
11 

A Scalable Healthcare Integrated  
Platform (SHIP) and Key Technologies  

for Daily Application 

Wenxi Chen, Xin Zhu, Tetsu Nemoto1, Daming Wei and Tatsuo Togawa2 
Biomedical Information Technology Lab., the University of Aizu 

1School of Health Sciences, Faculty of Medicine, Kanazawa University 
2School of Human Sciences, Waseda University 

Japan 

1. Introduction 

A ubiquitous era has arisen based on achievements from the development of science and 
technology over the previous 1,000 years, and especially the past 150 years. Among the 
numerous accomplishments in human history, four fundamental technologies have laid the 
foundation for today’s pervasive computing environment. 
The electromagnetic wave theory, established by James Maxwell in 1864, predicted the 
existence of waves of oscillating electric and magnetic fields that travel through empty space 
at a velocity of 310,740,000 m/s. His quantitative connection between light and 
electromagnetism is considered one of the great triumphs of 19th century physics. Twenty 
years later, through experimentation, Heinrich Hertz proved that transverse free space 
electromagnetic waves can travel over some distance, and in 1888, he demonstrated that the 
velocity of radio waves was equal to the velocity of light. However, Hertz did not realize the 
practical importance of his experiments. He stated that, “It’s of no use whatsoever … this is 
just an experiment that proves Maestro Maxwell was right – we just have these mysterious 
electromagnetic waves that we cannot see with the naked eye. But they are there.” His 
discoveries were later utilized in wireless telegraphy by Guglielmo Marconi, and they 
formed a part of the new “radio communication age”. 
The second fundamental technology is spread-spectrum telecommunications, whose 
multiple access capability allows a large volume of users to communicate simultaneously on 
the same frequency band, as long as they use different spreading codes. This has been 
developed since the 1940s and used in military communication systems since the 1950s. 
Realization of spread-spectrum technology requires a large computational capacity and 
leads to a bulky size and weight. Since the initial commercial use of spread spectrum 
telecommunications began in the 1980s, it is now widely used in many familiar systems 
today, such as GPS, Wi-Fi, Bluetooth, and mobile phones. This was made possible by the 
invention of computing machines and integrated circuits, the third and fourth tremendous 
triumphs. 
The first automatic computing machine, known as ENIAC, was built using 18,000 vacuum 
tubes, 1,500 relays, 70,000 resistors, and 10,000 condensers. It performed 35,000 additions per O
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second and cost US$487,000 (Nohzawa, 2003). The latest CPU, the Yorkfield XE, contains 820 
million transistors on 2 × 107 mm² dies and features a 1333 MT/s FSB and a clock speed of 3 
GHz (Intel Corp., 2007). 
Since the first integrated circuit (IC), which contained a single transistor and several 
resistors on an 11 × 1.6 mm2 germanium chip, was fabricated by Jack Kilby in 1958, 
advanced 45 nm semiconductor technology makes it possible to condense an entire 
complicated spread-spectrum telecommunication system into a magic box as small as a 
mobile phone. 
Today, we are interconnected through wired and wireless networks, and surrounded by an 

invisible pervasive computing environment. This makes “information at your fingertips” 

and “commerce at light speed” possible. We are already acclimatized to enjoy everything 

worldwide conveniently, wherever we are. We enjoy online shopping and share information 

with friends from the other side of the Earth in an instant. 

However, this is a double-edged sword. Our daily lifestyle has changed dramatically. While 

we may benefit from the advantages of today’s society, at the same time, we face many 

unprecedented problems in the health domain, which have emerged with all of these 

changes. 

One of the greatest concerns is the ascent of chronic illness that has occurred concurrently 
with the accompanying lifestyle changes. Figure 1 shows the change in mortality among 
different diseases from acute to chronic over the past 100 years in Japan. There has not been 
a large change in conventional causes of death, such as contingency, caducity, and 
pneumonia. Acute infectious diseases, such as tuberculosis, have disappeared completely 
since the 1980s. However, death due to chronic conditions is increasing. The leading causes 
of death are the three “C” top killer diseases: cerebral, cardiovascular, and cancer (malignant 
neoplasm), which account for 60 per cent of total deaths. 
 

 

Fig. 1. Change in mortality of different diseases over the previous century in Japan. 
(Adapted from the Japanese Ministry of Health, Labour, and Welfare). 
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Rapid changes in both societal environment and daily lifestyle are responsible for most of 
these chronic illnesses. Treatment of chronic conditions is now recognized as a problem of 
all society and no longer just a private issue. To elevate all citizens’ awareness of the 
importance of health promotion and disease prevention in response to the steep increase in 
long-term healthcare requirements, it is indispensable to be involved in every aspect and to 
take creative action. A variety of innovative strategies and activities are now being explored 
nationwide in Japan at three levels: macro (administration), meso (community, organization, 
and company), and micro (personal) levels. 
At the macro level, a 12-year health promotion campaign, known as “Healthy Japan 21” 
(Japan Health Promotion and Fitness Foundation, 2000), has been advocated nationwide 
since 2000 and is financially supported by the Japanese Ministry of Health, Labour, and 
Welfare. Furthermore, a “health promotion law” (Japanese Ministry of Health, Labour and 
Welfare, 2002) was issued by the Japanese parliament. This reconfirmed that the national 
goal of medical insurance reconstruction was health promotion and disease prevention, and 
it defined individual responsibility and coordination among citizens, community, and 
government organizations. 
At the meso level, industrial organizations and research institutions have developed many 
Internet-based systems and related devices for daily healthcare. Professional organizations 
and academic associations have established a series of educational programs and 
accreditation systems for professional healthcare promoters. Citizen communities have 
boosted health promotion campaigns through various service options. 
At the micro level, more and more people are aware of the importance of health promotion 
and chronic prevention, and are becoming more active in participating in daily personal 
healthcare practices. They spend a lot of time and money on exercise, diet, and regular 
medical examinations to keep their biochemical indices as good as possible. 
This trend turns out that in the US only, the healthcare domain is now growing up into a 
giant industrial territory worthy of about US$2 trillion annually (MarketResearch.com. 
2008). In terms of building a better healthcare environment, and as one of the initiatives in 
the arena of human welfare in long-term chronic treatment, we are confronting the 
challenges of providing effective means for vital sign monitoring technologies suitable for 
daily use, and large-scale data mining and a comprehensive interpretation of their 
physiological interconnection. These solutions are being developed across the world. Many 
companies are already engaged in and placing priority on, providing a total solution to 
these ever-increasing demands. 
The “Health Data Bank” ASP service platform was released as a multifaceted aid for the 
health management of corporate employee medical exam results (NTT Data Corp., 2002). 
The service supplies healthcare personnel with a set of tools for effective employee health 
guidance and counselling, and takes into account factors such as an employee’s current 
physical condition, as well as living habits and environment, and age-related changes in 
longitudinal management in accumulated individual data. Individual corporate employees 
can browse their personal data through Internet channels, and view records of their check-
ups, as well as graphs detailing historical changes in their health condition, thus facilitating 
improved personal health management. 
Companies and research institutes in the European Union have launched several 
multinational projects to develop wearable and portable healthcare systems for personalized 
care. The “MyHeart” project is a framework for personal healthcare applications led by 
Philips, which aims to develop on-body sensors/electronics and appropriate services to help 
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fight cardiovascular disease through prevention and early diagnosis. It can monitor vital 
signs and physical movement via wearable textile technology, process the measured data, 
and provide the user with recommendations (Philips Electronics, 2004). After the 
completion of the “MyHeart” program, a continuation “HeartCycle” project began in March 
2008. Many new sensors and key technologies, such as a cuff-less blood pressure sensor, a 
wearable SpO2 sensor, an inductive impedance sensor, an electronic acupuncture system, a 
contactless ECG, arrays of electret foils, a motion-compensation system for ECG, and a cardiac 
performance monitor (from bioimpedance) will be developed and built into the system. A 
patient’s condition will be monitored using a combination of unobtrusive sensors built into the 
patient’s clothing or bed sheets and home appliances, such as weighing scales and blood 
pressure meters. Data mining and decision support approaches will be developed to analyse 
the acquired data, to predict the short-term and long-term effects of lifestyle and medication, 
and to obtain an objective indicator of patient compliance (Philips Electronics, 2008). 
“MobiHealth” was a mobile healthcare project funded by the European Commission from 

2002 to 2004. Fourteen partners from hospitals and medical service providers, universities, 

mobile network operators, mobile application service providers, mobile infrastructure, and 

hardware suppliers across five European countries participated in the project. It allowed 

patients to be fully mobile while undergoing health monitoring without much discomfort in 

daily activities. The patients wore a lightweight unit with multiple sensors connected via a 

Body Area Network (BAN) for monitoring ECG, respiration, activity/movement/position, 

and a plethysmogram over short or long periods with no need to stay in hospital (European 

Commission, 2002). 

The “AMON” system was designed to monitor and evaluate human vital signs, such as 
heart rate, two-lead ECG, blood pressure, oxygen blood saturation, skin perspiration, and 
body temperature using a wrist-mounted wearable device. The device gathers the data and 
transmits it to a remote telemedicine centre for further analysis and emergency care, using a 
GSM/UMTS cellular infrastructure (Anliker et al., 2004; European Commission, 2001). 
“HealthVault” aims to build a universal hub of a network to connect personal health devices 

and other services that can be used to help store, and manage personal medical information 

in a single central site on the Web (Microsoft Corp., 2008). It will provide a seamless 

connection interface scheme for various home health and wellness monitoring devices, such 

as sport watches, blood glucose monitors, and blood pressure monitors marketed by 

medical equipment manufacturers worldwide. 

On the other hand, many explorative studies on fundamental technology for vital signs 
monitoring have been conducted in the academic world and in research institutes. Much 
innovative instrumentation suitable in daily life has emerged and is gradually being 
commercialized. 
Since the first accurate recording of an ECG reported by Willem Einthoven in 1895, and its 
development as a clinical tool, variants, such as Holter ECG, event ECG, and ECG mapping 
are now well known and have found a variety of applications in clinical practice. 
Measurement of ECG is now available from various scenarios. Whenever a person sits on a 
chair (Lim et al., 2006) or on a toilet (Togawa et al., 1989), sleeps in a bed (Kawarada et al., 
2000; Ishijima, 1993), sits in a bathtub (Mizukami et al., 1989; Tamura et al., 1997), or even takes 
a shower (Fujii et al., 2002), his/her heart beat can be monitored, with the person unaware. 
The smart dress, “Wealthy outfit”, weaves electronics and fabrics together to detect the 
wearer’s vital signs, and transmits the data wirelessly to a computer. The built-in sensors 
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gather information on the wearer’s posture and movement, ECG, and body temperature. 
Despite having nine electrodes and conductive leads woven into it, the suit looks and feels 
completely normal (Rossi et al., 2008; Marculescu et al., 2003). 
The wellness mobile phone, “SH706iw”, manufactured by the Sharp Corp. (Japan), has been 
released by NTT DoCoMo Corp. (Japan) in September 2008. It will have all the standard 
features of a mobile phone but will also act as a pedometer, a body fat meter, a pulse rate, 
and a breath gas monitor. Moreover, a built-in game-like application will support daily 
health management for fun and amusement (Sharp Corp., 2008; DoCoMo Corp., 2008). 
According to an investigation report from the World Health Organization (WHO, 2002), 
most current healthcare systems still have some common issues that need to be addressed. 
(a) The difference between acute and chronic care is not sufficiently emphasized. The overall 
concept in system development has not shifted enough towards chronic conditions, and has 
not evolved to meet this changing demand. (b) Despite the importance of patients’ health 
behaviour and adherence to improvement for chronic conditions, patients are not provided 
with a simple way to involve themselves in self-management and to have essential 
information to handle their condition to the best extent possible. (c) Patients are often 
followed up sporadically, and are seldom provided with a long-term management plan for 
chronic conditions to ensure the best outcomes. 
Indeed, they are large obstacles in front of us that need to be cleared. We consider these 
issues a long-term difficult challenge to governments, communities, and individuals alike. 
We deem two main aspects should be paid primary attention. The first aspect is that vital-
sign monitoring for chronic conditions requiring different philosophy and strategy tends to 
be ignored. Long-term chronic care is mostly oriented to untrained users in the home 
environment. However, many devices are far from being “plug and play”, and require 
tedious involvement in daily operation. The second aspect is the lack of interconnection 
between multifarious physiological data within existing medical systems, as medication is 
usually decided by interpretation based on fragmented data and standards based on acute 
and emergent symptoms, and is often provided without the benefit of complete long-term 
physiological data. 
To meet current needs, and to tackle the two problems above, our studies focus on 
developing a series of wearable/invisible vital-sign measurement technologies to facilitate 
data collection in the daily environment in perpetuity, and on applying data mining 
algorithms to conduct comprehensive interpretation of multifarious long-term data fusion, 
and ultimately to build a scalable healthcare integrated platform, SHIP, for various 
applicable domains, wherever vital signs are conducive. 

2. Methods and results 

Our studies included developing a series of instrumental technologies and data mining 
mathematical algorithms to construct finally a versatile platform, SHIP, integrated with 
wired and wireless network technologies. The following paragraphs describe an overall 
vision of SHIP and introduce three related constitutional technologies that we have been 
developing since 2002 (Chen et al., 2004). 

2.1 SHIP 
SHIP was conceived to provide three functions: (a) detection (monitoring multifarious vital 
signs by wearable/invisible means, (b) analysis (comprehensive interpretation of long-term 
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physiological data using data mining mathematics), and (c) service (providing customizable 
services to various human activity fields by a combination of multiple key technologies). 
As shown in Fig. 2, SHIP was constructed in a three-layer model which was supported by 
five pillars and many bricks. 
 

 

Fig. 2. Systemic architecture of the scalable healthcare integrated platform is founded on 
bricks, and supported by five pillars in a three layers structure. A variety of application 
domains can be created using the SHIP. 

The first layer consists of a series of bricks for physiological data detection in three orders. 
Each brick in the first order can be considered as being a wearable/invisible measurement 
method, which can be used either indoors or outdoors, either awake or asleep. While each 
brick in the second and third orders indicates a data mining approach to derive information 
from the other bricks. The direct measurement signals are denoted as first-order vital signs. 
Second-order vital signs, such as heart rate, are derived from the first-order parameters. 
Third-order signs originate from the first- and second-order parameters. 
Some of direct measurement objects are: pressure, voice, gas, temperature, ECG, 

acceleration, plethysmogram, and urine. The second-order vital signs are derived from the 

first-order vital signs, such as the QRS width and heart rate from ECG, the pulse rate and 

breathing rate from the pressure (Chen et al., 2005), posture and body movement from 

acceleration (Zhang et al., 2007), and pulse wave transit time from the ECG and 

plethysmogram. The third-order vital signs are derived from both the second-order and the 

first-order vital signs. For example, the variability in heart rate is derived from the heart rate 

profile. The female menstrual cycle is estimated from the body temperature (Chen et al., 

2008a), and the variation in blood pressure is estimated from the pulse wave transit time 

(Chen et al., 2000). Changes in these parameters are indicators of specific ailments, such as 

arrhythmia from the variability in heart rate, somnipathy from body movements and sleep 

stage, and respiration obstruction from SpO2. We combined the directly measured and 

derived parameters to treat related illnesses such as cardiovascular disease, obesity, and 

respiratory obstruction. 
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Data mining mathematics for data analysis resides in the second layer. Most of statistical 
approaches and data warehouse technologies are applicable to conduct a comprehensive 
exploitation of the large volume of long-term accumulated physiological data. Innovative 
findings and understanding from this layer will be one of five pillars to support various 
application domains. 
The third layer consists of three pillars and is responsible for data communication and 
management through wireless and wired networking technology. Bluetooth telemetry 
technology is adopted as one pillar to support short-range wireless communication of data 
between sensor devices and home units or mobile phones. Mobile telephony and the 
Internet are two other pillars and used for wide-range data telecommunication and 
management. 
SHIP has four characteristic features. (a) Its ubiquity makes it possible to detect and collect 
vital signs either asleep (unconscious status) or awake (conscious status), and either 
outdoors or indoors through wearable/invisible measurements and wired or wireless 
networks. (b) Its scalability allows users to customize their special package to meet 
individual needs, and also service providers to match different requests from 
medical/clinical use, industries, government agencies, and academic organizations through 
a variety of partnership options. (c) Its hot-line connectivity is realized by either mobile 
telephony or Internet (indoors or outdoors) and guarantees that any emergent event can be 
captured and responded to in real time. (d) Its interoperability is provided through a data 
warehouse that is configured in two formats. An exclusive format maintains security and 
enables high-speed data transmission within SHIP, and an externally accessible format 
ensures that SHIP is open to other allied systems through the HL7 standard (Health Level 
Seven Inc., 1997) to provide a seamless interface that is compatible with other existing 
medical information systems. 
SHIP is intended to create a flexible platform for the exchange, management, and 
integration of long-term data collected from a wide spectrum of users, and to provide 
various evidence-based services to diverse domains. Subjects in target services are not only 
elderly and active seniors in healthcare but also subjects such as pharmaceutical houses for 
therapeutic effect tracing, insurance companies involved in risk assessment and claim 
transactions, transportation system drivers, fire fighters, and policemen involved in public 
security. 
The layer and brick model in the SHIP architecture makes it possible to integrate many 
elementary achievements from ourselves and co-workers. Three different types of 
fundamental instrumentation (invisible/wearable/ubiquitous) and the results of data 
mining from our studies are introduced in the following sections. 

2.2 Invisible sleep monitor 
Invisible measurement means that a sensor unit can be deployed in an unoccupied area and 
is unobtrusive and concealable. Monitoring of vital signs can be performed in an invisible 
way, such that a user is unaware of its existence and does not have to take care that the 
device is present at all. 
A schematic illustration of invisible sleep monitoring is shown in Fig. 3. There is a sensor 
plate and a bedside unit in the system configuration. A sensor unit is placed beneath a 
pillow, which is stuffed with numerous fragments of soft comfortable materials formed 
from synthetic resins. Two incompressible polyvinyl tubes, 30 cm in length and 4 mm in 
diameter, are filled with air-free water preloaded to an internal pressure of 3 kPa and set in 
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parallel at a distance of 11 cm from each other. A micro tactile switch (B3SN, Omron Co. 
Ltd) is fixed along the central line between the two parallel tubes. The two tubes above and 
the micro switch are sandwiched between two acrylic boards, both 3 mm thick. One end of 
each tube is hermetically sealed and the other end is connected to a liquid pressure sensor 
head (AP-12S, Keyence Co. Ltd). The inner pressure in each tube includes static and 
dynamic components, and changes in accordance with respiratory motion and cardiac 
beating. The static pressure component responds to the weight of the user’s head, and acts 
as a load to turn on a micro tactile switch. The dynamic component reflects the weight 
fluctuation of the user’s head due to breathing movements and pulsatile blood flow from 
the external carotid arteries around the head. Pressure signals beneath the near-neck and 
far-neck occiput regions are amplified and band-pass filtered (0.16–5 Hz), and the static 
component is removed from the signal. Only the dynamic component is digitized at a 
sampling rate of 100 Hz and transmitted to a remote database server through an Internet 
connection. The tactile switch is pressed to turn on a DC power supply via a delay switch 
(4387A-2BE, Artisan Controls Corp.) when the user lies down to sleep and places his/her 
head on the pillow. 

 

Fig. 3. Schematic illustration of the invisible monitoring of vital signs during sleep. A sensor 
plate is placed beneath a pillow. Signals reflecting pressure changes under the pillow are 
detected, digitized, and transmitted to a database server via the Internet by a bedside unit. 

A 60 s fragment of raw signal measured under the near-neck occiput region during sleep is 
shown in Fig. 4(a). The breathing rate (BR), heart rate (HR), and body movements can be 
detected from the raw data measurements. 
The BR and HR are detected by wavelet transformation on a dyadic grid plane using a 
multiresolution procedure, which is implemented by a recursive à trous algorithm. The 
Cohen–Daubechies–Fauraue (CDF) (9, 7) biorthogonal wavelet is the basis function used to 
design the decomposition and reconstruction filters (Daubechies, 1992). The raw measured 
signal is decomposed into an approximation and multiple detailed components through a 
cascade of filter banks (Mallat & Zhong, 1992; Shensa, 1992). Further mathematical theories 
can be found in Daubechies, 1992 and Akay, 1998. Implementation details are given in Chen 
et al., 2005, and Zhu et al., 2006. 
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The wavelet transformation (WT) of a signal, )(tx , is defined as follows: 

 1
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where s  is the scale factor and )(tψ  is the wavelet basis function. This is called a dyadic 

WT if 
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s 2= ( Zj ∈  and Z is the integral set). Two filter banks, the low-pass and high-pass 

decomposition filters H0 and H1, and associated reconstruction filters, G0 and G1, can be 
derived from the wavelet basis function and its scaling function, respectively. Using Mallat’s 
algorithm, the dyadic WT of the digital signal, )(nx , can be calculated as follows: 
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extracted from x(n) (or )(02
nxA ) using equations (2-2-2) and (2-2-3) recursively. The 12 −j  

scale approximation signal can also be reconstructed from the j2  scale approximation and 
the detail component: 
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where g0 and g1 are the filter coefficients of G0 and G1, respectively. The terms )(ˆ nx  

(or )(ˆ
02

nxA ) can be finally reconstructed by repeatedly using equation (2-2-4). Any noise in 

)(
2

nxD j
 can be removed using a soft or hard threshold method before )(ˆ

12
nxA j−  is 

reconstructed. It should be pointed out that the sampling rate of the j2  scale approximation 
and detail is j

s 2/f , where fs is the sampling rate of the raw signal. 

Because the 26 scale approximation waveform is close to a human breathing rhythm, while 
the detail waveforms of both the 24 and 25 scales contain peaks similar to those of human 
heartbeats, the 26 scale approximation component, A6, is used to reconstruct the waveform 
for obtaining the BR, and the D4 and D5 detail components at the 24 and 25 scales are 
combined into a single synthesized waveform and then reconstructed to detect the HR. 
Figure 4(b) shows the reconstructed waveforms for HR detection, and Fig. 4(c) shows the 
reconstructed waveforms for BR detection. 
During a night’s sleep, over a period of 4–8 h, a regular pulsation due to either the heart 
beating or breathing is not always detectable. Body movements may greatly distort the 
pressure variation signal pattern. In such a time slot, either the BR or the HR, and 
sometimes even both, are barely detectable. Instead, body movements are detected using 
a statistical method in such time slots. If a very large change, whose absolute value is four 
times larger than the standard deviation of the preceding detected movement-free raw 
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signal, is detected in the incoming signal, the preceding and succeeding 2.5 s periods from 
the movement detection point are treated as being body movement periods and not used 
to estimate the BR and HR. Detection of the BR is more sensitive to body movements than 
detection of the HR is. 
 

 

Fig. 4. A body movement-free sample and the detected BR and HR beat-by-beat. (a) The raw 
pressure signal data measured under the near-neck occiput region. (b) The pulse-related 
waveform reconstructed from the D4 and D5 components. (c) The breath-related waveform 
reconstructed from the A6 component. The open circles indicate the detected characteristic 
points for BR/HR determination. 

Figure 5(a) shows a 60 s segment of a raw signal, which includes body movement during 

unstable sleep. When the pressure signal is distorted by a body movement, the periods 

detected that are from two reconstructed waveforms (HR-related and BR-related) are not 

always identical in both time and length. Because HR detection is usually more robust than 

BR detection, body movement detection from reconstructed BR-related waveforms is longer 

than that from HR-related waveforms. The final body movement outcome is an OR 

operation of both results. In the case shown in Fig. 5, the body movement period in terms of 

HR-related waveform detection is counted as 15.4 s, while that in terms of BR is 35.9 s. The 

final body movement outputs as 37.8 s from the OR operation of both results in the time 

domain. 

Figure 6 shows a profile of the BR and the HR obtained from measurements over a single 

night. The vertical axis denotes the BR/HR in units of breaths per minute or beats per 

minute (bpm). The black dots and vertical bars, terminated at the upper and lower ends by 

short horizontal lines, show the mean values and standard deviation on a beat-by-beat basis 

for the HR and a breath-by-breath basis for the BR for each minute. Discontinuities in the 

estimation of the BR/HR are denoted by the vertical bars occurring sporadically over time, 

and their widths denote periods of body movement. The broader vertical bars correspond to 

longer body movement periods. 
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Fig. 5. An example of body movement in which both the BR and the HR are not fully 
detectable in a given period with different spans. The horizontal arrows indicate the body 
movement period in seconds. (a) Measured pressure signal distorted by body movements. 
(b) Reconstructed waveform and detected HR, as well as the detected body movement 
period. (c) Reconstructed waveform and detected BR as well as the detected body 
movement period. 

 

Fig. 6. Two profiles of the BR/HR obtained from measurements over a single night. The 
solid dots and vertical bars, terminated at the upper and lower ends by short horizontal 
lines, show the mean values and standard deviation within a period of one minute. The 
body movement periods are indicated by the variable-width vertical bars. 
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Figure 7 shows the complete profiles of the BR and HR during sleep over a period of 180 
nights. The data were collected from a healthy female volunteer in her thirties at her own 
house over a period of seven months, under an informed agreement for the use of the data 
for research purposes. During this period, data over about 30 d were not measured. 
Therefore, data from a period of 180 d were recorded. The data are plotted on a day-by-day 
basis. The vertical axis represents the BR/HR in units of bpm. The symbols and vertical 
bars, terminated at the upper and lower ends by short horizontal lines, show the mean 
values and standard deviation of the detected HR (o) and the BR (*) in the corresponding 
night. The bold line is derived by filtering the mean values of the HR using a five-point 
Hanning window. The dashed line is an empirical estimate to indicate the possible trend of 
the average day base heart rate during those nights when data were not measured. 
Surprisingly, it is observed that the profile of the mean heart rate probably reveals a periodic 
property that corresponds to the female monthly menstrual cycle. 
 

 

Fig. 7. Two complete profiles of the BR/HR over 180 nights. Data are plotted on a day-by-
day basis. The symbols and vertical bars, terminated at the upper and lower ends by short 
horizontal lines, show the mean values and standard deviation of the detected HR (o) and 
the BR (*) in the corresponding night. 

The devised system is completely invisible to the user during measurements. “Plug is all” is 
one of its significant characteristics in securing perpetuity in data collection. All a user has to 
do is just to plug in an AC power cable and a LAN cable. A user can even forget the existence 
of the device and perform no other operation once it is installed beneath a pillow on a bed. 
This property will substantially enhance its feasibility and usability in the home environment. 
A subtle variation in pressure under the pillow is detected as a first-order signal. The 
BR/HR and body movements are derived as second-order parameters. Sleep stage 
estimation, assessment of sleep quality, and biphasic menstrual cycle properties are third-
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order parameters. In the end, a comprehensive interpretation of the multiple parameters 
obtained and a fully automatic operation property would increase its applicability in sleep 
lab studies, and also for screening patients who do not need a full sleep diagnosis at an early 
stage. 

2.3 Wearable monitor for body temperature 
Body temperature is one of the most important barometers indicating human health status. 
Moreover, the basal body temperature (BBT) is usually used for women to help estimate 
ovulation and to manage menstruation. However, a reliable evaluation of the menstrual 
cycle based on the BBT requires measurement of a woman’s temperature under constant 
conditions for long periods. It is indeed a tedious task for a woman to measure her oral or 
armpit temperature under similar conditions when she wakes up every morning over a long 
period, because it usually takes an average of 5 min to measure temperature orally, or 10 
min under the armpit. Moreover, the traditional method for evaluating ovulation or 
menstrual cycle dynamics in clinical practice is often based on a physician’s empirical 
observations on serial measurements of BBT. It has been pointed out that the BBT failed to 
demonstrate ovulation in approximately 20% of ovulation cycles among 30 normally 
menstruating women (Moghissi, 1980). To improve user accessibility and the accuracy of the 
application of the BBT, we have developed a tiny wearable device for cutaneous 
temperature measurements and a Hidden Markov Model (HMM) based a statistical 
approach to estimate the biphasic properties of body temperature during the menstrual 
cycle using a series of cutaneous temperature data measured during sleep. 
The wearable monitor can be attached to a woman’s underwear or brassiere when asleep to 
measure the cutaneous temperature around the abdominal area or between the breasts, as 
shown in Fig. 8. 

 

Fig. 8. A small, light wearable device (size = 41 × 84 × 17 mm3, weight = 59 g) for cutaneous 
temperature measurements during sleep (QOL Co. Ltd., 2008). 
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The device is programmed to measure temperature over 10 min intervals from midnight to 6 
am. At most, 37 data points can be collected during the six hours. Outliers above 40 °C or 
below 32 °C are ignored. The collected temperature data are encoded in a two-dimensional bar 
code, known as “Quick Response” code (QR code) (Denso Wave Inc., 2000) and depicted on 
an LCD display. As shown in Fig. 9, the user uses the camera built into a mobile phone to 
capture the QR code image (a) on the device display (shown in the circle on the left-hand side 
of Fig. 9). Once the QR code is captured into the mobile phone (b), the original temperature 
data (c) are recovered from the captured image and transmitted to a database server via the 
mobile network for data storage and physiological interpretation through data mining. 

 

Fig. 9. A procedure for temperature data collection using a wearable sensor and a mobile 
phone. (a) A QR code image. (b) A QR code captured by a camera built into a mobile phone. 
(c) Original data recovered from the image captured by a mobile phone (QOL Co. Ltd., 
2008). 

The temperature data measured during sleep over a six-month period are shown in Fig. 
10(a). The nightly data are plotted in the vertical direction and have a range of 32 to 40 °C. 
The purpose of data mining in this study was to estimate the biphasic properties in the 
temperature profile during the menstrual cycle from cutaneous temperature measurements. 
As shown in Fig. 11, the biphasic properties of the menstrual cycle can be modelled as a 
discrete Hidden Markov Model (HMM) with two hidden phases. The measured 
temperature data are considered to be observations being generated by the Markov process 
from an unknown phase: either a low-temperature (LT) phase or a high-temperature (HT) 
phase, according to the probability distribution. The probability bL(k) is indicative that the 
value k is generated from the hidden LT phase. The probability bH(k) is indicative that the 
value k is generated from the hidden HT phase. The probability aii is indicative of a hidden 
phase transition between LT and HT phases. 
Figure 10(b) shows the results after pre-processing to removing outliers from the raw data 
and eliminating any discontinuities from non-data-collection days. Figure 10(c) shows the 
HMM estimation output using the pre-processed data from Fig. 10(b) as the input. Figure 
10(d) shows the estimation of the biphasic properties after post-processing. The 
superimposed black symbols “*” denote the menstrual periods recorded by the user. A 
transition from the HT phase to the LT phase denotes a menstrual period, while the reverse 
transition denotes ovulation. 
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Fig. 10. Estimation procedure of a biphasic temperature profile. (a) Raw temperature data 
measured over a period of six months. (b) Pre-processed results. (c) Biphasic estimation 
based on an HMM approach. (d) Post-processed results. The symbol “*” denotes a 
menstrual period recorded by the user. 

 

 

Fig. 11. A discrete hidden Markov model with two hidden phases for estimating biphasic 
property in a menstrual cycle from cutaneous temperature measurements. 

The biphasic properties shown in Fig. 10(c) were estimated by finding an optimal HMM 
parameter set that determines the hidden phase from which each datum arises. This is based 
on a given series of measured temperature data, as shown in Fig. 10(b). The parameter set 

λ(A,B,π) is assigned randomly in the initial condition and optimized through the forward–
backward iterative procedure until P(O|λ) converges to a stable maximum value or until 
the absolute logarithm of the previous and current difference in P(O|λ) is not greater than δ. 

a 

b 

c 

d 
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The algorithm for calculating the forward variable, α, the backward variable, β, and the 
forward–backward variable, γ, are shown in equations (2-3-1) to (2-3-3). 
The forward variable, αt(i), denotes the probability of phase, qi, at time, t, based on a partial 
observation sequence, O1,O2,…,Ot, until time t, and can be calculated using the following 
steps for a given set of λ(A,B,π). 

( ) ( )λα |,,...,, 21 ittrt qiOOOPi ==  

( ) ( ) 1,1,11 =≤≤= tNiObi iiπα
 

 ( ) ( ) ( )1 1
1

, 1 , 1, 2,..., 1
N

t t ij j t
i

j i a b O j N t Tα α+ +=
⎡ ⎤= ≤ ≤ = −⎢ ⎥⎣ ⎦∑   (2-3-1) 

The backward variable, βt(i), denotes the probability of phase, qi, at time, t, based on a partial 
observation sequence, Ot+1,Ot+2,…,OT, from time t+1 to T, and can be calculated using the 
following steps for a given set of λ(A,B,π). 

( ) ( )λβ ,|,...,, 21 itTttrt qiOOOPi == ++  

( ) TtNiiT =≤≤= ,1,1β  

 ( ) ( ) ( )1 1
1

, 1 , 1, 2,...,1
N

t ij j t t
j

i a b O j i N t T Tβ β+ +=
= ≤ ≤ = − −∑  (2-3-2) 

To find the optimal sequence of hidden phases for a given observation sequence, O, and a 
given model, λ(A,B,π), there are multiple possible optimality criteria. 
Choosing the phases, qt, that are individually most likely at each time, t, i.e., maximizing 

P(qt = i|O,λ), is equivalent to finding the single best phase sequence (path), i.e., maximizing 
P(Q|O,λ) or P(Q,O|λ). The forward–backward algorithm is applied to find the optimal 
sequence of phases, qt, at each time, t, i.e., to maximize γt(i) = P(qt = i|O,λ) for a given 
observation sequence, O, and a given set of λ(A,B,π). 
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 (2-3-3) 

The most likely phase, qt* at time t can be found as: 
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 ( )*

1

arg max , 1
t t

i N

q i t Tγ
≤ ≤

= ≤ ≤⎡ ⎤⎣ ⎦ . (2-3-4) 

As there are no existing analytical methods for optimizing λ(A,B,π), P(O|λ) or P(O,I|λ) is 
usually maximized (i.e., ( )[ ]λλ

λ
|maxarg*

OP=  or ( )[ ]λλ
λ

|,maxarg
*

QOP= ) using gradient 

techniques and an expectation-maximization method. In this study, the Baum–Welch 
method was used because of its numerical stability and linear convergence (Rabiner, 1989). 

To update λ(A,B,π) using the Baum–Welch re-estimation algorithm, we defined a variable, 
 ξt(i,j), to express the probability of a datum being in phase i at time t and phase j at time t+1, 
given the model and the observation sequence: 

 ( ) ( ) ( )( )1

1

, , |
, , | ,

|

t t

t t t

P q i q j O
i j P q i q j O

P O

λξ λ λ+
+

= == = = = .  (2-3-5) 

From the definitions of the forward and backward variables, ξt(i,j) and γt(i), can be related 

as: 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1 1

1 1
1 1

,
|

t ij j t t t ij j t t

t N N
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i j
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α β α βξ λ α β
+ + + +
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 ( ) ( ) ( ) ( )1
1 1

| , , | , ,
N N

t t t t t
j j

i P q i O P q i q j O i jγ λ λ ξ+= =
= = = = = =∑ ∑ ,  (2-3-7) 

where ( )∑−

=

1

1

T

t

t iγ  denotes the expected number of transitions from phase i in O. The term 

( )∑−

=

1

1

,
T

t

t jiξ  denotes the expected number of transitions from phase i to phase j in O. 

Therefore, λ(A,B,π) can be updated using equations (2-3-8) to (2-3-10) as follows. 
As πi is the initial probability and denotes the expected frequency (number of times) in 

phase i at time t = 1 as πi = γ1(i), it can be calculated using the forward and backward 

variables. 

 
( ) ( )

( ) ( )
( ) ( )

( )
1 1 1 1

1 1
1 1

i N N

T
i i

i i i i

i i i

α β α βπ α β α
= =

= =∑ ∑  , (2-3-8) 

The transition probability from phase i to phase j, aij, can be calculated from the expected 

number of transitions from phase i to phase j divided by the expected number of transitions 

from phase i. 
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1 1
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,
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∑ ∑ ,  (2-3-9) 
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