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Introduction to the book
There’s a lot of excitement about Bitcoin and cryptocurrencies. We hear about startups, 
investments,
meetups, and even buying pizza with Bitcoin. Optimists claim that Bitcoin will fundamentally 
alter
payments, economics, and even politics around the world. Pessimists claim Bitcoin is inherently
broken and will suffer an inevitable and spectacular collapse.
Underlying these differing views is significant confusion about what Bitcoin is and how it 
works. We
wrote this book to help cut through the hype and get to the core of what makes Bitcoin 
unique.
To really understand what is special about Bitcoin, we need to understand how it works at a 
technical
level. Bitcoin truly is a new technology and we can only get so far by explaining it through 
simple
analogies to past technologies.
We’ll assume that you have a basic understanding of computer science — how computers work,
data
structures and algorithms, and some programming experience. If you’re an undergraduate or
graduate student of computer science, a software developer, an entrepreneur, or a 
technology
hobbyist, this textbook is for you.
In this series of eleven chapters, we’ll address the important questions about Bitcoin. How 
does
Bitcoin work? What makes it different? How secure are your bitcoins? How anonymous are 
Bitcoin
users? What applications can we build using Bitcoin as a platform? Can cryptocurrencies be
regulated? If we were designing a new cryptocurrency today, what would we change? What 
might the
future hold?
Each chapter has a series of homework questions to help you understand these questions at a 
deeper
level. We highly recommend you work through them. In addition, there is a series of five
programming assignments in which you’ll implement various components of Bitcoin in simplified
models. If you’re an auditory learner, most of the material of this book is also available as a
series of
video lectures. You should also supplement your learning with information you can find online
including the Bitcoin wiki, forums, and research papers, and by interacting with your peers 
and the
Bitcoin community.
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Chapter 1: Introduction to Cryptography & Cryptocurrencies 
All currencies need some way to control supply and enforce various security properties to prevent 

cheating. In fiat currencies, organizations like central banks control the money supply and add 

anti-counterfeiting features to physical currency. These security features raise the bar for an attacker, 

but they don’t make money impossible to counterfeit. Ultimately, law enforcement is necessary for 

stopping people from breaking the rules of the system.  

Cryptocurrencies too must have security measures that prevent people from tampering with the state 

of the system, and from equivocating, that is, making mutually inconsistent statements to different 

people. If Alice convinces Bob that she paid him a digital coin, for example, she should not be able to 

convince Carol that she paid her that same coin. But unlike fiat currencies, the security rules of 

cryptocurrencies need to be enforced purely technologically and without relying on a central 

authority.  

As the word suggests, cryptocurrencies make heavy use of cryptography. Cryptography provides a 

mechanism for securely encoding the rules of a cryptocurrency system in the system itself. We can 

use it to prevent tampering and equivocation, as well as to encode the rules for creation of new units 

of the currency into a mathematical protocol. Before we can properly understand cryptocurrencies 

then, we’ll need to delve into the cryptographic foundations that they rely upon.  

Cryptography is a deep academic research field utilizing many advanced mathematical techniques 

that are notoriously subtle and complicated to understand. Fortunately, Bitcoin only relies on a 

handful of relatively simple and well-known cryptographic constructions. In this chapter, we’ll 

specifically study cryptographic hashes and digital signatures, two primitives that prove to be very 

useful for building cryptocurrencies. Future chapters will introduce more complicated cryptographic 

schemes, such as zero-knowledge proofs, that are used in proposed extensions and modifications to 

Bitcoin. 

Once we’ve learnt the necessary cryptographic primitives, we’ll discuss some of the ways in which 

those are used to build cryptocurrencies. We’ll complete this chapter with some examples of simple 

cryptocurrencies that illustrate some of the design challenges that we need to deal with. 

1.1 Cryptographic Hash Functions 
The first cryptographic primitive that we’ll need to understand is a ​cryptographic hash function​.​ A 

hash function​ is a mathematical function with the following three properties: 

● Its input can be any string of any size. 

● It produces a fixed size output. For the purpose of making the discussion in this chapter 

concrete, we will assume a 256-bit output size. However, our discussion holds true for any 

output size as long as it is sufficiently large. 

● It is efficiently computable. Intuitively this means that for a given input string, you can figure 
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out what the output of the hash function is in a reasonable amount of time. More technically, 

computing the hash of an ​n​-bit string should have a running time that is O(​n​). 

Those properties define a general hash function, one that could be used to build a data structure such 

as a hash table. We’re going to focus exclusively on ​cryptographic​ hash functions. For a hash function 

to be cryptographically secure, we’re going to require that it has the following three additional 

properties: (1) collision-resistance, (2) hiding, (3) puzzle-friendliness. 

We’ll look more closely at each of these properties to gain an understanding of why it’s useful to have 

a function that behaves that way. The reader who has studied cryptography should be aware that the 

treatment of hash functions in this book is a bit different from a standard cryptography textbook. The 

puzzle-friendliness property, in particular, is not a general requirement for cryptographic hash 

functions, but one that will be useful for cryptocurrencies specifically. 

Property 1: Collision-resistance.​ The first property that we need from a cryptographic hash function is 

that it’s collision-resistant. A collision occurs when two distinct inputs produce the same output. A 

hash function ​H(.) ​is collision-resistant if nobody can find a collision. Formally: 

Collision-resistance: ​A hash function​ H​ is said to be collision resistant if it is infeasible to find​ ​two 
values, ​x​ and ​y​, such that ​x ​≠​ ​y​, yet ​H(x)​=​H(y)​. 

 

 

Figure 1.1 A hash collision. ​x ​and ​y​ are distinct values, yet when input into hash function ​H​, they 

produce the same output.  

Notice that we said ​nobody can find ​a collision, but we did not say that no collisions exist. Actually, we 

know for a fact that collisions do exist, and we can prove this by a simple counting argument. The 

input space to the hash function contains all strings of all lengths, yet the output space contains only 

strings of a specific fixed length. Because the input space is larger than the output space (indeed, the 

input space is infinite, while the output space is finite), there must be input strings that map to the 

same output string. In fact, by the Pigeonhole Principle there will necessarily be a very large number 

of possible inputs that map to any particular output.  



 

Figure 1.2​ ​Because the number of inputs exceeds the number of outputs, we are  guaranteed that 

there must be at least one output to which the hash function maps more than one input. 

 

Now, to make things even worse, we said that it has to be impossible to find a collision. Yet, there are 

methods that are guaranteed to find a collision. Consider the following simple method for finding a 

collision for a hash function with a 256-bit output size: pick 2​256​ + 1 distinct values, compute the 

hashes of each of them, and check if there are any two outputs are equal. Since we picked more 

inputs than possible outputs, some pair of them must collide when you apply the hash function. 

The method above is guaranteed to find a collision. But if we pick random inputs and compute the 

hash values, we’ll find a collision with high probability long before examining  2​256​ + 1 inputs. In fact, if 

we randomly choose just 2​130​ + 1 inputs, it turns out there’s a 99.8% chance that at  least two of them 

are going to collide. The fact that we can find a collision by only examining roughly the square root of 

the number of possible outputs results from a phenomenon in probability known as the ​birthday 

paradox​. In the homework questions at the end of this chapter, we will examine this in more detail.  

This collision-detection algorithm works for every hash function. But, of course, the problem with it is 

that this takes a very, very long time to do. For a hash function with a 256-bit output, you would have 

to compute the hash function 2​256 ​+ 1 times in the worst case, and about 2​128​ times on average. That’s 

of course an astronomically large number — if a computer calculates 10,000 hashes per second, it 

would take more than one octillion (10​27​) years to calculate 2​128​ hashes! For another way of thinking 

about this, we can say that, if every computer ever made by humanity was computing since the 

beginning of the entire universe, up to now, the odds that they would have found a collision is still 

infinitesimally small. So small that it’s way less than the odds that the Earth will be destroyed by a 

giant meteor in the next two seconds.  

We have thus seen a general but impractical algorithm to find a collision for ​any ​hash function. A 

more difficult question is: is there some other method that could be used on a particular hash 

function in order to find a collision? In other words, although the generic collision detection algorithm 

is not feasible to use, there still may be some other algorithm that can efficiently find a collision for a 

specific hash function. 

Consider, for example, the following  hash function: 



(x)  mod 2H = x 256  

This function meets our requirements of a hash function as it accepts inputs of any length, returns a 

fixed sized output (256 bits), and is efficiently computable. But this function also has an efficient 

method for finding a collision. Notice that this function just returns the last 256 bits of the input. One 

collision then would be the values 3 and 3 + 2​256​. This simple example illustrates that even though our 

generic collision detection method is not usable in practice, there are at least some hash functions for 

which an efficient collision detection method does exist. 

Yet for other hash functions, we don’t know if such methods exist. We suspect that they are collision 

resistant. However, there are no hash functions ​proven​ to be collision-resistant. The cryptographic 

hash functions that we rely on in practice are just functions for which people have tried really, really 

hard to find collisions and haven’t yet succeeded. In some cases, such as the old MD5 hash function, 

collisions were eventually found after years of work, leading the function to be deprecated and 

phased out of practical use. And so we choose to believe that those are collision resistant.  

Application: Message digests​ ​Now that we know what collision-resistance is, the logical question is: 

What is collision-resistance useful for? Here’s one application: If we know that two inputs x and y to a 

collision-resistant hash function ​H ​have different hashes, then it’s safe to assume that ​x​ and ​y​ are 

different — if someone knew an ​x​ and ​y​ that were different but had the same hash, that would violate 

our assumption that ​H​ is collision resistant.  

This argument allows us to use hash outputs as a ​message digest​. Consider SecureBox, an 

authenticated online file storage system that allows users to upload files and ensure their integrity 

when they download them. Suppose that Alice uploads really large file, and wants to be able to verify 

later that the file she downloads is the same as the one she uploads. One way to do that would be to 

save the whole big file locally, and directly compare it to the file she downloads. While this works, it 

largely defeats the purpose of uploading it in the first place; if Alice needs to have access to a local 

copy of the file to ensure its integrity, she can just use the local copy directly. 

Collision-free hashes provide an elegant and efficient solution to this problem. Alice just needs to 

remember the hash of the original file. When she later downloads the file from SecureBox, she 

computes the hash of the downloaded file and compares it to the one she stored. If the hashes are 

the same, then she can conclude that the file is indeed the one she uploaded, but if they are different, 

then Alice can conclude that the file has been tampered with. Remembering the hash thus allows her 

to detect ​accidental​ corruption of the file during transmission or on SecureBox’s servers, but also 

intentional​ modification of the file by the server. Such guarantees in the face of potentially malicious 

behavior by other entities are at the core of what cryptography gives us. 

The hash serves as a fixed length digest, or unambiguous summary, of a message. This gives us a very 

efficient way to remember things we’ve seen before and recognize them again. Whereas the entire 

file might have been gigabytes long, the hash is of fixed length, 256-bits for the hash function in our 

example. This greatly reduces our storage requirement. Later in this chapter and throughout the 

book, we’ll see applications for which it’s useful to use a hash as a message digest. 



Property 2: Hiding ​The second property that we want from our hash functions is that it’s ​hiding​. The 

hiding property asserts that if we’re given the output of the hash function ​y ​= ​H(x)​, there’s no feasible 

way to figure out what the input, ​x​, was. The problem is that this property can’t be true in the stated 

form. Consider the following simple example: we’re going to do an experiment where we flip a coin. If 

the result of the coin flip was heads, we’re going to announce the hash of the string “heads”. If the 

result was tails, we’re going to announce the hash of the string “tails”.  

We then ask someone, an adversary, who didn’t see the coin flip, but only saw this hash output, to 

figure out what the string was that was hashed (we’ll soon see why we might want to play games like 

this). In response, they would simply compute both the hash of the string “heads” and the hash of the 

string “tails”, and they could see which one they were given. And so, in just a couple steps, they can 

figure out what the input was.  

The adversary was able to guess what the string was because there were only two possible values of 

x, and it was easy for the adversary to just try both of them. In order to be able to achieve the hiding 

property, it needs to be the case that there’s no value of ​x​ which is particularly likely. That is, ​x​ has to 

be chosen from a set that’s, in some sense, very spread out. If ​x​ is chosen from such a set, this method 

of trying a few values of x that are especially likely will not work. 

The big question is: can we achieve the hiding property when the values that we want do not come 

from a spread out set as in our “heads” and “tails” experiment? Fortunately, the answer is yes! So 

perhaps we can hide even an input that’s not spread out by concatenating it with another input that ​is 

spread out. We can now be slightly more precise about what we mean by hiding (the double vertical 

bar ‖ denotes concatenation). 

Hiding.​ A hash function H is hiding if: when a secret value ​r​ is chosen from a probability distribution 
that has ​high min-entropy​, then given ​H(r ‖ x)​ it is infeasible to find ​x​. 

 
In information-theory, ​min-entropy​ ​is a measure of how predictable an outcome is, and high 

min-entropy captures the intuitive idea that the distribution (i.e., random variable) is very spread out. 

What that means specifically is that when we sample from the distribution, there’s no particular value 

that’s likely to occur. So, for a concrete example, if ​r​ is chosen uniformly from among all of the strings 

that are 256 bits long, then any particular string was chosen with probability 1/2^256, which is an 

infinitesimally small value.  

Application: Commitments.​ ​Now let’s look at an application of the hiding property. In particular, what 

we want to do is something called a ​commitment​. A commitment is the digital analog of taking a 

value, sealing it in an envelope, and putting that envelope out on the table where everyone can see it. 

When you do that, you’ve committed yourself to what’s inside the envelope. But you haven’t opened 

it, so even though you’ve committed to a value, the value remains a secret from everyone else. Later, 

you can open the envelope and reveal the value that you committed to earlier. 



Commitment scheme.​ A commitment scheme consists of two algorithms: 

● (​com​) := commit(​msg, key​) ​The commit function takes a message and secret key as input 
and returns a commitment.  

● isValid​ := verify(​com, key, msg​) ​The verify function takes a commitment, key, and message 
as input. It returns true if the ​com​ is a valid commitment to ​msg​ under the key, ​key​. It 
returns false otherwise. 

We require that the following two security properties hold: 

● Hiding​:  Given ​com​, it is infeasible to find ​msg 
● Binding​: For any value of ​key​, it is infeasible to find two messages, ​msg ​and ​msg’​ such that 

msg ​≠​ msg’​ and verify(commit(​msg, key​), ​key,​ ​msg’​) == true 

 
To use a commitment scheme, one commits to a value, and publishes the commitment ​com​. This 

stage is analogous to putting the sealed envelope on the table. At a later point, if they want to reveal 

the value that they committed to earlier, they​ ​publish the key, ​key​ and the value​, msg​. Now, anybody 

can verify that ​msg ​was indeed the value committed to earlier. This stage is analogous to opening up 

the envelope.  

The two security properties dictate that the algorithms actually behave like sealing and opening an 

envelope. First, given ​com​, the commitment, someone looking at the envelope can’t figure out what 

the message is. The second property is that it’s binding. That when you commit to what’s in the 

envelope, you can’t change your mind later. That is, it’s infeasible to find two different messages, such 

that you can commit to one message, and then later claim that you committed to another. 

So how do we know that these two properties hold? Before we can answer this, we need to discuss 

how we’re going to actually implement a commitment scheme. We can do so using a cryptographic 

hash function. Consider the following commitment scheme: 

● commit(​msg)​ := (H(​key ‖ msg​), ​key​) 
○ where ​key​ is a random 256-bit value 

● verify(​com, key, msg​) := ​true ​if H(​key ‖ msg) = com​; ​false ​otherwise 

In this scheme, to commit to a value, we generate a random 256-bit value, which will serve as the key. 
And then we return the hash of the key concatenated together with the message as the commitment. 
To verify, someone is going to compute this same hash of the key they were given concatenated with 
the message. And they’re going to check whether that’s equal to the commitment that they saw.  

 

Take another look at the two properties that we require of our commitment schemes. If we substitute 
the instantiation of ​commit ​and ​verify ​as well as ​H(key ‖ msg) ​for ​com​, then these properties 
become: 

● Hiding​:  Given H(​key ‖ msg)​, infeasible to find ​msg 
● Binding​: For any value of ​key​, it is infeasible to find two messages, ​msg ​and ​msg’​ such that 

msg ​≠​ msg’​ and H(​key ‖ msg) = ​H(​key ‖ msg’) 



 

The ​hiding ​property of commitments is exactly the hiding property that we required for our hash 

functions. If ​key​ was chosen as a random 256-bit value then the hiding property says that if we hash 

the concatenation of ​key​ and the message, then it’s infeasible to recover the message from the hash 

output. And it turns out that the ​binding property ​is implied by  the collision-resistant property of the 1

underlying hash function. If the hash function is collision-resistant, then it will be infeasible to find 

distinct values msg and msg’ such that  H(​key ‖ msg) = ​H(​key ‖ msg’)​ since such values would 

indeed be a collision. 

Therefore, if ​H​ is a hash function that is collision-resistant and hiding, this commitment scheme will 
work, in the sense that it will have the necessary security properties. 
 

Property 3: Puzzle friendliness. ​The third security property we’re going to need from hash functions is 

that they are puzzle-friendly. This property is a bit complicated. We will first explain what the 

technical requirements of this property are and then give an application that illustrates why this 

property is useful. 

Puzzle friendliness.​ A hash function ​H ​is said to be puzzle-friendly if for every possible n-bit output 
value ​y​, if k is chosen from a distribution with high min-entropy, then it is infeasible to find ​x​ such 
that H(k ‖ x) = y in time significantly less than ​2​n​. 

 
Intuitively, what this means is that if someone wants to target the hash function to come out to some 

particular output value ​y​, that if there’s part of the input that is chosen in a suitably randomized way, 

it’s very difficult to find another value that hits exactly that target. 

Application: Search puzzle.​ Now, let’s consider an application that illustrates the usefulness of this 

property. In this application, we’re going to build a ​search puzzle​, a mathematical problem which 

requires searching a very large space in order to find the solution. In particular, a search puzzle has no 

shortcuts. That is, there’s no way to find a valid solution other than searching that large space. 

Search puzzle. ​A search puzzle consists of 

● a hash function, ​H​,  
● a value, ​id ​(which we call the ​puzzle-ID​), chosen from a high min-entropy distribution 
● and a target set ​Y 

A solution to this puzzle is a value, ​x​, such that 

H(​id​ ‖ ​x​)  ∈ ​Y​. 

 

1  The reverse implications do not hold. That is, it’s possible that you cannot find a collision of the form  H(​key ‖ msg) 
== ​H(​key ‖ msg’)​, ​but some other collision does exist. 



The intuition is this: if H has an n-bit output, then it can take any of ​2​n​ values. Solving the puzzle 

requires finding an input so that the output falls within the set Y, which is typically much smaller than 

the set of all outputs. The size of Y determines how hard the puzzle is. If Y is the set of all n-bit strings 

the puzzle is trivial, whereas if Y has only 1 element the puzzle is maximally hard. The fact that the 

puzzle id has high min-entropy ensures that there are no shortcuts. On the contrary, if a particular 

value of the ID were likely, then someone could cheat, say by pre-computing a solution to the puzzle 

with that ID. 

If a search puzzle is puzzle-friendly, this implies that there’s no solving strategy for this puzzle which is 

much better than just trying random values of ​x​. And so, if we want to pose a puzzle that’s difficult to 

solve, we can do it this way as long as we can generate puzzle-IDs in a suitably random way. We’re 

going to use this idea later when we talk about Bitcoin mining, which is a sort of computational puzzle. 

SHA-256. ​We’ve discussed three properties of hash functions, and one application of each of those. 

Now let’s discuss a particular hash function that we’re going to use a lot in this book. There are lots of 

hash functions in existence, but this is the one Bitcoin uses primarily, and it’s a pretty good one to use. 

It’s called ​SHA-256​. 

Recall that we require that our hash functions work on inputs of arbitrary length. Luckily, as long as 

we can build a hash function that works on fixed-length inputs, there’s a generic method to convert it 

into a hash function that works on arbitrary-length inputs. It’s called the ​Merkle-Damgard transform​. 
SHA-256 is one of a number of commonly used hash functions that make use of this method. In 

common terminology, the underlying fixed-length collision-resistant hash function is called the 

compression function​. It has been proven that if the underlying compression function is collision 

resistant, then the overall hash function is collision resistant as well. 

The Merkle-Damgard transform is quite simple. Say the compression function takes inputs of length ​m 

and produces an output of a smaller length ​n​. The input to the hash function, which can be of any size, 

is divided into ​blocks​ of length ​m-n​. The construction works as follows: pass each block together with 

the output of the previous block into the compression function. Notice that input length will then be 

(​m-n​) + ​n ​=​ m​, which is the input length to the compression function. For the first block, to which 

there is no previous block output, we instead use an ​Initialization Vector (IV)​. This number is reused 

for every call to the hash function, and in practice you can just look it up in a standards document. The 

last block’s output is the result that you return. 

SHA-256 uses a compression function that takes 768-bit input and produces 256-bit outputs. The 

block size is 512 bits. See Figure 1.3 for a graphical depiction of how SHA-256 works. 



 

Figure 1.3: SHA-256 Hash Function (simplified).​ ​SHA-256 uses the Merkle-Damgard transform to turn 

a fixed-length collision-resistant compression function into a hash function that accepts arbitrary 

length inputs. 

We’ve talked about hash functions, cryptographic hash functions with special properties, applications 

of those properties, and a specific hash function that we use in Bitcoin. In the next section, we’ll 

discuss ways of using hash functions to build more complicated data structures that are used in 

distributed systems like Bitcoin. 

 

1.2 Hash Pointers and Data Structures 
In this section, we’re going to discuss ​hash pointers​ and their applications. A hash pointer is a data 

structure that turns out to be useful in many of the systems that we will talk about. A hash pointer is 

simply a pointer to where some information is stored together with a cryptographic hash of the 

information. Whereas a regular pointer gives you a way to retrieve the information, a hash pointer 

also gives you a way to verify that the information hasn’t changed.  

 

Figure 1.4 Hash pointer.​ ​A hash pointer is a pointer to where data is stored together with a 

cryptographic hash of the value of that data at some fixed point in time. 

 



We can use hash pointers to build all kinds of data structures. Intuitively, we can take a familiar data 

structure that uses pointers such as a  linked list or a binary search tree and implement it with hash 

pointers, instead of pointers as we normally would.  

Block chain.​ ​In Figure 1.5, we built a linked list using hash pointers. We’re going to call this data 

structure a ​block chain​. Whereas as in a regular linked list where you have a series of blocks, each 

block has data as well as a pointer to the previous block in the list, in a block chain the previous block 

pointer will be replaced with a hash pointer. So each block not only tells us where the value of the 

previous block was, but it also contains a digest of that value that allows us to verify that the value 

hasn’t changed. We store the head of the list, which is just a regular hash-pointer that points to the 

most recent data block. 

 

Figure 1.5 Block chain.​ A block chain is a linked list that is built with hash pointers instead of pointers. 

 

A use case for a block chain is a ​tamper-evident log​. That is, we want to build a log data structure that 

stores a bunch of data, and allows us to append data onto the end of the log. But if somebody alters 

data that is earlier in the log, we’re going to detect it.  

To understand why a block chain achieves this tamper-evident property, let’s ask what happens if an 

adversary wants to tamper with data that’s in the middle of the chain. Specifically, the adversary’s 

goal is to do it in such a way that someone who remembers only the hash pointer at the head of the 

block chain won’t be able to detect the tampering. To achieve this goal, the adversary changes the 

data of some block ​k​. Since the data has been changed, the hash in block ​k​ + 1, which is a hash of the 

entire block ​k​, is not going to match up. Remember that we are statistically guaranteed that the new 

hash will not match the altered content since the hash function is collision resistant. And so we will 

detect the inconsistency between the new data in block ​k​ and the hash pointer in block ​k​ + 1. Of 

course the adversary can continue to try and cover up this change by changing the next block’s hash 

as well. The adversary can continue doing this, but this strategy will fail when he reaches the head of 

the list. Specifically, as long as we store the hash pointer at the head of the list in a place where the 

adversary cannot change it, the adversary will be unable to change any block without being detected. 



The upshot of this is that if the adversary wants to tamper with data anywhere in this entire chain, in 

order to keep the story consistent, he’s going to have to tamper with the hash pointers all the way 

back to the beginning. And he’s ultimately going to run into a roadblock because he won’t be able to 

tamper with the head of the list. Thus it emerges, that by just remembering this single hash pointer, 

we’ve essentially remembered a tamper-evident hash of the entire list. So we can build a block chain 

like this containing as many blocks as we want, going back to some special block at the beginning of 

the list, which we will call the ​genesis block​. 

You may have noticed that the block chain construction is similar to the Merkle-Damgard construction 

that we saw in the previous section. Indeed, they are quite similar, and the same security argument 

applies to both of them. 

 

Figure 1.6 Tamper-evident log.​ ​If an adversary modifies data anywhere in the block chain, it will result 

in the hash pointer in the following block being incorrect. If we store the head of the list, then even if 

the adversary modifies all of the pointers to be consistent with the modified data, the head pointer 

will be incorrect, and we will detect the tampering. 

 

Merkle trees.​ ​Another useful data structure that we can build using hash pointers is a binary tree. A 

binary tree with hash pointers is known as a ​Merkle tree​, after its inventor Ralph Merkle. Suppose we 

have a number of blocks containing data. These blocks comprise the leaves of our tree. We group 

these data blocks into pairs of two, and then for each pair, we build a data structure that has two hash 

pointers, one to each of these blocks. These data structures make the next level up of the tree. We in 

turn group these into groups of two, and for each pair, create a new data structure that contains the 

hash of each. We continue doing this until we reach a single block, the root of the tree. 

 



 

Figure 1.7 Merkle tree.​ ​In a Merkle tree, data blocks are grouped in pairs and the hash of each of 

these blocks is stored in a parent node. The parent nodes are in turn grouped in pairs and their hashes 

stored one level up the tree. This continues all the way up the tree until we reach the root node.  

 

As before, we remember just the hash pointer at the head of the tree. We now have the ability 

traverse down through the hash pointers to any point in the list. This allows us make sure that the 

data hasn’t been tampered with because, just like we saw with the block chain, if an adversary 

tampers with some data block at the bottom of the tree, that will cause the hash pointer that’s one 

level up to not match, and even if he continues to tamper with this block, the change will eventually 

propagate to the top of the tree where he won’t be able to tamper with the hash pointer that we’ve 

stored. So again, any attempt to tamper with any piece of data will be detected by just remembering 

the hash pointer at the top.  

Proof of membership.​ ​Another nice feature of Merkle trees is that, unlike the block chain that we built 

before, it allows a concise proof of membership. Say that someone wants to prove that a certain data 

block is a member of the Merkle Tree. As usual, we remember just the root. Then they need to show 

us this data block, and the blocks on the path from the data block to the root. We can ignore the rest 

of the tree, as the blocks on this path are enough to allow us to verify the hashes all the way up to the 

root of the tree. See Figure 1.8 for a graphical depiction of how this works. 

If there are ​n​ nodes in the tree, only about ​log(n)​ items need to be shown. And since each step just 

requires computing the hash of the child block, it takes about ​log(n)​ time for us to verify it. And so 

even if the Merkle tree contains a very large number of blocks, we can still prove membership, in a 

relatively short time. Verification thus runs in time and space that are logarithmic in the number of 



nodes in the tree. 

 

Figure 1.8​ ​Proof of membership. ​To prove that a data block is included in the tree, one only needs to 

show the blocks in the path from that data block to the root. 

 

A ​sorted Merkle tree​ is just a Merkle tree where we take the blocks at the bottom, and we sort them 

using some ordering function. This can be  alphabetical, lexicographical order, numerical order, or 

some other agreed upon ordering. 

Proof of non-membership.​ ​With a sorted Merkle tree, it becomes possible to verify non-membership 

in a logarithmic time and space. That is, we can prove that a particular block is not in the Merkle tree. 

And the way we do that is simply by showing a path to the item that’s just before where the item in 

question would be and showing the path to the item that is just after where it would be. If these two 

items are consecutive in the tree, then this serves as a proof that the item in question is not included. 

For if it was included, it would need to be between the two items shown, but there is no space 

between them as they are consecutive. 

We’ve discussed using hash pointers in linked lists and binary trees, but more generally, it turns out 

that we can use hash pointers in any pointer-based data structure as long as the data structure 

doesn’t have cycles. If there are cycles in the data structure, then we won’t be able to make all the 

hashes match up. If you think about it, in an acyclic data structure, we can start near the leaves, or 

near the things that don’t have any pointers coming out of them, compute the hashes of those, and 

then work our way back toward the beginning. But in a structure with cycles, there’s no end we can 

start with and compute back from.  

So, to consider another example, we can build a directed acyclic graph out of hash pointers. And we’ll 



be able to verify membership in that graph very efficiently. And it will be easy to compute. Using hash 

pointers in this manner is a general trick that you’ll see time and again in the context of the 

distributed data structures and throughout the algorithms that we discuss later in this chapter and 

throughout this book. 

1.3 Digital Signatures 
In this section, we’ll look at ​digital signatures​. This is the second cryptographic primitive, along with 

hash functions, that we need as building blocks for the cryptocurrency discussion later on. A digital 

signature is supposed to be the digital analog to a handwritten signature on paper. We desire two 

properties from digital signatures that correspond well to the handwritten signature analogy. Firstly, 

only you can make your signature, but anyone who sees it can verify that it’s valid. Secondly, we want 

the signature to be tied to a particular document so that the signature cannot be used to indicate 

your agreement or endorsement of a different document. For handwritten signatures, this latter 

property is analogous to assuring that somebody can’t take your signature and snip it off one 

document and glue it onto the bottom of another one.  

How can we build this in a digital form using cryptography? First, let’s make the previous intuitive 

discussion slightly more concrete. This will allow us to reason better about digital signature schemes 

and discuss their security properties. 

Digital signature scheme.​ A digital signature scheme consists of the following three algorithms: 

● (sk, pk) := generateKeys(​keysize​) ​The generateKeys method takes a key size and generates 
a key pair. The secret key ​sk​ is kept privately and used to sign messages. ​pk ​is the public 
verification key that you give to everybody. Anyone with this key can verify your signature. 

● sig := sign(​sk​, ​message​) ​The sign method takes a message, ​msg​, and a secret key, ​sk​,​ ​as 
input and outputs a signature for the ​msg ​under ​sk 

● isValid := verify(​pk​, ​message​, ​sig​) ​The verify method takes a message, a signature, and a 
public key as input. It returns a boolean value, ​isValid​, that will be ​true​ if ​sig​ is a valid 
signature for ​message​ under public key ​pk​, and ​false ​otherwise. 

We require that the following two properties hold: 

● Valid signatures must verify 
○ verify​(​pk​, ​message​, ​sign​(​sk​, ​message​)) == ​true 

● Signatures are ​existentially unforgeable 

 

We note that ​generateKeys ​and ​sign ​can be randomized algorithms. Indeed, generateKeys had better 

be randomized because it ought to be generating different keys for different people. ​verify​, on the 

other hand, will always be deterministic.  

Let us now examine the two properties that we require of a digital signature scheme in more detail. 

The first property is straightforward — that valid signatures must verify. If I sign a message with ​sk​, my 

secret key, and someone later tries to validate that signature over that same message using my public 
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