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1. Introduction 

Recently, the study on elastic waves in phononic crystal plates is becoming a research 
hotspot due to its potential applications, especially in wireless communication, transducer 
and sensor system [1-10]. The phononic crystal plates commonly consist of two materials 
with large contrast in elastic properties and densities, arranging in a periodic (or 
quasiperiodic) array. The absolute band gaps in composite plates can forbid the propagation 
of all elastic wave modes in all directions. Comparing with the bulk wave and surface 
acoustic wave devices, phononic crystal plates have better performance in elastic wave 
propagation since the phase speed of most Lamb wave modes (except for A0 mode) is faster 
than surface wave mode, and also the wave energy in plates is totally confined between the 
upper and nether free-stress boundaries regardless of the air damp and self-dissipation, 
which provides a special potentiality in micro-electronics in wireless communication.  
The propagation of Lamb waves is much more complicated than bulk wave and surface 
acoustic wave in terms of the free-stress boundaries which can couple the longitudinal and 
transversal strain components. The first attempt to describe the propagation of Lamb waves 
with wavelength comparable with the lattice is due to Auld and co-workers [11-12], who 
studied 2D composites within the couple-mode approximation. Alippi et al. [13] have 
presented an experimental study on the stopband phenomenon of lowest-order Lamb 
waves in piezoelectric periodic composite plates and interpreted their results in terms of a 
theoretical model, which provides approximate dispersion curves of the lowest Lamb waves 
in the frequency range below the first thickness mode by assuming no coupling between 
different Lamb modes. The transmissivity of the finite structure to Lamb wave modes was 
also calculated by taking into account the effective plate velocities of the two constituent 
materials [14]. Based on a rigorous theory of elastic wave, Chen et al.[1] have employed 
plane wave expansion (PWE) method and transient response analysis (TRA) to demonstrate 
the existence of stop bands for lower-order Lamb wave modes in 1D plate. Gao et al.[8] have 
developed a virtual plane wave expansion (V-PWE) method to study the substrate effect on 
the band gaps of lower-order Lamb waves propagating in thin plate with 1D phononic 
crystal coated on uniform substrate. They also studied the quasiperiodic (Fibonacci system) 
1D system and find out the existence of split in phonon band gap [2]. In order to reduce the 
computational complexity without losing the accuracy, Zhu et al.[9] have promoted an 
efficient method named harmony response analysis (HRA) and supercell plane wave 
expansion (SC PWE) to study the behavior of Lamb wave in silicon-based 1D composite 
plates. Zou et al.[10] have employed V-PWE method to study the band gaps of plate-mode 
waves in 1D piezoelectric composite plates with substrates. 
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The chapter is structured as follows: we firstly introduce the theory and modeling used in 
this chapter in Section 2. In Section 3, we focus on the band gaps of lower-order Lamb waves 
in 1D composite thin plates without/with substrate. In Section 4, we study the lamb waves 
in 1D quasiperiodic composite thin plates. In Section 5, we focus on acoustic wave behavior 
in silicon-based 1D phononic crystal plates for different structures, and finally in Section 6, 
we study the band gaps of plate-mode waves in 1D piezoelectric composite plates 
without/with substrates. 

2. Theory and modeling of phononic crystal plates 

In this section, we give the theory and modeling of phononic crystal plates with different 
structures: the periodic structure without/with substrate, and the quasiperiodic structure.  

2.1 Periodic structure without substrate by PWE method  

As shown in Fig. 1, the periodic composite plate consists of material A with width Ad , 

material B with Bd , lattice spacing A BD d d= + , and filling rate defined by A /f d D= . The 

wave propagates along the x  direction of a plate bounded by planes 0z =  and z L= .  
 

 

Fig. 1. 1D periodic composite plate consisting of alternate A and B strips. 

In the periodic structure, all field components are assumed to be independent of the y  

direction. In an inhomogeneous linear elastic medium with no body force, the equation of 

motion for displacement vector ( , , )x z tu  can be written as 

   ( ) [ ( ) ],p q pqmn n mx c xρ = ∂ ∂$$u u  ( 1,2,3),p =  (1) 

where ( )xρ  and ( )pqmnc x  are the x -dependent mass density and elastic stiffness tensor, 

respectively. Due to the spatial periodicity in the x direction, the material constants, ( )xρ  

and ( )pqmnc x  can be expanded in the Fourier series with respect to the 1D reciprocal lattice 

vectors (RLVs), as follows 

 ( ) ,jGx
G

G

x eρ ρ=∑  (2) 

 ( ) ,jGx G
pqmn pqmn

G

c x e c=∑  (3) 

where Gρ and G
pqmnc are expansion coefficients of the mass density and elastic stiffness 

tensor, respectively. From the Bloch theorem and by expanding the displacement vector 

( , , )x z tu  into Fourier series, one obtains  
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 ( , , ) ),x zjk x j t jGx jk z
G

G

x z t e e e
ω−=∑ (u A  (4) 

where xk  is a Bloch wave vector and ω  is the circular frequency, 1 2 3( , , )G G G GA A A=A  is the 

amplitude vector of the partial waves, and kz  is the wave number of the partial waves along 

the z direction. Substituting Eqs. (2)-(4) into Eq. (1), one obtains homogenous linear 

equations to determine both 1 2 3( , , )G G GA A A  and kz .  

'

'

'

1' 2 2 '
11 44 12 44

' 2 2 2
44 44

' ' 2 2 3
12 44 44 11

( )( ) 0 ( ) ( )

0 ( )( ) 0 0,

( ) ( ) 0 ( )( )

x x z x x z G

x x z G

x x z x x z G

Ac k G k G c k c k G c k G k

c k G k G c k A

c k G c k G k c k G k G c k A

ρω
ρω

ρω

⎛ ⎞⎛ ⎞+ + + − + + + ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + + − =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + + + + + −⎝ ⎠⎝ ⎠

 (5) 

Supposing that the materials A and B are cubic materials, it is obvious that the wave motion 
polarized in the y-direction, namely SH wave, decouples to the wave motions polarized in 
the x- and z-directions, namely, P and SV waves. It is relatively simple to discuss the SH 
wave so that we focus our attentions to P and SV waves, and the equation of motion for 
Lamb waves becomes 

 

'

'

1' 2 2 '
11 44 12 44

' ' 2 2 3
12 44 44 11

( )( ) ( ) ( )

0 ,

( ) ( ) ( )( )

x x z x x z G

x x z x x z G

Ac k G k G c k c k G c k G k

c k G c k G k c k G k G c k A

ρω
ρω

⎛ ⎞⎛ ⎞+ + + − + + + ⎜ ⎟⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + + + + + −⎝ ⎠⎝ ⎠
 (6) 

If one truncates the expansions of Eqs. (2) and (3) by choosing n  RLVs, one will obtain 4n  

eigenvalues ( )l
zk , ( 1 4 )l n= − . For the Lamb waves, all of the 4n  eigenvalues ( )l

zk  must be 

included. Accordingly, displacement vector of the Lamb waves can be taken of the form 

 
( ) ( )4 4

( )( ) ( )' '

1 1

( , , ) ,
l l

x z x z

n n
i k G x i t iK z i k G x i t ik z

G G
G l G l

x z t e e e X eω ω ε+ − + −
= =

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∑ ∑ ∑ l
lu A  (7) 

where ( )l
Gε  is the associated eigenvector for the eigenvalue ( )l

zk , lX  is the weighting 

coefficient to be determined, and the prime of the summation expresses that the sum over 

G  is truncated up to n .  
The boundary conditions are the stress-free on the upper (z = 0) and rear (z = L) surfaces 

 3 0, 3 0 , 0p z L p mn n m z Lc u= == ∂ =T     ( 1,3).p =  (8) 

which Tp3 is the stress tensor and L is the plate thickness. Eq. (8) leads to 4n homogeneous 
linear equations for Xl l = (1- 4n), as follows 

 

(1) (2) (4 )
11, 1, 1,

(1) (2) (4 ) 2
2 , 2 , 2 ,

(1) (2) (4 )
3, 3, 3 ,

(1) (2) (4 )
4 , 4 , 4 , 4

0,

n
G G G

n
G G G

n
G G G

n
G G G n

XH H H

X
H H H

HX
H H H

H H H X

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

…

A #B
A

…

 (9) 
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where H#  is a 4 4n n×  matrix with components 

 ' ' '

( ) 3( ) 1( )( )44 '
1, [( ) ],l l ll

x zG G G G G
C k G kε ε−= + +H  (10a) 

 ' '' '

( ) 3( ) 1( )( )11 12 '
2, ( ) ,l l ll

z xG G G G GG G
H C k C k Gε ε− −= + +  (10b) 

 ' ' '

( ) 3( ) 1( )( ) ( )44 '
3, [( ) ] exp( ),l l ll l

x z zG G G G G
H C k G k jk Lε ε−= + + ×  (10c) 

 ' '' '

( ) 3( ) 1( )( ) ( )11 12 '
4, [ ( ) ] exp( ).l l ll l

z x zG G G G GG G
H C k C k G jk Lε ε− −= + + ×  (10d) 

From Eq. (9) one notes that to obtain nontrivial solution for the lX , the determinant of the 

boundary condition matrix should be equal to zero. The ω  of the Lamb wave modes are 

thus found by searching for the values of ω  that simultaneously make the Eq. (6) and 

det(  )#H  equal to zero. In practice, an iterative search procedure is usually required to find 

these ω  [15-16]. 

2.2 Periodic structure with substrate by V-PWE method 

As shown in Fig.2, the composite plate with substrate consists of the 1D phononic crystal 

(PC) layer coated on C substrate. The PC layer consists of the material A with the width Ad  

and the material B with the width Bd . 
 

 

Fig. 2. The 1D periodic composite plate consisting of alternate A and B strips with a 
substrate C. 

We develop a V-PWE method to calculate the dispersion curves of Lamb wave modes 
propagating along the x direction in the presence of the uniform substrate. Here, we give the 
equations of V-PWE method for the piezoelectric periodic structure with substrate. One can 
have the equations for non-piezoelectric situation by omitting the piezoelectricity 
components and the electrical boundary conditions. 
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In the situation of piezoelectric composite plate with substrate, the equations governing the 

motion of lattice displacement ( , , )m x z tu  and electrical displacement ( , , )m x z tD in this 

inhomogeneous system are given by 

 ( ) ,m m m
j i ijx u Tρ = ∂$$  (11) 

 0,m
i iD∂ =   (12) 

 ( ) ( ) ,m m m m m
ij ijkl l k lij lT c x u e x φ= ∂ + ∂  (13) 

 ( ) ( ) ,m m m m m
i ikl l k il lD e x u xε φ= ∂ − ∂  (14) 

where , , , , ;i j k l x z= 1,2m= (1 represents phononic layer; 2 represents the substrate, 

respectively). ( , , ),x z tm
ijT  ( , , ),m x z tD  ( , , ),m x z tu  ( , , ),m x z tϕ  ( ),m xρ  ( ),m

ijklc x  ( ),m
lije x  and 

( )m
il xε  are the stress vector, electrical displacement vector, displacement vector, electric 

potential, x-dependent mass density, elastic stiffness, piezoelectric, and dielectric constant 

tensors, respectively. It comes into notice that in fact the material constants depend on the z-

direction due to the existence of the substrate, as follows 

 
1

1

2
2

( ),     (0 )
( , )

,       ( 0)

x z h
x z

h z

αα α
⎧ < <⎪= ⎨ − < <⎪⎩

 (15) 

where ( , , , )ijkl lij ilc eα ρ ε= , 2 2 2 2( , , , )ijkl lij ilc eρ ε  are the material constants for the substrate.  

Due to the spatial periodicity, the Bloch theorem can be applied to the PC layer, but it 
cannot be simply applied to the substrate layer. However, one notice that the triangle basic 
function set in the Fourier series is an orthogonal and complete set, each components in the 
Fourier series must satisfied the boundary conditions at the interface between the PC layer 
and the substrate at z = 0, namely the continuities of the normal stress, normal displacement, 
normal electrical displacement and electric potential.   

 1 2
0 0 ,iz z iz zT T= ==  1 2

0 0 ,iz z iz zu u= ==  1 2
0 0 ,z z z zD D= ==  1 2

0 0 ,z zφ φ= ==  ( , )i x z= . (16) 

Therefore, the displacement and electric potential fields in the substrate layer also must be 
expanded to the Fourier series with the period that is same as the PC layer in order to satisfy 
the boundary conditions. Then the substrate layer can be treated as a virtual periodic 
structure that has the same filling fraction and period as the PC layer. Thereupon, the Bloch 
theorem can be applied to both the PC and the substrate layers. 
Due to the spatial periodicity in the x direction, the material constants can be expanded in 
Fourier series with respect to the 1-D reciprocal-lattice vector (RLV) G, as follows: 

   ( ) ,jGx
G

G

x eα α=∑  (17) 

where αG is the corresponding Fourier coefficient. Utilizing the Bloch theorem and 
expanding the displacement vector and electric potential into Fourier series in the PC and 
the substrate layers, one obtains 
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 ( )( , , ) ( A ),
m

x zj k x t jGx jk zm m
G

G

x z t e e e
ω−=∑u  (18) 

 ( )
3( , , ) ( ),

m
x zj k x t jGx jk zm m

G
G

x z t e e A e
ωφ −=∑  (19) 

where xk  is a Bloch wave vector, ω  is the circular frequency, and m
zk  is the wave number 

along the z-direction, 1 2( , )m m m
G G GA A=A  and 3

m
GA  are the amplitude vectors of the partial 

waves and electric potential, respectively. Substituting Eqs. (17)-(19) into Eqs. (11)-(14), one 

can obtain the eigenvalue problem with respect to m
zk : 

 2( ) U 0,m m m m m m
z zk k+ + ⋅ =A B C  (20) 

where 1 2 3{ , , }m m m m T
G G GA A A=U is called the generalized displacement vector, the 3 3n n×  

matrices m
A , m

B , and m
C are functions of xk , G , ω , m

Gρ , ijklm
Gc , lijm

Ge , ilm
Gε , and n is the 

number of RLV.  
Here, we consider the stress-free boundary conditions and two kinds of the electrical 

boundary conditions. For the 1-D problem, we have 

the stress free boundary conditions: 

 
1

1 0,iz z hT = =   
2

2 0,iz z hT =− =  ( , ),i x z=  (21) 

the OC boundary conditions: 

1 1

1 ,air
z z

z h z h
D D= ==   

1 1

1 ,air

z h z h
φ φ= ==  

               
2 2

2 ,air
z z

z h z h
D D=− =−=

2 2

2 ,air

z h z h
φ φ=− =−=  (22) 

        ( 0 ,
air

air
zD

z

φε ∂= − ∂   11
0 1 10 F/m,ε −= × ) 

the SC boundary conditions: 

 
1

1 0,
z h

φ = =       
2

2 0.
z h

φ =− =  (23) 

 

Putting ( ) ( )j l j lm m m
lG GA X β=  ( 1 3j = − , 1 6 ,l n= − 1,2m= ), where ( )j l m

Gβ  is the associated 

eigenvector of the eigenvalue ( )l m
zk , and m

lX  is the weighting coefficient that can be 

determined from the boundary conditions for different layers, one obtains: 0⋅ =H X  from 

the equations (16), (21) and (22) [or (23)], where H  is a 12 12n n×  matrix. The existence of a 

nontrivial solution of m
lX  needs the determinant of matrix H  to be zero 

 det( ) 0.=H  (24) 

Then one can obtain the dispersion relations of the Lamb waves propagating in a 1-D PC 
layer coated on a substrate. 

www.intechopen.com



Acoustic Waves in Phononic Crystal Plates   

 

97 

2.3 Periodic structure without/with substrate by FE method 
In order to study the elastic wave in the phononic crystal plates, transient response analysis 
(TRA) and the harmony response analysis (HRA) are presented here by finite element (FE) 
method.  
First, the TRA is employed to calculate the transmitted power spectra (TPS) for the finite 
periodic structure. The FE solution involves the discretization of the domain into a number 
of elements, approximating the displacement values interior to the elements in term of its 
nodal value through the shape functions of the chosen element and the determination of 
nodal values [17]. 

 

Fig. 3. Modified plate geometry in the Finite Element calculations 

Fig. 3 shows the configuration of the modified composite plate in the Finite Element 

calculations, in which the superlattices with ten periods (the length is 20 mm) is bounded by 

two pure tungsten plates (the length is 100 mm) at two sides. Lamb waves are excited by the 

force function ( )f t  that is a triangle wave at 0x = , and are received at 140x =  mm [18]. 

The generation source is far from the periodic structure in order to obtain approximate 

plane waves when the wavefronts reach it. The step sizes of temporal and spatial 

discretization in the finite model are fine enough for the convergence of the numerical 

results (increasing the number of elements of the finite element mesh is equivalent to 

increasing the number of harmonics in PWE method). The vertical displacement of a node at 

upper surface of the plate behind the superlattices array at 140x =  mm is collected as 

function of time. For a sufficiently large number of these vertical displacement data on the 

time axis, the displacement fields are Fourier transformed into the frequency domain to 

yield the TPS.  
We also promote an efficient method named HRA to study the propagation and 
transmission of acoustic waves in 1D phononic crystal plates. Comparing with TRA [1,2,8], 
HRA is more time-saving due to its direct calculation in frequency domain and more 
powerful for the acquirability of displacement field under certain frequency load, which can 
be further employed to the designation of various phononic crystal functionalities such as 
filters, resonators and waveguides. With this method, we can study the cases both without 
and with substrates. Taking the gradient of the displacement fields, we can further study the 
strain distribution in the plates, and it is really a very direct way to understand how the 
band gaps form in phononic crystal plates by comparing displacement fields under different 
frequency loads (inside/outside band gaps).  
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Any continual periodic loads can produce continual periodic response (harmony response) 

in phononic crystal plates. HRA is a method used to define the stabilized response of linear 

structures under time-harmonic loads. By calculating the responses (usually displacement 

fields) under different frequency loads, we can obtain the transmitted power spectra in the 

detected region. HRA is a linear analysis regardless of any nonlinear characteristics. For 

multi-element structure, the Newton’s second law can be expressed as follows:  

 { } { } { } { }=int ext+ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦$$ $M D C D R R  (25a) 

 { } { }=int ⎡ ⎤⎣ ⎦R K D  (25b) 

 { } { } ( )= expext i tΩR F  (25c) 

where ⎡ ⎤⎣ ⎦M , ⎡ ⎤⎣ ⎦C  and ⎡ ⎤⎣ ⎦K  are general mass matrix, damping matrix and stiffness matrix, 

respectively; { }D  and { } ( )exp i tΩF  are nodal degree of freedom vector and nodal external 

load vector, respectively. Eq (25a) describes a dynamic balance among inertial force, 

damping force, inner force { }int
R  and external load force { }ext

R . The forced vibration of the 

structure will finally come to a stabilized status in which every node moves in harmonic 

motion with the same frequency (Ω ). Further, we can express { }D  into: 

 { } { } ( )exp i t= ΩD D  (26) 

where { }D  is the complex nodal degree of freedom vector. By substituting Eq (26) into Eqs 

(25a)-(25c), we can obtain: 

 ( ){ } { }2i+ Ω −Ω =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦K C M D F  (27) 

where { }D  can be obtained using Frontal solver. We choose imaginary component of { }D  

to build up the stabilized displacement field under different frequency loads. It is necessary 

to mention that TRA requires much more substeps to obtain the nodal degree of freedom 

vector at certain detected time for the reason that the time step tΔ  should obey the 

following criterion for numerical convergence in Newmark method: [19]  

 
2

crit

max

t
fπ

ΩΔ ≤  (28) 

where maxf  is the maximum frequency of interest. critΩ  is defined to be: 

 
2

2
crit

γ β⎛ ⎞Ω = −⎜ ⎟⎝ ⎠  (29) 

where β  is chosen to be ( )2
1 2 4γ +  with 1 2γ ≥  to achieve as large high frequency 

dissipation as possible. We choose 0.2756β = , 0.55γ =  in the numerical calculation of TRA. 

In each substep, a very complex iteration is employed, which takes the form: 
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{ } { } { } { } { } ( )

{ } { } ( ) { } ( )
1

21 1

1 2

2

2

2

eff ext n n n

n+ n+

n n n

tt

t

t

β
β ββ

γ β γ βγ
β β β

+
⎛ ⎞−⎜ ⎟⎡ ⎤ = + + +⎡ ⎤⎣ ⎦⎣ ⎦ ⎜ ⎟ΔΔ⎜ ⎟⎝ ⎠

⎛ ⎞− Δ −⎜ ⎟+ + +⎡ ⎤⎣ ⎦⎜ ⎟Δ⎜ ⎟⎝ ⎠

$ $$

$ $$

D DD
K D R M

D DD
C

 (30a) 

 { } { } { }( ) { } ( ) { } ( )
1

1

2

2

n n n n

n

t

t

γ β γ βγ
β β β+

+
− Δ −−= − −Δ

$ $$
$

D DD D
D  (30b) 

 { } { } { } { }( ) { } ( )1

21

1 2

2

n n n n

n

t

t

β
ββ

+
+

− − Δ −= −Δ
$ $$

$$
D D D D

D  (30c) 

where ( ) ( )2eff t tβ γ β⎡ ⎤ = Δ + Δ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦K M C K . The initial condition for Eqs (30a)-(30c) is 

shown as follows: 

 { } { } { } { }( )1

00 00

ext−= − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦$$ $D M R K D C D  (31) 

With Eqs (30a)-(30c) and (31), we can obtain { }
1

D , { }
2

D , { }
3

D , and so forth. From the 

above-mentioned details, it is obvious that the numerical calculation of TRA is more 

complicated than that of HRA and therefore requires more computation resources when the 

model being larger. 
In TRA or HRA, we need to suppress reflections from the hard boundary to get rid of the 
unwanted resonance peaks. Based on the wave equation in spherical coordinate, artificial 
boundary can be equivalent to many continuous distribution parallel viscous-spring 
systems. The coefficients of stiffness and damping are given as follows: 

 T
T

G
K

LN

α= ; N
N

G
K

LN

α=  (32a)                          

 T

G
C

N

ρ= ; N

E
C

N

ρ=  (32b) 

where TK  and NK  are tangential and normal stiffness coefficients of springs, respectively; ρ  is the material density of matrix silicon; TC  and NC  are tangential and normal damping 

coefficients, respectively; G  and E  are shear modulus and Young’s modulus of matrix 

silicon, respectively; L  and N  are the distance from exciting source to artificial boundary 

and number of viscous-spring systems attached to the boundary, respectively; Tα  and Nα  

are the tangential and normal modified coefficients for artificial boundary, respectively. Tα  

and Nα  are assigned with 0.67 and 1.33, respectively [20]. 

2.4 Periodic structure without/with Substrate by SC-PWE method 
The super-cell plane wave expansion (SC-PWE) method is another efficient way to calculate 
the plate-mode waves of the phononic crystal plates. As shown in Fig. 4, we establish a 3D 
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model in Cartesian coordination to calculate the elastic band structures of 1D phononic 
crystal plates, where the periodic composite plate consists of alternate A and B strips, C is 
the LIM layer, and D is the substrate, respectively [21]. 

 

Fig. 4. (a) 1D Lamb wave phononic crystal plate sandwiched between two layers of 
homogeneous materials, and (b) 3D super-cell used in the computation. 

The LIM is an imaginary material with relatively low elastic moduli for approximately 

meeting the requirement of free boundary condition and an extremely low mass density, 

which leads the sound speed in the LIM to be much larger than that in usual solid material. 

In this chapter, the LIM is assumed as an isotropic material with 6
11 2 10C = ×  N/m2, 

6
44 1 10C = ×  N/m2, 12 0C =  N/m2 and 41 10ρ −= ×  kg/m3. The choice of such unphysical 

high sound speeds for the LIM is in good agreement with the numerical condition derived 

by Tanaka et al [22]. With these values, both good numerical convergence and computing 

accuracy can be achieved. The thickness of plate h  is assumed to be 2 mm and 2 3h h h= +  

where 3 0h =  mm for the case without substrate. The thickness of the LIM layer 1h  is 

defined to be 25h  to reduce unexpected wave coupling between two nearest phononic 

layers in z direction [23]. In the absence of body force and strain in y  direction, the SH 

mode wave in 1D plate can be decoupled. Regardless of the wave propagating in y  

direction, the elastic wave equations of phononic crystal are given by: 

 ( ) [ ( ) ]p q pqmn n mu C uρ = ∂ ∂$$r r  ( 1,2,3)p =  (33) 

where ( , )x z=r . This equation can be solved by a standard Fourier expansion to ( )ρ r , 

( )pqmnC r  and ( , )u tr , which are all position-dependent values. For convenience, we put 

( , )pqmnCα ρ=  and then we can obtain the following equations: 

 ( ) exp[ ( )]
x z

x z
G

i G x G zα α= +∑∑ G

G

r  (34) 
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 ( )( , ) exp[ ( )]
x z

i t
x z

G

u t u i G x G z e ω⋅ −= +∑∑ k r
G

G

r  (35) 

where ( , )x zk k=k  is the Bloch wave vector and the 2D reciprocal-lattice vector ( , )x zG G=G , 

respectively. Substituting equations (34) and (35) into wave equation (33), we can obtain: 

 

11 12 13

2 21 22 23

31 32 33

M M M

u uM M M

M M M

ρ
ω ρ

ρ
′− ′ ′ ′

′ ′ ′− ′ ′ ′
′− ′ ′ ′

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

G G G,G G,G G,G

G G G GG,G G,G G,G

G G G,G G,G G,G

 (36a) 

The explicit expressions of the matrix elements lm
M ′G,G

, ( 1 3l m= = − ) are:   

11 11 44
, ( )( )x x x x z zk G k G G GM C C′ ′ ′− −′ ′= + + +

G G G G G G
        12

, 0M ′ =G G                

 13 12 44
, ( ) ( )z x x x x zG k G k G GM C C′ ′ ′′ ′= + + +G G G-G G-G         21

, 0M ′ =G G  (36b) 

22 44 44
, ( )( )x x x x z zk G k G G GM C C′ ′ ′′ ′= + + +G G G-G G-G         23

, 0M ′ =G G                 

31 44 12
, ( ) ( )z x x x x zG k G k G GM C C′ ′ ′′ ′= + + +G G G-G G-G         32

, 0M ′ =G G                 

                              33 44 11
, ( )( )x x x x z zk G k G G GM C C′ ′ ′′ ′= + + +G G G-G G-G                                    

where the Fourier coefficients pq
C ′G-G are related to ( )pqmnC r  in a conventional manner. As 

shown in equation (36a), characteristic frequency ω  is exactly the squared generalized 

eigenvalue of density matrix and elastic constant matrix. The coefficients pq
C ′−G G  and ρ ′G-G  

takes the form: 

 3

( )

1
( )exp[ ( ) ]

Supercell
c

i d
V

α α′ ′= − − ⋅∫∫∫G-G r G G r r  (37) 

where Vc is the volume of super-cell. With the above-mentioned equations, we can easily 
obtain the band structure of 1D phononic crystal plate. 

2.5 Quasiperiodic structure by FE method 

As shown in Fig.5, the quasiperiodic composite plate consists of material A of width Ad  and 

material B of width Bd . The lattice spacing is A BD d d= + . When the distribution of 

materials A and B is arranged according to the Fibonacci sequence, one obtains a 

quasiperiodic system [24]. We create the Fibonacci sequence B, BA, BAB, BABBA, 

BABBABAB, BABBABABBABBA, … according to the production rule 1 2|j j jS S S− −=  for 

3j ≥  with 1S B=  and 2S BA= . When A and B are put along the chain alternately, a 

periodic model is obtained. We introduce parameter /A Bd dΦ =  to describe the ratio of the 

two components. Φ  is fixed at 1.0 and the number of layers N is 13 throughout the section 

unless otherwise stated. The wave propagates along the x direction of the plate bounded by 

planes 0z =  and z L= . We consider a 2D problem, in which all field components are 

assumed to be y independent. 
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Fig. 5. The configuration of 1D quasiperiodic composite plate consisting of Tungsten and 
Silicon strips arranged following the Fibonacci sequence. 

To demonstrate the structures of the band gaps for Lamb waves in the 1D quasiperiodic 

systems and the difference from that of periodic systems, we calculate TPS of the transient 

Lamb waves by using the TRA. We suppose that a Lamb wave is excited by a line laser 

pulse with a spatial Gaussian distribution (Gaussian radius = 0.2 mm). The laser pulse, 

which is normally incident to the surface of the studied plates, generates the Lamb wave 

propagating along the x direction. The laser-generated force source f(t) is simulated as a 

delta function, which is perpendicular to the surface of the plate [25]. 

The elastic properties of the materials in the numerical calculations are the same as 

mentioned in above sections; and the thickness of the plates (L) of 1.0 mm. The step sizes of 

temporal and spatial discretization in the FE calculations are fine enough for the 

convergence of the numerical results. Lamb waves are excited by the force function f(t) at 

x=0, and are received at the point 10 mm away from the superlattices array. The generation 

source is far from the Fibonacci superlattices in order to obtain approximately plane waves 

when the wave fronts reach the plate. The received vertical displacement in time domain is 

Fourier-transformed into the frequency domain to yield the TPS. 

We also adopt the HRA to study three quasiperiodic systems. Two Generalized Fibonacci 

Systems (Type A and Type B) [26] are obtained inductively through the following 

transformations: 

 A AAB→ , B A→  for Type A Fibonacci System (38a) 

 A ABB→ , B A→  for Type B Fibonacci System (38b) 

We can generate the two quasiperiodic systems, as shown as follows:  

 …AABAABAAABAABAAABAAB  for Type A Fibonacci System (39a) 

 …ABBAAABBABBABBAAABBA  for Type B Fibonacci System (39b) 
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It is interesting to find out that Generalized Fibonacci Systems are very flexible in forms and 

by changing the transformations ( A ABA→ , B A→ …) we can obtain many other 

quasiperiodic systems.  

Then, we can introduce the third quasiperiodic system (Double-period System) into this 

model. The recursion relation for Double-period System is A AB→ , B AA→  [27]. With the 

recursion relation, we can obtain the sequence of the Double-period System: 

 …ABAAABABABAAABAAABAA for Double-period System (40) 

 

 

Fig. 6. The schematic diagram of the four systems: Periodic System, Type A Fibonacci 
System, Type B Fibonacci System and Double-period System, respectively. 

Fig. 6 shows the scheme of the four different systems, namely, Periodic System, Type A 
Fibonacci System, Type B Fibonacci System and Double-period System, respectively. In 
numerical simulations, the homogeneous media A and B are gold and silicon, with the 
thicknesses of media A and B are 2 mm, and the widths of media A and B are 0.4 and 1.6 
mm, respectively. 
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3. Lower-order lamb waves in 1D composite thin plates without/with 
substrate 

In order to demonstrate the existence of band gaps for low-order Lamb wave modes in the 
1D periodic structure as shown in Fig.1, we have calculated the dispersion curves for a cubic 
medium (silicon) of a l mm thick plate by considering only the fundamental term in the 
Fourier and Floquet series [16], as shown in Fig. 7(a).  Fig. 7(b) displays the dispersion  
 

 

 

Fig. 7. Schematic representation of the Lamb wave dispersion curve for (a) a homogeneous 

Si plate with 1.0L= mm (b) composite thin plate (W / Si)  with 0.5f = , 1.0L= mm, and 

2.0D = mm. 
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curves of four lower-order modes along the boundary of the mini-Brillouin zone with filling 

ratio 0.5f = , 1.0L=  mm, and 2.0D =  mm. One can obviously observe the modifications 

produced by resonant reflections in the strip lattice. The dashed vertical line identifies the 

frequency zone where all the Lamb wave modes are resonantly reflected by the periodic 

lattice of strips. The proposed approach allows one to identify that the forward propagating 

Lamb wave modes are not coupled with the backward propagating modes.  

By comparing Fig. 7(a) with Fig. 7(b), one can easily find that there exists a band gap from 

1065 to 1642 kHz for the lower-order Lamb wave modes propagating in the 1D periodic 

structure. The gap width ( ΔΩ ) is 577 kHz and the corresponding gap/midgap ratio 

( / mΔΩ Ω , mΩ  is the midgap frequency) is approximately 0.426. In order to analyze the 

influence of the ratio L /D  for the band gap width, we also calculate the dispersion curves 

of the lower-order modes with 0.5f = , 2.0L=  mm, and 2.0D =  mm, as shown in Fig. 8. It 

is apparent that there are two band gaps (from 806 to 1167 kHz and from 1438 to 1863 kHz, 

respectively) for the ratio 1L /D = . The gap widths are 361 and 425 kHz, and the 

corresponding gap/midgap ratios are about 0.366 and 0.255, respectively. 
 

 

Fig. 8. Dispersion curves of Lamb wave modes for 1D finite thickness composite plate with 

filling ratio 0.5f = , 2.0L=  mm, and 2.0D =  mm. 

Basically, there are three parameters that influence the formation of band gaps, i.e., /L D , 

f , and the contrast between the physical parameters of the constituents. It is rather 

intuitive that /L D  is very crucial for the formation of a band gap. If it is either too small or 

too large, there should be no band gaps for lower-order modes. Fig. 9 depicts the gap width 

of the lowest band gap as a function of /L D  with 0.5f =  and 2D =  mm for 

tungsten/silicon supperlattices. It is noteworthy to point out that the lowest band gap opens 

up over a domain of the ratio of /L D  defined by 0.15 / 1.64L D≤ ≤ . The maximum value 

of gap width appears at / 0.53L D ≈  for the lowest band gap and reaches 610 kHz as shown 

in Fig. 9. 

www.intechopen.com



 Acoustic Waves 

 

106 

 

Fig. 9. The width of the lowest band gap at the filling fraction f = 0.5 versus the value of  L/D. 

It is noted that the value of the normalized gap width of the lowest band gap in the systems 

increases progressively with the increase of the value of the ratio of /L D  until a critical 

value and then decreases. In fact, a plate can support a number of Lamb wave modes 

depending on the value of the ratio /L λ , where λ  is the acoustic wavelength. When the 

periodicity of these Lamb waves matches the lattice spacing, stop bands appear in the Lamb 

wave dispersion curves [28]. There is a high interaction when the wavelength of Lamb wave 

is close the lattice constant, which induces mode conversion and reflections. When the 

wavelength of Lamb wave is different from the periodicity of the lattice constant, the 

interaction is weak. On the another hand, the midgap frequency of forbidden gap is 

inversely proportional to the lattice constant D  [29], therefore, the value of the ratio of 

/L D  is important for the width of the band gap for the Lamb waves in the periodic 

composite systems. 
In order to demonstrate further the existence of the band gaps for the lower-order modes in 
the 1D periodic structure, the finite element method (FEM) is employed to calculate the 
transmitted power spectra (TPS) for the finite periodic structure as shown in Fig.3.  

Fig. 10 shows the TPS for the 1D composite structure plate with 0.5f = , 1.0L=  mm, and 

2.0D =  mm. There is a broad region from 1060 to 1630 kHz that is less than –30dB. The 

result shows good agreement with that by PWE method. The TPS is also depicted in Fig. 10 

from a pure Tungsten plate with the same dimensions, and no sharp attenuation in any 

frequency domain is observed. 

For the second sample, ,f  ,D  and the configuration are the same with the first one, and 

only the thickness of the plate is different (L=2 mm). Fig. 11 depicts the TPS for 1D plate 

with periodic structure and without periodic structure. The frequency range of the gaps of 

Lamb waves by PWE is almost the same with those of large attenuation in the calculated 

TPS .The first gap extends from the frequency of 804 up to 1176 kHz and the second from 

1436 to 1869 kHz, which are less than –45dB. 
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Fig. 10. The TPS computed by the FE method with 0.5f = , 1.0L=  mm, and 2.0D =  mm 

through the composite pate (solid line) and a pure Tungsten plate (dashed line). 
 

 

Fig. 11. The TPS computed by the FE method with 0.5f = , 2.0L=  mm, and 2.0D =  mm: 

through the composite plate (solid line) and through a pure Tungsten plate (dashed line). 

It is interesting to notice that there are some slight dips centered at about 0.4MHz in Fig. 6, 

or 0.5MHz and 1.3MHz in Fig. 11. These dips attribute to the band gaps of antisymmetric 

modes, but not absolute band gap of both symmetric and antisymmetric modes, which can 

be observed in Figs. 7(b) and 8, indicated by the arrows 1, 2 and 3. On the other hand, the 
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