties (Artyukhin, 1982, 
Carvalho and Silva Neto, 1999, Soeiro et al., 2000; Su and Silva Neto, 2001; Lobato et al., 
2009) and heat source intensities (Borukhov and Kolesnikov, 1988, Silva Neto and Özisik, 
1993ab, 1994, Orlande and Özisik, 1993, Moura Neto and Silva Neto, 2000, Wang et al., 2000) 
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in such diffusive processes. On the other hand, despite its relevance in chemical 
engineering, there is not a sufficient number of published results on inverse mass transfer or 
heat convection problems. Denisov (2000) has considered the estimation of an isotherm of 
absorption and Lugon et al. (2009) have investigated the determination of adsorption 
isotherms with applications in the food and pharmaceutical industry, and Su et al., (2000) 
have considered the estimation of the spatial dependence of an externally imposed heat flux 
from temperature measurements taken in a thermally developing turbulent flow inside a 
circular pipe. Recently, Lobato et al. (2008) have considered the estimation of the parameters 
of Page’s equation and heat loss coefficient by using experimental data from a realistic 
rotary dryer.    
Another class of inverse problems in which the concurrence of specialists from different 
areas has yielded a large number of new methods and techniques for non-destructive testing 
in industry, and diagnosis and therapy in medicine, is the one involving radiative transfer in 
participating media. Most of the work in this area is related to radiative properties or source 
estimation (Ho and Özisik, 1989, McCormick, 1986, 1992, Silva Neto and Özisik, 1995, 
Kauati et al., 1999). Two strong motivations for the solution of such inverse problems in 
recent years have been the biomedical and oceanographic applications (McCormick, 1993, 
Sundman et al., 1998, Kauati et al., 1999, Carita Montero et al., 1999, 2000).  
The increasing interest on inverse problems (IP) is due to the large number of practical 
applications in scientific and technological areas such as tomography (Kim and Charette, 
2007), environmental sciences (Hanan, 2001) and parameter estimation (Souza et al., 2007; 
Lobato et al., 2008, 2009, 2010), to mention only a few. 
In the radiative problems context, the inverse problem consists in the determination of 
radiative parameters through the use of experimental data for minimizing the residual 
between experimental and calculated values. The solution of inverse radiative transfer 
problems has been obtained by using different methodologies, namely deterministic, 
stochastic and hybrid methods. As examples of techniques developed for dealing with 
inverse radiative transfer problems, the following methods can be cited: Levenberg-
Marquardt method (Silva Neto and Moura Neto, 2005); Simulated Annealing (Silva Neto 
and Soeiro, 2002; Souza et al., 2007); Genetic Algorithms (Silva Neto and Soeiro, 2002; Souza 
et al., 2007); Artificial Neural Networks (Soeiro et al., 2004); Simulated Annealing and 
Levenberg-Marquard (Silva Neto and Soeiro, 2006); Ant Colony Optimization (Souto et al., 
2005); Particle Swarm Optimization (Becceneri et al, 2006); Generalized Extremal 
Optimization (Souza et al., 2007); Interior Points Method (Silva Neto and Silva Neto, 2003); 
Particle Collision Algorithm (Knupp et al., 2007); Artificial Neural Networks and Monte 
Carlo Method (Chalhoub et al., 2007b); Epidemic Genetic Algorithm and the Generalized 
Extremal Optimization Algorithm (Cuco et al., 2009); Generalized Extremal Optimization 
and Simulated Annealing Algorithm (Galski et al., 2009); Hybrid Approach with Artificial 
Neural Networks, Levenberg-Marquardt and Simulated Annealing Methods (Lugon, Silva 
Neto and Santana, 2009; Lugon and Silva Neto, 2010), Differential Evolution (Lobato et al., 
2008; Lobato et al., 2009), Differential Evolution and Simulated Annealing Methods (Lobato 
et al., 2010). 
In this chapter we first describe three problems of heat and mass transfer, followed by the 
formulation of the inverse problems, the description of the solution of the inverse problems 
with Simulated Annealing and its hybridization with other methods, and some test case 
results. 

 

2. Formulation of the Direct Heat and Mass Transfer Problems 

2.1 Radiative Transfer 
Consider the problem of radiative transfer in an absorbing, emitting, isotropically scattering, 
plane-parallel, and gray medium of optical thickness 0 , between two diffusely reflecting 
boundary surfaces as illustrated in Fig.1. The mathematical formulation of the direct 
radiation problem is given by (Özişik, 1973) 
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where ( , ) I  is the dimensionless radiation intensity,   is the optical variable,   is the 
direction cosine of the radiation beam with the positive   axis,   is the single scattering 
albedo, and 1  and 2  are the diffuse reflectivities. The illumination from the outside is 
supplied by external isotropic sources with intensities 1A  and 2A . 
No internal source was considered in Eq. (1). In radiative heat transfer applications it means 
that the emission of radiation by the medium due to its temperature is negligible in 
comparison to the strength of the external isotropic radiation sources incident at the 
boundaries 0   and/or 0  . 
In the direct problem defined by Eqs. (1-3) the radiative properties and the boundary 
conditions are known. Therefore, the values of the radiation intensity can be calculated for 
every point in the spatial and angular domains. In the inverse problem considered here the 
radiative properties of the medium are unknown, but we still need to solve problem (1-3) 
using estimates for the unknowns.  
 

 
Fig. 1. The geometry and coordinates. 
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2.2 Drying (Simultaneous Heat and Mass Transfer) 
In Fig. 2, adapted from Mwithiga and Olwal (2005), it is represented the drying experiment 
setup considered in this section. In it was introduced the possibility of using a scale to 
weight the samples, sensors to measure temperature in the sample, and also inside the 
drying chamber.  
 
 

 
Fig. 2. Drying experiment setup (Adapted from Mwithiga and Olwal, 2005). 
 
In accordance with the schematic representation shown in Fig. 3, consider the problem of 
simultaneous heat and mass transfer in a one-dimensional porous media in which heat is 
supplied to the left surface of the porous media, at the same time that dry air flows over the 
right boundary surface. 
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Fig. 3. Drying process schematic representation. 
 
The mathematical formulation used in this work for the direct heat and mass transfer 
problem considered a constant properties model, and in dimensionless form it is given by 
(Luikov and Mikhailov, 1965; Mikhailov and Özisik, 1994), 
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When the geometry, the initial and boundary conditions, and the medium properties are 
known, the system of equations (4-11) can be solved, yielding the temperature and moisture 
distribution in the media. The finite difference method was used to solve the system (4-11). 
Many previous works have studied the drying inverse problem using measurements of 
temperature and moisture-transfer potential at specific locations of the medium. But to 
measure the moisture-transfer potential in a certain position is not an easy task, so in this 
work it is used the average quantity 
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Therefore, in order to obtain the average moisture measurements, ( )u t , one have just to 
weight the sample at each time (Lugon and Silva Neto, 2010).  

 
2.3 Gas-liquid Adsorption 
The mechanism of proteins adsorption at gas-liquid interfaces has been the subject of 
intensive theoretical and experimental research, because of the potential use of bubble and 
foam fractionation columns as an economically viable means for surface active compounds 
recovery from diluted solutions, (Özturk et al., 1987; Deckwer and Schumpe, 1993; Graham 
and Phillips, 1979; Santana and Carbonell, 1993ab; Santana, 1994; Krishna and van Baten, 
2003; Haut and Cartage, 2005; Mouza et al., 2005; Lugon, 2005). 
The direct problem related to the gas-liquid interface adsorption of bio-molecules in bubble 
columns consists essentially in the calculation of the depletion, that is, the reduction of 
solute concentration with time, when the physico-chemical properties and process 
parameters are known. 
The solute depletion is modeled by 
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where bC  is the liquid solute concentration (bulk), bd  is the bubble diameter, H  is the 
bubble column height, gv  is the superficial velocity (gas volumetric flow rate divided by the 
area of the transversal section of the column A), and   is the surface excess concentration of 
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The symbol  g  represents the gas volumetric fraction, which can be calculated from the 
dimensionless correlation of Kumar (Özturk et al., 1987),  
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where 1  and 2  are the excess superficial concentration in the first and second adsorption 
layers respectively (see Fig. 4). 
 

 
Fig. 4. Schematic representation of the gas-liquid adsorption process in a bubble and foam 
column. 
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Therefore, in order to obtain the average moisture measurements, ( )u t , one have just to 
weight the sample at each time (Lugon and Silva Neto, 2010).  

 
2.3 Gas-liquid Adsorption 
The mechanism of proteins adsorption at gas-liquid interfaces has been the subject of 
intensive theoretical and experimental research, because of the potential use of bubble and 
foam fractionation columns as an economically viable means for surface active compounds 
recovery from diluted solutions, (Özturk et al., 1987; Deckwer and Schumpe, 1993; Graham 
and Phillips, 1979; Santana and Carbonell, 1993ab; Santana, 1994; Krishna and van Baten, 
2003; Haut and Cartage, 2005; Mouza et al., 2005; Lugon, 2005). 
The direct problem related to the gas-liquid interface adsorption of bio-molecules in bubble 
columns consists essentially in the calculation of the depletion, that is, the reduction of 
solute concentration with time, when the physico-chemical properties and process 
parameters are known. 
The solute depletion is modeled by 
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where bC  is the liquid solute concentration (bulk), bd  is the bubble diameter, H  is the 
bubble column height, gv  is the superficial velocity (gas volumetric flow rate divided by the 
area of the transversal section of the column A), and   is the surface excess concentration of 
the adsorbed solute. 
The symbol  g  represents the gas volumetric fraction, which can be calculated from the 
dimensionless correlation of Kumar (Özturk et al., 1987),  
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 l  is the liquid density,   is the surface tension, g  is the gravity acceleration, and g  is the 
gas density. 
The quantities   and C  are related through adsorption isotherms such as:  
 
(i) Linear isotherm 
 B KC     (30) 
 
(ii) Langmuir isotherm 
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(iii) Two-layers isotherm 

 
    1 1 2

1 2
1 1

( )exp 1
1 expt

K T C K T âC
â K C




                   (32) 

where 1  and 2  are the excess superficial concentration in the first and second adsorption 
layers respectively (see Fig. 4). 
 

 
Fig. 4. Schematic representation of the gas-liquid adsorption process in a bubble and foam 
column. 
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Considering that the superficial velocity, bubble diameter and column cross section are 
constant along the column, 
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where z  represents the spatial coordinate along the column, sC  is the solute concentration 
next to the bubbles and ( )lk a  is the volumetric mass transfer coefficient. 
There are several correlations available for the determination of ( )lk a  but following the 
recommendation of Deckwer and Schumpe (1993) we have adopted the correlation of 
Öztürk et al. (1987) in the solution of the direct problem: 
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iD  is the tensoactive diffusion coefficient and l  is the liquid dynamic viscosity. 
Combining Eqs. (27) and (33) and using an initial condition, such as 0b bC C  when 0t , and 
a boundary condition, like 0   at 0z , the solute concentration can be calculated as a 
function of time,  bC t . Santana and Carbonell (1993ab) developed an analytical solution for 
the direct problem in the case of a linear adsorption isotherm and the results presented a 
good agreement with experimental data for BSA (Bovine Serum Albumin). 
In order to solve Eq. (27) a second order Runge Kutta method was used, known as the mid 
point method. Given the physico-chemical and process parameters, as well as the boundary 
and initial conditions, the solute concentration can be calculated for any time t  (Lugon et 
al., 2009). 

 
3. Formulation of Inverse Heat and Mass Transfer Problems 

The inverse problem is implicitly formulated as a finite dimensional optimization problem 
(Silva Neto and Soeiro, 2003; Silva Neto and Moura Neto, 2005), where one seeks to 
minimize the cost functional of squared residues between the calculated and experimental 
values for the observable variable, 
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where measG  is the vector of measurements, calcG  is the vector of calculated values, P  is 
the vector of unknowns, W  is the diagonal matrix whose elements are the inverse of the 
measurement variances, and the vector of residues F  is given by 
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Depending on the direct problem, different measurements are to be taken, that is: 
 
a) Radiative problem 
Using calculated values given by Eq. (1) and experimental radiation intensities at the 
boundaries 0   and 0  , as well as at points that belong to the set   (points inside the 
domain   - internal detectors) we try to estimated the vector of unknowns P  considered. 
Two different vectors of unknowns 


P  are possibly considered for the minimization of the 

difference between the experimental and calculated values: (i) 0 , , 1  and 2 ; (ii) 0 ,  , 

1A  and 2A . 
 
b) Drying problem 
Using temperature measurements, T , taken by sensors located inside the medium, and the 
average of the moisture-transfer potential, u , during the experiment, we try to estimate the 
vector of unknowns P , for which a combination of variables was used: Lu  (Luikov 
number),   (thermogradient coefficient), r c  (relation between latent heat of evaporation 
and specific heat of the medium), h k  (relation between heat transfer coefficient and 
thermal conductivity), and m mh k  (relation between mass transfer coefficient and mass 
conductivity). 
 
c) Gas-liquid adsorption problem  
Different vectors of unknowns P  are possibly considered, which are associated with 
different adsorption isotherms: (i) K  and B  (Linear isotherm); (ii) 1( )K T  and â  (Langmuir 
isotherm); (iii) 1( )K T , 2 ( )K T ,   and â  (two-layers isotherm). Here the BSA (Bovine Serum 
Albumin) adsorption was modeled using a two-layer isotherm. 

 
4. Solution of the Inverse Problems with Simulated Annealing and Hybrid 
Methods 

4.1 Design of Experiments  
The sensitivity analysis plays a major role in several aspects related to the formulation and 
solution of an inverse problem (Dowding et al., 1999; Beck, 1988). Such analysis may be 
performed with the study of the sensitivity coefficients. Here we use the modified, or scaled, 
sensitivity coefficients 
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Considering that the superficial velocity, bubble diameter and column cross section are 
constant along the column, 
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where z  represents the spatial coordinate along the column, sC  is the solute concentration 
next to the bubbles and ( )lk a  is the volumetric mass transfer coefficient. 
There are several correlations available for the determination of ( )lk a  but following the 
recommendation of Deckwer and Schumpe (1993) we have adopted the correlation of 
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iD  is the tensoactive diffusion coefficient and l  is the liquid dynamic viscosity. 
Combining Eqs. (27) and (33) and using an initial condition, such as 0b bC C  when 0t , and 
a boundary condition, like 0   at 0z , the solute concentration can be calculated as a 
function of time,  bC t . Santana and Carbonell (1993ab) developed an analytical solution for 
the direct problem in the case of a linear adsorption isotherm and the results presented a 
good agreement with experimental data for BSA (Bovine Serum Albumin). 
In order to solve Eq. (27) a second order Runge Kutta method was used, known as the mid 
point method. Given the physico-chemical and process parameters, as well as the boundary 
and initial conditions, the solute concentration can be calculated for any time t  (Lugon et 
al., 2009). 

 
3. Formulation of Inverse Heat and Mass Transfer Problems 

The inverse problem is implicitly formulated as a finite dimensional optimization problem 
(Silva Neto and Soeiro, 2003; Silva Neto and Moura Neto, 2005), where one seeks to 
minimize the cost functional of squared residues between the calculated and experimental 
values for the observable variable, 
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where measG  is the vector of measurements, calcG  is the vector of calculated values, P  is 
the vector of unknowns, W  is the diagonal matrix whose elements are the inverse of the 
measurement variances, and the vector of residues F  is given by 
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Depending on the direct problem, different measurements are to be taken, that is: 
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boundaries 0   and 0  , as well as at points that belong to the set   (points inside the 
domain   - internal detectors) we try to estimated the vector of unknowns P  considered. 
Two different vectors of unknowns 


P  are possibly considered for the minimization of the 

difference between the experimental and calculated values: (i) 0 , , 1  and 2 ; (ii) 0 ,  , 

1A  and 2A . 
 
b) Drying problem 
Using temperature measurements, T , taken by sensors located inside the medium, and the 
average of the moisture-transfer potential, u , during the experiment, we try to estimate the 
vector of unknowns P , for which a combination of variables was used: Lu  (Luikov 
number),   (thermogradient coefficient), r c  (relation between latent heat of evaporation 
and specific heat of the medium), h k  (relation between heat transfer coefficient and 
thermal conductivity), and m mh k  (relation between mass transfer coefficient and mass 
conductivity). 
 
c) Gas-liquid adsorption problem  
Different vectors of unknowns P  are possibly considered, which are associated with 
different adsorption isotherms: (i) K  and B  (Linear isotherm); (ii) 1( )K T  and â  (Langmuir 
isotherm); (iii) 1( )K T , 2 ( )K T ,   and â  (two-layers isotherm). Here the BSA (Bovine Serum 
Albumin) adsorption was modeled using a two-layer isotherm. 

 
4. Solution of the Inverse Problems with Simulated Annealing and Hybrid 
Methods 

4.1 Design of Experiments  
The sensitivity analysis plays a major role in several aspects related to the formulation and 
solution of an inverse problem (Dowding et al., 1999; Beck, 1988). Such analysis may be 
performed with the study of the sensitivity coefficients. Here we use the modified, or scaled, 
sensitivity coefficients 
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where V  is the observable state variable (which can be measured), jP  is a particular 
unknown of the problem, and pN  is the total number of unknowns considered. 
As a general guideline, the sensitivity of the state variable to the parameter we want to 
determine must be high enough to allow an estimate within reasonable confidence bounds. 
Moreover, when two or more parameters are simultaneously estimated, their effects on the 
state variable must be independent (uncorrelated). Therefore, when represented graphically, 
the sensitivity coefficients should not have the same shape. If they do it means that two or 
more different parameters affect the observable variable in the same way, being difficult to 
distinguish their influences separately, which yields to poor estimations. 
Another important tool used in the design of experiments is the study of the matrix 
 

 


















mPNmm

PN

PN

VPVPVP

VPVPVP

VPVPVP

SCSCSC

SCSCSC
SCSCSC

...
............

...

...

21

22221

12211

SC   (42) 

 

where iV  is a particular measurement of temperature or moisture potential and m  is the 
total number of measurements. 
Maximizing the determinant of the matrix TSC SC  results in higher sensitivity and 
uncorrelation (Beck, 1988). 

 
4.2 Simulated Annealing Method (SA) 
Based on statistical mechanics reasoning, applied to a solidification problem, Metropolis et 
al. (1953) introduced a simple algorithm that can be used to accomplish an efficient 
simulation of a system of atoms in equilibrium at a given temperature. In each step of the 
algorithm a small random displacement of an atom is performed and the variation of the 
energy E is calculated. If E<0 the displacement is accepted, and the configuration with the 
displaced atom is used as the starting point for the next step. In the case of E>0, the new 
configuration can be accepted according to Boltzmann probability 
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A uniformly distributed random number p in the interval [0,1] is calculated and compared 
with P(E). Metropolis criterion establishes that the new configuration is accepted if 
p<P(E), otherwise it is rejected and the previous configuration is used again as a starting 
point. 
Using the objective function ( )S P , given by Eq. (39a), in place of energy and defining 
configurations by a set of variables  , 1,2,.i pP i N , where Np represents the number of 
unknowns we want to estimate, the Metropolis procedure generates a collection of 

 

configurations of a given optimization problem at some temperature T (Kirkpatric et al., 
1983). This temperature is simply a control parameter. The simulated annealing process 
consists of first “melting” the system being optimized at a high “temperature”, then 
lowering the “temperature” until the system “freezes” and no further change occurs. 
The main control parameters of the algorithm implemented (“cooling procedure”) are the 
initial “temperature”, 0T , the cooling rate, tr , number of steps performed through all 
elements of vector P , sN , number of times the procedure is repeated before the 
“temperature” is reduced, tN , and the number of points of minimum (one for each 
temperature) that are compared and used as stopping criterion if they all agree within a 
tolerance  , N . 

 
4.3 Levenberg-Marquardt Method (LM) 
The Levenberg-Marquardt is a deterministic local optimizer method based on the gradient 
(Marquardt, 1963). In order to minimize the functional ( )S P  we first write 
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where J  is the Jacobian matrix, with the elements  
ps bp sJ C P    being  1,  2,  ...,  p M , and 

1,  2,  ...,   ps N , where M  is the total number of measurements and 
pN  is the number of 

unknowns. It is observed that the elements of the Jacobian matrix are related to the scaled 
sensitivity coefficients presented before. 
Using a Taylor’s expansion and keeping only the terms up to the first order, 
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Introducing the above expansion in Eq. (44) results 
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In the Levenberg-Marquardt method a damping factor  n  is added to the diagonal of 

matrix TJ J   in order to help to achieve convergence. 
Equation (46) is written in a more convenient form to be used in the iterative procedure, 
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where I  is the identity matrix and n  is the iteration index. 
The iterative procedure starts with an estimate for the unknown parameters, 0P , being new 
estimates obtained with 1n n n   P P P , while the corrections nP are calculated with 
Eq. (46). This iterative procedure is continued until a convergence criterion such as 
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where V  is the observable state variable (which can be measured), jP  is a particular 
unknown of the problem, and pN  is the total number of unknowns considered. 
As a general guideline, the sensitivity of the state variable to the parameter we want to 
determine must be high enough to allow an estimate within reasonable confidence bounds. 
Moreover, when two or more parameters are simultaneously estimated, their effects on the 
state variable must be independent (uncorrelated). Therefore, when represented graphically, 
the sensitivity coefficients should not have the same shape. If they do it means that two or 
more different parameters affect the observable variable in the same way, being difficult to 
distinguish their influences separately, which yields to poor estimations. 
Another important tool used in the design of experiments is the study of the matrix 
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where iV  is a particular measurement of temperature or moisture potential and m  is the 
total number of measurements. 
Maximizing the determinant of the matrix TSC SC  results in higher sensitivity and 
uncorrelation (Beck, 1988). 

 
4.2 Simulated Annealing Method (SA) 
Based on statistical mechanics reasoning, applied to a solidification problem, Metropolis et 
al. (1953) introduced a simple algorithm that can be used to accomplish an efficient 
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where I  is the identity matrix and n  is the iteration index. 
The iterative procedure starts with an estimate for the unknown parameters, 0P , being new 
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is satisfied, where   is a small number, e.g. 10-5. 
The elements of the Jacobian matrix, as well as the right side term of Eq. (47), are calculated 
at each iteration, using the solution of the problem with the estimates for the unknowns 
obtained in the previous iteration. 

 
4.4 Artificial Neural Network (ANN) 
The multi-layer perceptron (MLP) is a collection of connected processing elements called 
nodes or neurons, arranged in layers (Haykin, 1999). Signals pass into the input layer nodes, 
progress forward through the network hidden layers and finally emerge from the output 
layer (see Fig. 5). Each node i is connected to each node j in its preceding layer through a 
connection of weight, ijw , and similarly to nodes in the following layer. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Multi-layer perceptron network. 
 
A weighted sum is performed at i of all the signals jx  from the preceding layer, yielding the 
excitation of the node; this is then passed through a nonlinear activation function, f , to 
emerge as the output of the node ix  to the next layer, as shown by the equation 
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Various choices for the function f are possible. Here the hyperbolic tangent function 
( ) tanh( )f x x  is used. 

The first stage of using an ANN to model an input-output system is to establish the 
appropriate values for the connection weights ijw . This is the “training” or learning phase. 
Training is accomplished using a set of network inputs for which the desired outputs are 
known. These are the so called patterns, which are used in the training stage of the ANN. At 
each training step, a set of inputs are passed forward through the network yielding trial 
outputs which are then compared to the desired outputs. If the comparison error is 
considered small enough, the weights are not adjusted. Otherwise the error is passed 
backwards through the net and a training algorithm uses the error to adjust the connection 
weights. This is the back-propagation algorithm. 
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Once the comparison error is reduced to an acceptable level over the whole training set, the 
training phase ends and the network is established. The parameters of a model (output) may 
be determined using the real experimental data, which are inputs of the established neural 
network. This is the generalization stage in the use of the ANN. More details can be found in 
(Soeiro et al., 2004). 

 
4.5 Differential Evolution 
The Differential Evolution (DE) is a structural algorithm proposed by Storn and Price (1995) 
for optimization problems. This approach is an improved version of the Goldberg’s Genetic 
Algorithm (GA) (Goldberg, 1989) for faster optimization and presented the following 
advantages: simple structure, easiness of use, speed and robustness (Storn and Price, 1995). 
Basically, DE generates trial parameter vectors by adding the weighted difference between 
two population vectors to a third vector. The key parameters of control in DE are the 
following: N, the population size, CR, the crossover constant and, D, the weight applied to 
random differential (scaling factor). Storn and Price (1995) have given some simple rules for 
choosing key parameters of DE for any given application. Normally, N should be about 5 to 
10 times the dimension (number of parameters in a vector) of the problem. As for D, it lies in 
the range 0.4 to 1.0. Initially, D = 0.5 can be tried, and then D and/or N is increased if the 
population converges prematurely. 
DE has been successfully applied to various fields such as digital filter design (Storn, 1995), 
batch fermentation process (Chiou and Wang, 1999), estimation of heat transfer parameters 
in a bed reactor (Babu and Sastry, 1999), synthesis and optimization of heat integrated 
distillation system (Babu and Singh, 2000), optimization of an alkylation reaction (Babu and 
Gaurav, 2000), parameter  estimation in fed-batch fermentation process (Wang et al., 2001), 
optimization of thermal cracker operation (Babu and Angira, 2001), engineering system 
design (Lobato and Steffen, 2007), economic dispatch optimization (Coelho and Mariani, 
2007), identification of experimental data (Maciejewski et al., 2007), apparent thermal 
diffusivity estimation during the drying of fruits (Mariani et al., 2008), estimation of the 
parameters of Page’s equation and heat loss coefficient by using experimental data from a 
realistic rotary dryer (Lobato et al., 2008), solution of inverse radiative transfer problems 
(Lobato et al., 2009, 2010), and other applications (Storn et al., 2005). 

 
4.6 Combination of ANN, LM and SA Optimizers 
Due to the complexity of the design space, if convergence is achieved with a gradient based 
method it may in fact lead to a local minimum. Therefore, global optimization methods are 
required in order to reach better approximations for the global minimum. The main 
disadvantage of these methods is that the number of function evaluations is high, becoming 
sometimes prohibitive from the computational point of view (Soeiro et al., 2004). 
In this chapter, different combinations of methods are used for the solution of inverse heat and 
mass transfer problems, involving in all cases Simulated Annealing as the global optimizer: 

a) when solving  radiative inverse problems, it was used a combination of the LM and SA; 
b) when solving adsorption and drying inverse problems, it was used a combination of 

ANN, LM and SA. 
Therefore, in all cases it was run the LM, reaching within a few iterations a point of 
minimum. After that we run the SA. If the same solution is reached, it is likely that a global 
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is satisfied, where   is a small number, e.g. 10-5. 
The elements of the Jacobian matrix, as well as the right side term of Eq. (47), are calculated 
at each iteration, using the solution of the problem with the estimates for the unknowns 
obtained in the previous iteration. 
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Fig. 5. Multi-layer perceptron network. 
 
A weighted sum is performed at i of all the signals jx  from the preceding layer, yielding the 
excitation of the node; this is then passed through a nonlinear activation function, f , to 
emerge as the output of the node ix  to the next layer, as shown by the equation 
 

 i ij j
j

y f w x
       (49) 

 

Various choices for the function f are possible. Here the hyperbolic tangent function 
( ) tanh( )f x x  is used. 
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Training is accomplished using a set of network inputs for which the desired outputs are 
known. These are the so called patterns, which are used in the training stage of the ANN. At 
each training step, a set of inputs are passed forward through the network yielding trial 
outputs which are then compared to the desired outputs. If the comparison error is 
considered small enough, the weights are not adjusted. Otherwise the error is passed 
backwards through the net and a training algorithm uses the error to adjust the connection 
weights. This is the back-propagation algorithm. 

1x

2x

3x

4x

In p u t

H id d e n

O u tp u t

1Y

 

Once the comparison error is reduced to an acceptable level over the whole training set, the 
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Therefore, in all cases it was run the LM, reaching within a few iterations a point of 
minimum. After that we run the SA. If the same solution is reached, it is likely that a global 
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minimum was reached, and the iterative procedure is interrupted. If a different solution is 
obtained it means that the previous one was a local minimum, otherwise we could run again 
the LM and SA until the global minimum is reached. 
When using the ANN method, after the training stage one is able to quickly obtain an 
inverse problem solution. This solution may be used as an initial guess for the LM. Trying to 
keep the best features of each method, we have combined the ANN, LM and SA methods. 

 
5. Test Case Results 

5.1 Radiative Transfer 
5.1.1 Estimation of { 0 , , 1 , 2 } using LM-SA combination 
The combined LM-SA approach was applied to several test problems. Since there were no 
real experimental data available, they were simulated by solving the direct problem and 
considering the output as experimental data. These results may be corrupted by random 
multipliers representing a white noise in the measuring equipment. In this effort, since we 
are developing the approach and trying to compare the performance of the optimization 
techniques involved, the output was considered as experimental result without any change.  
The direct problem is solved with a known vector { 0 , , 1 , 2 }, which will be considered 
as the exact solution for the inverse problem. The correspondent output is recorded as 
experimental data. Now we begin the inverse problem with an initial estimate for the above 
quantities, obviously away from the exact solution. The described approach is, then, used to 
find the exact solution. 
In a first example the exact solution vector was assumed as {1.0,0.5,0.95,0.5} and the initial 
estimate as {0.1,0.1,0.1,0.1}. Using both methods the exact solution was obtained. The 
difference was the computational effort required as shown in Table 1. 
 

Method Iterations/Cycles Number of function 
evaluations 

Final value of the 
objective function 

LM 8 iterations 40 2.265E-13 
SA 90 cycles 36000 2.828E-13 

Table 1.  Comparison LM – SA for the first example. 
 
In a second example the exact solution was assumed as {1.0,0.5,0.1,0.95} and the starting 
point was {5.0,0.95,0.95,0.1}. In this case the LM did not converge to the right answer. The 
results are presented in Table 2. 
 

 

Iteration o  1 2 Obj. Function 

0 5.0 0.95 0.95 0.1 10.0369 

1 5.7856 9.63E-1 6.60E-2 1.00E-4 1.7664 

: : : : : : 

20 9.2521 1.0064 1.00E-4 1.00E-4 2.4646 
Exact Solution 1.0 0.5 0.1 0.95 0.0 

Table 2. Results for  Zexact = {1.0,0.5,0.1,0.95} and Zo = {5.0,0.95,0.95,0.1} using LM. 

 

The difficulty encountered by LM in converging to the right solution was due to a large 
plateau that exists in the design space for values of o  between 6.0 and 10.0. In this interval 
the objective function has a very small variation. The SA solved the problem with the same 
performance as in the first example. The combination of both methods was then applied. 
SA was let running for only one cycle (400 function evaluations). At this point, the current 
optimum was {0.94,0.43,0.61,0.87}, far from the plateau mentioned above. With this initial 
estimate, LM converged to the right solution very quickly in four iterations, as shown in 
Table 3. 
 

Iteration o  1 2 Obj. Function 
[Eq. (39a)] 

0 0.94 0.43 0.61 0.87 1.365E-2 
1 1.002 0.483 0.284 0.945 5.535E-5 
: : : : : : 
4 0.999 0.500 0.100 0.9500 9.23E-13 

Exact Sol. 1.0 0.5 0.1 0.95 0.0 
Table 3. Results for  Zexact = {1.0,0.5,0.1,0.95} and Zo = {5.0,0.95,0.95,0.1} using LM after one 
cycle of SA. 

 
5.1.2 Estimation of { , 0 , 1A , 2A } using SA and DE 
In order to evaluate the performance of the methods of Simulated Annealing and 
Differential Evolution for the simultaneous estimation of both the single scattering albedo,  , and the optical thickness, 0 , of the medium, and also the intensities 1A  and 2A  of the 
external sources at 0  and 0  , respectively, of a given one-dimensional plane-parallel 
participating medium, the four test cases listed in Table 4 have been performed (Lobato et 
al., 2010). 
  

Parameter Meaning 
Problem 

1 2 3 4 
  Single scattering albedo 0.1 0.1 0.9 0.9 

0  Optical thickness of the layer 0.5 5.0 0.5 5.0 

1A   Intensity of external source at 0   1.0 1.0 1.0 1.0 

2A  Intensity of external source at 0   0.0 0.0 0.0 0.0 

n Number of experimental data points 20 20 20 20 
Table 4. Parameters used to define the illustrative examples. 
 
It should be emphasized that 20 points were used for the approximation of the variable  , 
and 10 collocation points were taken into account to solve the direct problem. All test cases 
were solved by using a microcomputer PENTIUM IV with 3.2 GHz and 2 GB of RAM. Both 
the algorithms were executed 10 times for obtaining the values presented in the Tables (6-9). 
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techniques involved, the output was considered as experimental result without any change.  
The direct problem is solved with a known vector { 0 , , 1 , 2 }, which will be considered 
as the exact solution for the inverse problem. The correspondent output is recorded as 
experimental data. Now we begin the inverse problem with an initial estimate for the above 
quantities, obviously away from the exact solution. The described approach is, then, used to 
find the exact solution. 
In a first example the exact solution vector was assumed as {1.0,0.5,0.95,0.5} and the initial 
estimate as {0.1,0.1,0.1,0.1}. Using both methods the exact solution was obtained. The 
difference was the computational effort required as shown in Table 1. 
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evaluations 

Final value of the 
objective function 
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Table 1.  Comparison LM – SA for the first example. 
 
In a second example the exact solution was assumed as {1.0,0.5,0.1,0.95} and the starting 
point was {5.0,0.95,0.95,0.1}. In this case the LM did not converge to the right answer. The 
results are presented in Table 2. 
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Table 2. Results for  Zexact = {1.0,0.5,0.1,0.95} and Zo = {5.0,0.95,0.95,0.1} using LM. 

 

The difficulty encountered by LM in converging to the right solution was due to a large 
plateau that exists in the design space for values of o  between 6.0 and 10.0. In this interval 
the objective function has a very small variation. The SA solved the problem with the same 
performance as in the first example. The combination of both methods was then applied. 
SA was let running for only one cycle (400 function evaluations). At this point, the current 
optimum was {0.94,0.43,0.61,0.87}, far from the plateau mentioned above. With this initial 
estimate, LM converged to the right solution very quickly in four iterations, as shown in 
Table 3. 
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5.1.2 Estimation of { , 0 , 1A , 2A } using SA and DE 
In order to evaluate the performance of the methods of Simulated Annealing and 
Differential Evolution for the simultaneous estimation of both the single scattering albedo,  , and the optical thickness, 0 , of the medium, and also the intensities 1A  and 2A  of the 
external sources at 0  and 0  , respectively, of a given one-dimensional plane-parallel 
participating medium, the four test cases listed in Table 4 have been performed (Lobato et 
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It should be emphasized that 20 points were used for the approximation of the variable  , 
and 10 collocation points were taken into account to solve the direct problem. All test cases 
were solved by using a microcomputer PENTIUM IV with 3.2 GHz and 2 GB of RAM. Both 
the algorithms were executed 10 times for obtaining the values presented in the Tables (6-9). 
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The parameters used in the two algorithms are presented in Table 5. 
 

Parameter  SA DE  

Iteration number genN  100 100  

Population size N - 10  

Crossover 
probability 

CR - 0.8  

Perturbation rate D - 0.8  

Strategy - - DE/rand/
1/bin 

 

Temperature 
number for each 

temperature 

tempN  50 -  

Temp. initial/final fi TT /  0.5/0.01 -  

Initial Estimate 

Case 1 [0.25 0.25 0.5 0.5] 

Randomly 
generated 

00 , 1w   ; 11 1.5A  ; 20 1A   

Case 2 [0.25 0.45 0.5 0.5] 20 , 1w A  ;  03 5  ; 11 1.5A   

Case 3 [ 0.75 0.25 0.5 0.5] 0 1.0 w ; 0 20 , 1 A ; 11 1.5 A  

Case 4 [ 0.75 0.45 0.5 0.5] 
0 1.0 w ; 03 5  ; 11 1.5 A ; 

20 1 A  
Table 5. Parameters used to define the illustrative examples. 
 

 
* NF=1010, cputime=4.1815 min and ** NF=7015, cputime=30.2145 min. 
Table 6. Results obtained for case 1. 

 

 
* NF=1010, cputime=21.4578 min and ** NF=8478, cputime=62.1478 min. 
Table 7. Results obtained for case 2. 
 

 
 * NF=1010, cputime=3.8788 min and ** NF=8758, cputime=27.9884 min. 
Table 8. Results obtained for case 3. 
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