
The PDL Book

March 2013

for PDL 2.006

The PDL Book

Page 1

PDL Book - Table of Contents
PDL::Book::FirstSteps Trying out PDL for the first time.

PDL::Book::Piddle What is a PDL object?

PDL::Book::Creating Basic Operations to make PDLs

PDL::Book::NiceSlice Cutting out bits of a PDL

PDL::Book::Functions Writing your own functions for PDL

PDL::Book::Threading Threading and Getting rid of FOR loops

PDL::Book::PGPLOT Graphics with PGPLOT

PDL::Book::PLplot Graphics with PLplot

PDL::Book::TriD 3D Graphics with TriD

PDL::Book::Transform Rotating, Scaling and Translating with PDL::Transform

PDL::Book::Complex Complex Numbers

PDL::Book::Pthreads Parallel Computations with pthreads

PDL::Book::PP Getting C routines into PDL with PDL::PP

PDL::Book::Genesis A history lesson on PDL from the creator, Karl Glazebrook.

PDL::Book::Credits Credits for the Book

Suggested Reading Orders
We assume you know Perl, but that you are new to PDL.

First, try out the PDL command line by going through FirstSteps. PDL has
 several ways of displaying
two-dimensional images and producing
 publication quality plots, and so we have PGPLOT and PLplot
for
 producing two dimensional plots either in a computer window or as
 written file formats (PostScript,
PNG, JPEG and more), and we also have
 the capability to produce three dimensional plots in TriD.

The power of PDL is in the ability to carry out threading (known as
 broadcasting in Python) over
N-dimensional PDLs. When you code with
 threading you eliminate the multiple FOR loops that are the
source of
 many slow-downs in code. Reading Threading and Functions will get you up
 to speed and
in the right mind-set.

If you require the speed of C routines in your PDL code, there is also
 the powerful PDL:PP capability
of PDL - you can write C code INLINE in
 your PDL code, and it will be compiled and run when you call
your
 Perl/PDL scripts!

PDL is primarily used by scientists who want access to Scientific
 libraries and data types, so we have
Complex numbers handled by PDL and
 the capabilities of PDL::Transform, the Slatec libraries
accessible in
 PDL::Slatec, and any other libraries that you can access through Perl.

The PDL Book

Page 2

First Steps with PDL
"Maybe there are a few civilizations out there that have decided to stay
 home, piddle around and send
out some radio waves once in a while."

- Annette Foglino, Space: Is Anyone Out There? Most astronomers say yes, Life, 1 Jul 1989.

It can be very frustrating to read an introductory book which takes a
 long time teaching you the very
basics of a topic, in a "Janet and John"
 style. While you wish to learn, you are anxious to see
something a bit
 more exciting and interesting to see what the language can do.

Fortunately our task in this book on PDL is made very much easier by the
 high-level of the language.
We can take a tour through PDL, looking at
 the advanced features it offers without getting involved in
complexity.

The aim of this section is to cover a breadth of PDL features rather
 than any in depth, to give the
reader a flavour of what he or she can do
 using the language and a useful reference for getting
started doing real
 work. Later sections will focus on looking at the features introduced
 here, in more
depth.

Alright, let's do something
We'll assume PDL is correctly installed and set up on
 your computer system (see http://pdl.perl.org/
for details
 of obtaining and installing PDL).

For interactive use PDL comes with a program called perldl. This allows
 you to type raw PDL (and
perl) commands and see the result right away. It
 also allows command line recall and editing (via the
arrow keys) on most
 systems.

So we begin by running the perldl program from the system
 command line. On a Mac/UNIX/Linux
system we would simply type perldl
 in a terminal window. On a Windows system we would type
perldl
 in a command prompt window. If PDL is installed correctly this is
 all that is required to bring
up perldl.

 myhost% perldl
 perlDL shell v1.357
 PDL comes with ABSOLUTELY NO WARRANTY. For details, see the file
 'COPYING' in the PDL distribution. This is free software and you
 are welcome to redistribute it under certain conditions, see
 the same file for details.
 ReadLines, NiceSlice, MultiLines enabled
 Reading PDL/default.perldlrc...
 Found docs database /usr/lib/perl5/.../PDL/pdldoc.db
 Type 'help' for online help
 Type 'demo' for online demos
 Loaded PDL v2.006 (supports bad values)
 pdl>

We get a whole bunch of informational messages about what it is loading for
 startup and the help
system. Note; the startup is completely configurable,
 an advanced user can completely customize
which PDL modules
 are loaded. We are left with the pdl> prompt at which we can type commands.
This kind
 of interactive program is called a 'shell'. There is also pdl2
 which is a newer version of the
PDL shell with additional features.
 It is still under development but completely usable.

Let's create something, and display it:

 pdl> use PDL::Graphics::Simple
 pdl> imag (sin(rvals(200,200)+1))

The PDL Book

Page 3

The result should look like the image below - a two dimensional sin function. rvals is a handy PDL
function for creating an image whose pixel values are
 the radial distance from the central pixel of the
image. With these arguments
 it creates a 200 by 200 'radial' image. (Try 'imag(rvals(200,200))'
and you
 will see better what we mean!) sin() is the mathematical sine function, this
 already exists in
perl but in the case of PDL is applied to all 40000 pixels at
 once, a topic we will come back to. The
imag() function displays the image.
 You will see the syntax of perl/PDL is algebraic - by which we
mean it is very
 similar to C and FORTRAN in how expressions are constructed. (In fact much
 more
like C than FORTRAN). It is interesting to reflect on how much C code
 would be required to generate
the same display, even given the existence of
 some convenient graphics library.

 Figure of a two dimensional C<sin> function.

That's all fine. But what if we wanted to achieve the same results in a standalone
 perl script? Well it is
pretty simple:

 use PDL;
 use PDL::Graphics::Simple;
 imag (sin(rvals(200,200)+1));

That's it. This is a complete perl/PDL program. One could run it by typing perl filename. (In fact
there are many ways of running it, most systems
 allows it to be setup so you can just type filename.
See your local
 Perl documentation - then the perlrun manual page.)

Two comments:

1. The statements are all terminated by the ';' character. Perl is like C
 in this regard. When
entering code at the pdl command line the final
 ';' may be omitted if you wish, note you can
also use it to put multiple
 statements on one line. In our examples from now on we'll often omit
the pdl prompt for clarity.

The PDL Book

Page 4

2. The directive use PDL; tells Perl to load the PDL module, which makes
 available all the
standard PDL extensions. (Advanced users will be interested in knowing
 there are other ways
of starting PDL which allows one to select which bits
 of it you want).

Whirling through the Whirlpool
Enough about the mechanics of using PDL, let's look at some real data! To work
 through these
examples exactly you can download any needed input files from
http://sourceforge.net/projects/pdl/files/PDL/PDL%20Book%20Example%20Data%20Set/
 and we'll
assume you are running any of these examples in the same
 directory as you have downloaded the
input data files.

We'll be playing with an image of the famous spiral galaxy discovered by
 Charles Messier, known to
astronomers as M51 and commonly as the Whirlpool
 Galaxy. This is a 'nearby' galaxy, a mere 25
million light years from Earth.
 The image file is stored in the 'FITS' format, a common astronomical
format,
 which is one of the many formats standard PDL can read. (FITS stores more
 shades of gray
than GIF or JPEG, but PDL can read these formats too).

 pdl> $a = rfits("m51_raw.fits"); # m51_raw.fits is in current directory
 Reading IMAGE data...
 BITPIX = -32 size = 262144 pixels
 Reading 1048576 bytes
 BSCALE = && BZERO =

This looks pretty simple. As you can probably guess by now rfits is the PDL
 function to read a FITS
file. This is stored in the perl variable $a.

This is an important PDL concept: PDL stores its data arrays in simple perl
 variables ($a, $x,
 $y, $MyData, etc.). PDL data arrays are special arrays
 which use a more efficient, compact
storage than standard perl arrays (@a,
 @x, ...) and are much faster to access for numerical
computations. To avoid
 confusion it is convenient to introduce a special name for them, we call them
piddles (short for 'PDL variables') to distinguish them from ordinary Perl
 'arrays', which are in fact
really lists. We'll say more about this later.

Before we start seriously playing around with M51 it is worth noting that we
 can also say:

 pdl> $a = rfits "m51_raw.fits";

Note we have now left off the brackets on the rfits function. Perl is rather
 simpler than C and allows
one to omit the brackets on a function all together.
 It assumes all the items in a list are function
arguments and can be pretty
 convenient. If you are calling more than one function it is however better
to
 use some brackets so the meaning is clear. For the rules on this 'list
 operator' syntax see the Perl
syntax documentation. From now on we'll mostly
 use the list operator syntax for conciseness

Let's look at M51:

 pdl> imag $a;

The PDL Book

Page 5

 Figure of the raw image C<m51_raw.fits> shown with
 progressively greater contrast using the C<imag> command.

A couple of bright spots can be seen, but where is the galaxy? It's the faint
 blob in the middle: by
default the display range is autoscaled linearly from
 the faintest to the brightest pixel, and only the
bright star slightly to the
 bottom right of the center can be seen without contrast enhancement. We
can
 easily change that by specifying the black/white data values (Note: # starts
 a Perl comment and
can be ignored - i.e. no need to type the stuff after it!):

The PDL Book

Page 6

 pdl> imag $a,0,1000; # More contrast

The PDL Book

Page 7

 pdl> imag $a,0,300; # Even more contrast

You can see that imag takes additional arguments to specify the display
 range. In fact imag takes
quite a few arguments, many of them optional. By
 typing 'help imag' at the pdl prompt we can find
out all about the
 function.

It is certainly a spiral galaxy with a few foreground stars thrown in for good
 measure. But what is that
horrible stripey pattern running from bottom right to
 top left? That certainly is not part of the galaxy?
Well no. What we have here
 is the uneven sensitivity of the detector used to record the image, a
common
 artifact in digital imaging. We can correct for this using an image of a
 uniformly illuminated
screen, what is commonly known as a 'flatfield'.

 pdl> $flat = rfits "m51_flatfield.fits";
 pdl> imag $flat;

This is shown in the next figure. Because the image is of a uniform field,
 the actual image reflects the
detector sensitivity. To correct our M51
 image, we merely have to divide the image by the flatfield:

Figure: The 'flatfield' image showing the detector sensitivity of the raw data.

 pdl> $gal = $a / $flat;
 pdl> imag $gal,0,300;
 pdl> wfits $gal, 'fixed_gal.fits'; # Save our work as a FITS file

Well that's a lot better. But think what we have
 just done. Both $a and $flat are images, with 512
pixels by
 512 pixels. The divide operator '/' has been applied over all
 262144 data values in the
piddles $a and $flat. And it was
 pretty fast too - these are what are known as vectorized

operations. In PDL each of these is implemented by heavily optimized
 C code, which is what makes
PDL very efficient for procession of
 large chunks of data. If you did the same operation using normal

The PDL Book

Page 8

perl arrays rather than piddles it would be about ten to twenty times slower
 (and use ten times more
memory). In fact we can
 do whatever arithmetic operations we like on image piddles:

Figure: The M51 image corrected for the flatfield.

 pdl> $funny = log(($gal/300)**2 - $gal/100 + 4);
 pdl> imag $funny; # Surprise!

Or on 1-D line piddles. On on 3-D cubic piddles. In fact piddles can support an infinite
 number of
dimensions (though your computers memory won't).

This the key to PDL: the ability to process large chunks of data at once.

Measuring the brightness of M51
How might we extract some useful
 scientific information out of this image? A simple
 quantity an
astronomer might want to know is how the brightness of the
 the 'disk' of the galaxy (the outer region
which contains the spiral
 arms) compares with the 'bulge' (the compact inner nucleus). Well
 let's find
out the total sum of all the light in the image:

 pdl> print sum($gal);
 17916010

sum just sums up all the data values in all the pixels in the image - in this case the answer is
17916010. If the image is linear
 (which it is) and if it was calibrated (i.e. we knew the relation
 between
data numbers and brightness units) we could work out the
 total brightness. Let's turn it round - we
know that M51 has
 a luminosity of about 1E36 Watts, so we can work out what
 one data value
corresponds to in physical units:

 pdl> p 10**36/sum($gal)

The PDL Book

Page 9

 5.58159992096455e+28

This is also about 200 solar luminosities, (Note we have switched to using p
 as a shorthand for
print - which only works in the pdl and pdl2 shells)
 which gives 4 billion solar luminosities for the
whole galaxy.

OK we do not need PDL for this simple arithmetic, let's get back to
 computations that involve the
whole image.
 How can we get the sum of a piece of an image, e.g. near the centre? Well in PDL there
is more than one way to do it (Perl aficionados call
 this phenomenon TIMTOWTDI). In this case,
because we really want
 the brightness in a circular aperture, we'll use the rvals
 function:

 pdl> $r = rvals $gal;
 pdl> imag $r;
 ...

Remember rvals? It replaces all the pixels in an image with its distance
 from the centre. We can
turn this into a mask with a simple
 operation like:

 pdl> $mask = $r<50;
 pdl> imag $mask;
 ...

The PDL Book

Page 10

The PDL Book

Page 11

Figure: Using rvals to generate a mask image to isolate the galaxy bulge and disk.
 Top row: radial
gradient image $r, and radial gradient masked with less than operator $r < 50.
 Bottom row: Bulge
and disk of the galaxy.

The Perl less than operator is applied to all pixels in the image.
 You can see the result is an image
which is 0 on the outskirts and 1 in
 the area of the nucleus. We can then simply use the mask image
to
 isolate in a simple way the bulge and disk components (lower row) and it
 is then very easy to find
the brightness of both pieces of the M51
 galaxy:

 pdl> $bulge = $mask * $gal
 pdl> imag $bulge,0,300
 ...
 pdl> print sum $bulge;
 3011125

 pdl> $disk = $gal * (1-$mask)
 pdl> imag $disk,0,300
 ...
 pdl> print sum $disk
 14904884

You can see that the disk is about 5 times brighter than the bulge in
 total, despite its more diffuse
appearance. This is typical for
 spiral galaxies. We might ask a different question: how does the
average surface brightness, the brightness per unit area on the sky,
 compare between bulge and
disk? This is again quite straight forward:

 pdl> print sum($bulge)/sum($mask);
 pdl> print sum($disk)/sum(1-$mask);

The PDL Book

Page 12

We work out the area by simply summing up the 0,1 pixels in the mask
 image. The answer is the
bulge has about 7 times the surface
 brightness than the disk - something we might have guessed
from
 looking at the above figure, which tells astronomers its stellar density is
 much higher.

Of course PDL being so powerful, we could have figured this out in one line:

 pdl> print (avg($gal->where(rvals($gal)<50)) /
avg($gal->where(rvals($gal)>=50)))
 6.56590509414673

Twinkle, twinkle, little star
Let's look at something else, we'll zoom in on a small piece of the image:

 pdl> $section = $gal(337:357,178:198);
 pdl> imag $section; # the bright star

Here we are introducing something new - we can see that PDL supports extensions to the Perl
syntax. We can say $var(a:b,c:d...) to specify multidimensional slices. In this case we have
produced a sub-image ranging
 from pixel 337 to 357 along the first dimension, and 178 through 198
along the
 second. Remember pdl data dimension indexes start from zero. We'll talk some
 more about
slicing and dicing later on. This sub-image happens to contain
 a bright star.

At this point you will probably be able to work out for yourself the amount of
 light coming from this
star, compared to the whole galaxy. (Answer: about 2%)
 But let's look at something more involved:
the radial profile of the star.
 Since stars are a long way away they are almost point sources, but our
camera
 will blur them out into little disks, and for our analysis we might want an
 exact figure for this
blurring.

We want to plot all the brightness of all the pixels in this section, against
 the distance from the centre.
(We've chosen the section to be conveniently
 centered on the star, you could think if you want about
how you might determine
 the centroid automatically using the xvals and yvals functions). Well it
 is
simple enough to get the distance from the centre:

 pdl> $r = rvals $section;

But to produce a one-dimensional plot of one against the other we need to
 reduce the 2D data arrays
to one dimension. (i.e our 21 by 21 image section
 becomes a 441 element vector). This can be done
using the PDL clump
 function, which 'clumps' together an arbitrary number of dimensions:

 pdl> $rr = $r->clump(2); # Clump first two dimensions
 pdl> $sec = $section->clump(2);

 pdl> points $rr, $sec; # Radial plot

You should see a nice graph with points like those
 in the figure below showing the drop-off from the
bright centre of the star.
 The blurring is usually measured
 by the 'Full Width Half Maximum' (FWHM) -
or in plain terms how
 fat the profile is across when it drops by half. Looking at the plot
 it looks like this
is about 2-3 pixels - pretty compact!

The PDL Book

Page 13

Figure: Radial light profile of the bright star with fitted curve.

Well we don't just want a guess - let's fit the profile with a function.
 These blurring functions are
usually represented by the Gaussian
 function. PDL comes with a whole variety of general purpose
and
 special purpose fitting functions which people have written for
 their own purposes (and so will you
we hope!). Fitting Gaussians
 is something that happens rather a lot and there is surprisingly
 enough a
special function for this very purpose. (One could use
 more general fitting packages like
PDL::Fit::LM or PDL::Opt::Simplex but that would require more care).

 pdl> use PDL::Fit::Gaussian;

This loads in the module to do this. PDL, like Perl, is modular. We
 don't load all the available modules
by default just a convenient
 subset. How can we find useful PDL functions and modules? Well help
tells us more about what we already know, to find out
 about what we don't know use apropos:

 pdl> apropos gaussian
 PDL::Fit::Gaussian ...
 				 Module: routines for fitting gaussians
 PDL::Gaussian Module: Gaussian distributions.
 fitgauss1d Fit 1D Gassian to data piddle
 fitgauss1dr Fit 1D Gassian to radial data piddle
 gefa Factor a matrix using Gaussian elimination.
 grandom Constructor which returns piddle of Gaussian random
numbers
 ndtri The value for which the area under the Gaussian
probability density function (integrated from minus
 				 infinity) is equal to the argument (cf erfi). Works inplace.

This tells us a whole lot about various functions and modules to do with
 Gaussians. Note that we can

The PDL Book

Page 14

abbreviate help and apropos
 with '?' and '??' when using the pdl or pdl2 shells.

Let's fit a Gaussian:

 pdl> use PDL::Fit::Gaussian;
 pdl> ($peak, $fwhm, $background) = fitgauss1dr($rr, $sec);
 pdl> p $peak, $fwhm, $background;

fitgauss1dr is a function in the module PDL::Fit::Gaussian which fits
 a Gaussian constrained to be
radial (i.e. whose peak is at the origin).
 You can see that, unlike C and FORTRAN, Perl functions can
return
 more than one result value. This is pretty convenient. You can see the
 FWHM is more like 2.75
pixels. Let's generate a fitted curve with this
 functional form.

 pdl> $rrr = sequence(2000)/100; # Generate radial values 0,0.01,0,02..20

 # Generate Gaussian with given FWHM

 pdl> $fit = $peak * exp(-2.772 * ($rrr/$fwhm)**2) + $background;

Note the use of a new function, sequence(N), which generates a new piddle with N values ranging
0..(N-1).
 We are simply using this to generate the horizontal axis values
 for the plot. Now let's overlay
it on the previous plot.

 pdl> hold; # This command stops new plots starting new pages
 pdl> line $rrr, $fit, {Colour=>2} ; # Line plot

The last line command shows the PDL syntax for optional function
 arguments. This is based on the
Perl's built in hash syntax. We'll say
 more about this later in PDL::Book::PGPLOT. The result should
look a
 lot like the figure above. Not too bad. We could perhaps do a bit
 better by exactly centroiding
the image but it will do for now.

Let's make a simulation of the 2D stellar image. This is equally
 easy:

 pdl> $fit2d = $peak * exp(-2.772 * ($r/$fwhm)**2);
 pdl> release; # Back to new page for new plots;
 pdl> imag $fit2d;
 ...
 pdl> wfits $fit2d, 'fake_star.fits'; # Save our work

But the figure below is a
 boring. So far we have been using simple 2D graphics from the
PDL::Graphics::Simple library. In fact PDL has more
 than one graphics library (some see this as
a flaw, some
 as a feature!). Using the PDL::Graphics::TriD library
 which does OpenGL graphics
we can look at our simulated
 star in 3D (see the right hand panel);

The PDL Book

Page 15

Figure: Two different views of the 2D simulated Point Spread Function.

 pdl> use PDL::Graphics::TriD; # Load the 3D graphics module
 pdl> imag3d [$fit2d];

If you do this on your computer you should be able to look at the graphic from
 different sides by

The PDL Book

Page 16

simply dragging in the plot window with the mouse! You can
 also zoom in and out with the right
mouse button. Note that imag3d has it's
 a rather different syntax for processing it's arguments - for
very good reasons
 - we'll explore 3D graphics further in PDL::Book::TriD.

 To continue: Select the TriD window and type q

Finally here's something interesting. Let's take our fake star and place it
 elsewhere on the galaxy
image.

 pdl> $newsection = $gal(50:70,70:90);
 pdl> $newsection += $fit2d;
 pdl> imag $gal,0,300;

We have a bright new star where none existed before! The C-style +=
 increment operator is worth
noting - it actually modifies the contents of $newsection in-place. And because $newsection is a
slice of $gal
 the change also affects $gal. This is an important property of slices - any
 change to the
slice affects the parent. This kind of parent/child
 relationship is a powerful property of many PDL
functions, not just slicing.
 What's more in many cases it leads to memory efficiency, when this kind of

linear slice is stored we only store the start/stop/step and not a new copy of
 the actual data.

Of course sometimes we DO want a new copy of the actual data, for example if we
 plan to do
something evil to it. To do this we could use the alternative form:

 pdl> $newsection = $newsection + $fit2d

Now a new version of $newsection is created which has nothing to do with the original $gal. In fact
there is more than one way to do
 this as we will see in later chapters.

Just to amuse ourselves, lets write a short script to cover M51 with dozens of fake
 stars of random
brightnesses:

 use PDL;
 use PDL::Graphics::Simple;
 use PDL::NiceSlice; # must use in each program file

 srand(42); # Set the random number seed
 $gal = rfits "fixed_gal.fits";
 $star = rfits "fake_star.fits";

 sub addstar {
 ($x,$y) = @_;
 $xx = $x+20; $yy = $y+20;
 # Note use of slice on the LHS!
 $gal($x:$xx,$y:$yy) += $star * rand(2);
 }

 for (1..100) {
 $x1 = int(rand(470)+10);
 $y1 = int(rand(470)+10);
 addstar($x1,$y1);
 }
 imag $gal,0,1000;

This ought to give the casual reader some flavour of the Perl syntax - quite simple
 and quite like C

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can

access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

