
About Logic to Work in IT

By Roland Hughes

Logikal Solutions

The Minimum You Need to Know

Copyright © 2007 by Roland Hughes

All rights reserved

ISBN 0-9770866-2-3

ISBN-13 978-0-9770866-2-7

This book was published by Logikal Solutions for the author. Neither Logikal

Solutions nor the author shall be held responsible for any damage, claim, or expense

incurred by a user of this book as a result of its use or reliance upon.

These trademarks belong to the following companies:

 DEC Digital Equipment Corporation Hewlett-Packard Corporation

WordPerfect Correl Corporation

Depends Kimberly-Clark Worldwide, Inc.

PDP Hewlett-Packard Corporation

dBASE dataBased Intelligence, Inc.

Btrieve Pervasive Software

Novell Novell, Inc.

ISAM IBM (International Business Machines Corporation)

RMS Hewlett-Packard Corporation

VSAM IBM (International Business Machines Corporation)

CICS IBM (International Business Machines Corporation)

SyncSort SyncSort Incorporated

MQSeries IBM (International Business Machines Corporation)

MySQL MySQL AB

Unix The Open Group

Linux Linus Torvalds

ACMS Hewlett-Packard Corporation

PostgreSQL PostgreSQL Global Development Group

RDB Oracle Corporation

Oracle Oracle Corporation

All other trademarks inadvertently missing from this list are trademarks of their respective owners. A best

effort was made to appropriately capitalize all trademarks which were known at the time of this writing.

Neither the publisher nor the author can attest to the accuracy of this information. Use of a term in this

book should not be regarded as affecting the validity of any trademark or service mark.

Acknowledgments

I really would like to dedicate this book to the students about to embark on a career

in IT. Having spent nearly 20 years in this industry myself, I felt I owed it to the

following generations to put back some knowledge that has been lost in this industry.

It is an obligation of those who become seasoned in this industry to pass that

knowledge onto the following generations. This book is my attempt to pass some of the

most important, yet least taught, knowledge onto you, the reader.

Welcome to IT.

Source Code License

Unlike the other books in this series, there will be no source code for you to worry

about. While we will create diagrams and pseudocode, there will be nothing you can

actually compile and run.

Table of Contents

Introduction.. I-1

I.1 Why Logic?. I-1

I.2 What is Logic?. I-2

I.3 Prerequisites for This Book. I-4

I.4 Approach of This Book. I-5

I.5 Who Should Read This Book?. I-6

I.6 Why is Flowcharting and Pseudocoding Shunned?. I-6

I.7 Flowcharting and the Current State of IT. I-9

I.8 Additional Reading. I-11

Chapter 1. 1-1

Basics of Flowcharting. 1-1

1.1 Flowcharting Symbols. 1-1

1.2 Linear Sequence. 1-7

1.3 Top Checking Loop. 1-9

1.4 Middle Checking Loop. 1-11

1.5 Bottom Checking Loop. 1-13

1.6 Multiple Decisions. 1-14

1.7 Flowcharting Summary. 1-16

1.8 Exercises. 1-17

Chapter 2. 2-1

Basics of Pseudocode. 2-1

2.1 What is Pseudocode?. 2-1

2.2 Rules of Pseudocode. 2-1

2.3 The Why and When of Pseudocode. 2-2

2.4 How Do You Learn to Write Pseudocode?. 2-2

2.5 Linear Sequence. 2-3

2.6 Top Checking Loop. 2-3

2.7 Middle Checking Loop. 2-4

2.8 Bottom Checking Loop. 2-5

2.9 Multiple Decisions. 2-5

2.10 Pseudocode Followup. 2-7

2.11 Exercises. 2-8

Chapter 3. 3-1

Some Fundamental Data Types.. 3-1

3.1 Core Data Types. 3-1

3.2 Data Type Sizes. 3-3

3.3 Variables. 3-5

3.4 Arrays. 3-6

3.5 Records and Structures. 3-7

3.6 Indexes. 3-8

3.7 Record and Structure Examples. 3-12

3.8 Summary.. 3-15

3.9 Exercises. 3-16

Chapter 4. 4-1

Searching and Sorting. 4-1

4.1 Overview. 4-1

4.2 The Bubble Sort. 4-1

4.3 Class Exercise One. 4-6

4.4 Linear Search. 4-7

4.5 Insertion Sort. 4-9

4.6 Class Exercise Two.. 4-12

4.7 Class Exercise Three. 4-12

4.8 Shell Sort. 4-13

4.9 Binary Search. 4-14

4.10 Class Exercise Four. 4-15

4.11 Leaping Lynn. 4-15

4.12 Class Exercise Five. 4-18

4.13 When All Search Routines Fail. 4-19

4.14 The Two Part Compare. 4-20

4.15 Comparing Dates. 4-22

4.16 Summary.. 4-24

4.17 Exercises. 4-25

Chapter 5. 5-1

Decision Order. 5-1

5.1 Choosing Your Decision Order. 5-1

5.2 Creating an Extract File. 5-2

5.3 Class Exercise One. 5-5

5.4 Class Exercise Two.. 5-7

5.5 Class Exercise Three. 5-8

5.6 Class Exercise Four. 5-9

5.7 Class Exercise Five. 5-10

5.8 Summary.. 5-11

Chapter 6. 6-1

Knowing What Questions to Ask. 6-1

6.1 How are You Going to Use This?. 6-1

6.2 Who is the Audience?. 6-2

6.3 What Business Areas and Systems are Impacted by This?. 6-3

6.4 Is This Legal?. 6-5

6.4.1 Example One. 6-5

6.4.2 Example Two (Where Did You Get This?). 6-6

6.5 Who Owns This Project?. 6-8

6.6 How Will Success Be Measured?. 6-9

6.7 Who Will Sign Off on This Project?. 6-10

6.8 What are the Deliverables?. 6-10

6.9 How Much Time Do I Have?. 6-11

6.10 How Reliable Does This Have to Be?. 6-11

6.11 What is the Required Availability?. 6-13

6.12 Summary.. 6-14

Chapter 7. 7-1

Linked Lists.. 7-1

7.1 Pointers. 7-1

7.2 A Singly Linked List. 7-2

7.3 Doubly Linked Lists. 7-5

7.4 Which do you use?. 7-7

7.5 Exercises. 7-8

7.6 Class Exercise One. 7-8

7.7 Summary.. 7-8

Chapter 8. 8-1

Hash.. 8-1

8.1 What is a Hash?. 8-1

8.2 Collisions.. 8-2

8.3 File vs. Algorithm. 8-4

8.4 Summary.. 8-5

8.5 Exercises. 8-6

Chapter 9. 9-1

Relational Databases. 9-1

9.1 What is a Relational Database?.. 9-1

9.2 Some Important Relational Terms. 9-2

9.3 Data Integrity and Constraints. 9-5

9.4 SQL and Flowcharting. 9-9

9.5 Summary.. 9-12

9.6 Exercises. 9-13

Chapter 10. 10-1

Surviving the Fire.. 10-1

10.1 The Philosophy. 10-1

10.2 Beware the Deadly Embrace. 10-3

10.3 The Stock Order Problem. 10-4

10.4 Some Career Advice. 10-7

Index. 10-9

Introduction

I.1 Why Logic?

I could start playing the game with you and respond with “Why not logic?”, but it

is too soon in this book to tick you off; there will be time enough for that later. This

book came about for many reasons. It is not one I originally intended to write as part

of this short series, if ever. Many circumstances coalesced to allow time enough for it,

but there still had to be a need for this book to justify writing it. The need came from

a very odd place (at least for those of you unfamiliar with the ways of IT professionals):

conversations in bars.

Oh, this wasn’t conversations with a bunch of grizzled coworkers swilling suds and

having a gripe session. These were conversations with college students when I actually

ran into one who was enrolled in some aspect of IT. My current consulting contract has

me staying near a college town, so when you head out for a beverage or eight, you

inevitably run into college students even in the old fogey bars. What was appalling

wasn’t the fact that in a bar with more than 300 people you only ran into, at most, one

IT student, but what they were being taught. Logic isn’t required any more at a lot of

campuses. Many others don’t even offer it as a class.

In today’s pointy-clicky world, logic has been tossed aside. The trouble with tossing

aside logic is that you toss aside what is the fundamental core of application and

system design. Once you understand that logic is no longer being taught, it is easy to

understand the complete lack of design so visible in today’s PC and Unix products.

Those students who graduate today and actually accept a job working with a 3GL

writing non-GUI back end applications flounder miserably. Were there any justice in

the world, they would be able to get their money back from the university which gave

them the degree.

When I obtained my first degree some two decades ago, I saw the beginning of the

end for logic in college courses. They started teaching Pascal in the logic class. The

excuse was that students needed to implement the logic tools they were being taught.

The second excuse was that they needed to know Pascal to survive the data structures

class later in the curriculum. Neither argument was worthy of pushing any language

into the logic course. Being in the absolute last group of students to take the logic class

in its pure form, I’m in a unique position to criticize the following classes. It also helps

to have gone back a decade later and heard much the same criticism from former

instructors. They claimed that none of the newer students did very well later in the

curriculum. That a lot of students changed their major when they started hitting the

more coding intense classes.

I-2 Introduction

The reason those students floundered isn’t because IT got harder. Indeed, IT had

gotten easier by then with good 3GL compilers and syntax checkers. It was because

they had burned almost their entire logic class learning a 3GL (Pascal) rather than

learning the depths of logic. They were focusing on the syntax of a language. The

larger portions of logic, those portions that take you above simple program design into

complex application design and simple systems design, were never covered. When they

got to the more advanced programming classes, they had no frame of reference. They

did not know how to design a control break report, or even what a control break report

was. The last part is really sad considering how most college students have a credit

card. Every month they get a statement for their credit card account that is a control

break report.

Why logic? Because you cannot hope to succeed or even survive in software

development without it. Why logic? Because most of you have went through or are

going through a college curriculum that didn’t teach you logic. Why logic? Because the

drive to be the absolute best in software development cannot be taught, but logic can,

and you cannot be the best without logic.

In years gone by, hiring a new programmer to your staff was much like buying a

new car. You got to pick and choose the features, but you never had to ask if the car

came with an engine. Programmers from the old curriculums all had been taught logic,

you didn’t have to ask. In today’s market, you have to ask if the car comes with an

engine.

I.2 What is Logic?

That is the fundamental question. There are many answers. Depending on the

situation surrounding the question, some answers are more correct than others. When

you complete this book and begin working in the real world of IT, you will constantly

use a variant of this question with every program and system you design. “What is

logical?”

No, I’m not trying to lay a bunch of academic babble on you. People don’t buy a

book they aren’t forced to read because they like having academic babble shoved down

their throats. I have found few things more boring than listening to what career

academics have said or reading what they have written. There are several periodicals

that handle that market. There was a time in my career when I believed I could obtain

something useful from them, so I paid expensive fees to read those magazines. What

I obtained from them was a substitute for Nytol most of the time.

Introduction I-3

Logic is the fundamental tool of IT. It is the tool from which all other tools are

created. There are many kinds of logic in the world of IT. Scholars would like you to

believe that there is only one definition of logic and it always yields the same outcome.

That statement is incorrect. They will try to proof their statements with truth tables

and lectures that glaze over your eyes inside of 15 minutes. Had there been even the

most remote grain of truth to those proofs AI (Artificial Intelligence) would have been

more than a mid-80s flash in the pan.

For logic to provide the same answer twice, given the same set of truths, you must

start in the same place each time. Logic isn’t a set of gears producing the same output

every time you turn a crank handle. A single instance of a logic path will provide that

type of output. In the world of IT, we tend to refer to that single instance as a

program. When a program doesn’t provide a consistent set of output, we say it has

bugs. The term bugs became shorthand for implementation failure. Every program

fails at some point. Because we don’t like to say we exist to create failure, we say we

exist to create software and some of that software has bugs. It is probably a good thing

we call them bugs so the tool to remove them can be called a debugger, otherwise we

would be talking about running our programs through “failure removal” instead of

running them through the debugger.

Back in the beginning days of computers, they were a collection of tubes and

programmed by either wiring or tossing a series of switches. There was only one type

of logic: hardware. For most computers it was the “hard-wired” truth. A switch was

either on or off. Some computers, though few exist today, used “frequency logic” for

lack of a better term. They were analog, not digital. Most of you reading this should

be familiar with the classic sine wave from your math classes: the perfectly

symmetrical S laid on its side and a line drawn exactly through the middle of it.

Everything above the line was positive, or truth, while everything below the line was

negative, or false. Analog was much like real life. It allowed for varying degrees of

true and false. Some of you using digital cameras may have heard a term called “fuzzy

logic.” Fuzzy logic tends to get used in a lot of automatic focusing. (Those of you

reading this who are intimately familiar with analog computers and fuzzy logic, please

allow me some literary freedom here. Conceptually, they are similar as a car and truck

are similar. We don’t want to go too far down a bunny hole at this point.)

There are still some analog computers around, thought not many. I don’t

remember the exact problems they were the best at solving, but there is/was a niche

of software development which could use no other form of computer. I have a nagging

thought in the back of my mind that stellar drift calculations were among the

applications best served by analog boxes. If any of you reading this are old enough to

have owned the older cell phones, then you have a shining example of analog

technology. When you were in a bad spot you could still make out pieces of what the

other person said even with all of the static. With modern digital cell phones you

simply get a dropped call. Analog keeps going as long as there is any degree of truth;

binary stack dumps. Analog knew there was interference and allowed for it; binary

I-4 Introduction

requires perfection.

Logic has taken many turns during the past two decades. The study of AI and the

creation of truth tables lead to the creation of rules-based systems back in the mid- to-

late ‘80s. Truck loads of dollars were poured into companies claiming they would

create thinking machines and personal helpers with all of the intelligence of a hired

servant in just a few short years once the tables were constructed. There was a

“market correction” when none of these start-ups bore the tasty fruit investors were

looking to savor. Financially, it was not as horrific as the DOT COM flame out, and

it did not have quite as many criminals with their fingers in the venture capital grab

bag. It did have one very ugly side effect though — logic got a bad wrap. Colleges

pretty much stopped teaching it and IT started a downward spiral.

Logic taken too far gives you problems like the AI investment debacle. What the

industry failed to realize is that logic, like cholesterol, must exist. There is good logic

and bad logic just like there is good and bad cholesterol.

The short answer is that logic is the most fundamental of IT tools. Logic is what

allows you to get from input to output, no matter what. Logic is the framework upon

which every computer application is developed, even the object-oriented applications.

I.3 Prerequisites for This Book

This book only requires that you have some interest in computers and software

development. It will help if you have poked around with some software development

tools or attempted some fundamental programming on your own. By “fundamental”

I’m not talking about some GUI development product where you only clicked and

dragged things together. I’m talking about older, lower level, C or BASIC programs

where you printed “HELLO” to the screen and tried to work out how to print columns

of asterisks from 10 down to one so they looked like a crude bar graph. If that last

problem sounds horribly simple, try doing it without having had a logic class. Try

doing it in under an hour. If you feel like adding insult to injury, try printing numbers

going down the left side, along with as solid a bar as you can print and letters going

across the bottom with a solid bar above them so it looks even more like a bar graph.

Don’t worry if all you have is a casual interest in computers or software

development. We won’t be writing any programs, only mapping out their logic, so you

do not even need a computer. You might want to surf the Web or visit an office supply

shop and see if you can find a “flowcharting template.” This is a little green plastic

thing with different shaped holes cut in it. You use it and a pencil to draw a flowchart

on paper.

Introduction I-5

I.4 Approach of This Book

Most books on programming logic tend to be less than 100 pages in length. The

reason for that is they focus on either flowcharting or pseudocoding, then stop. They

give you one or two problems that could relate to the real world, then leave you to

figure out things on your own. If I’m going to slam those books that hard here, then

you can be assured it will not be my approach.

I will cover the boring and dry components of flowcharting and dabble a little with

pseudocode. From there we will move forward to some of the standard programming

situations. This will let you actually “see” logic in action. It will also allow some

“images” to sink into your brains. From there we will move forward into the general

approach of application design.

This may be a book whose later chapters you wish to read two or three times,

especially if you are new to IT. Nothing you do in your career will save you more time

and anguish than allowing the career advice chapter to fully settle in. Trust me on this

one. My first year in college I had to take a class on logic. We had two little paperback

books. One for flowcharting and one for pseudocoding. Needless to say we completed

those in the first month. The entire rest of the semester was class participation. Each

session would start with a new problem – usually – and the entire class would be spent

with students calling out or suggesting the steps of logic required while the instructor

drew with chalk. Admittedly, he had it rough for the first few days of that, but once

the bit was set in our teeth, all he had to do was draw and try not to inhale too much

chalk dust.

I don’t have a classroom setting for you, nor do I wish to create one. I’m sure

someone reading this book will do that in the end. What I do have is nearly two

decades of software development experience to draw on when creating problems for

you. There will be no choice but to start you out with some of the fluffy ones, but I plan

to leave you with some really good ones toward the end.

One thing that was always done in the past was to separate analysis and

programming logic classes. Now that I’m “long in the tooth,” so to speak, I don’t agree

with that separation. I won’t go into all of the high-minded and far-reaching concepts

of application and systems analysis. There are an awful lot of other diagrams and

specification refinement methods. If you learned them all, each project would have you

burning a week up front deciding which method was going to work best for the current

project. I will take you through the “common sense” approach, naturally extending

program logic to application logic to systems design logic.

I-6 Introduction

I.5 Who Should Read This Book?

Anyone who has even the slightest interest in software development or needs to

manage the software development process should read this book. If you are

contemplating a career in software development, then this should be one of the first

books, if not the first book, you read before going too far down that career path.

Understanding the most fundamental concepts of the software development process

is critical to success in either of those career paths.

I.6 Why is Flowcharting and Pseudocoding Shunned?

I’ll be honest. I haven’t drawn a program flowchart in nearly two decades. The

only time I write what could be called pseudocode for a module is when I have either

a really big chunk to chew or I’m writing a bid for approval. Notice that I specifically

stated “program flowchart” and “pseudocode for a module.” The devil is in the details.

When doing application or systems design work, I either draw or participate in the

drawing of flowcharts for each project. Once you get into VLA (Very Large Application)

or system level designs, you have absolutely no choice. The human mind was not

meant to remain stretched around designs of that magnitude for prolonged periods of

time. Normally, projects of that size take six months to a year before they even get

close to a testing stage. You need really good diagrams to remember what it was you

intended to do six months ago so you can set up useful test conditions.

As you progress in the field if IT, you will begin to understand why companies will

spend in excess of $10,000 for an ink jet or plotter that uses rolled paper three to four

feet wide. One system I helped develop in the past few years had a system flow

diagram done from a very high level so management could understand it. It took two

sheets of that paper six feet in length taped on the long edge to contain the diagram.

When it was scaled down to print on regular letter size paper on a normal ink jet it

took close to a dozen sheets of paper taped edge to edge, and that was using fonts no

larger than six points inside of the symbols. You couldn’t read it if it was more than

a foot from your eyes.

Program flowcharting has been shunned because it is a lot of work. A flowchart

is only good before you write your first line of code. Once you start testing, you realize

there are problems with your design and start making changes to the program. The

flowchart never gets updated. Bad documentation is worse than no documentation at

all because it leads people in the wrong direction. In the early ’80s many shops still

endeavored to keep their flowcharts current. Once management got involved and

started chanting “cut costs,” flowcharts were the first thing to go.

Introduction I-7

Pseudocode was simpler. You could write it with any text editor or word processor.

In many ways it was much like COBOL. Some shops used to write pseudocode with

such detail that you could almost put a period at the end of each statement and get it

to compile. This level of pseudocode was impossible to maintain and also died after

hearing the “cut costs” mantra. High-level pseudocode still gets written in quite a few

shops. It usually gets wrapped in a word processing template that calls it a program

specification.

In days of old, a new programmer would be given a program specification from a

systems analyst, or just an analyst. That specification would range in quality from

incredibly detailed specifications you could begin coding from, or just a few lines

scribbled on a napkin with a sweat ring from a beverage on it. Laugh all you want at

that statement. The most complex systems you will ever get involved with start out

as just a few lines on a napkin. They generally take about five years to settle into a

company and become stable. The reason you end up working on them is they look so

simple and innocent being only a few lines on a napkin.

Once a programmer received a specification for a new program, they would sit

down with pencil and paper drawing out a very detailed flowchart. This flowchart

would document close to every line in the initial version of the program. They would

not be allowed to start coding until the analyst reviewed the flowchart completely and

agreed it was correct. When the analyst was too busy to bother with you, they would

reject the flowchart outright with the phrase “Needs more detail.” This statement was

designed to tick you off for a day or two until the analyst had time for you. It really

didn’t have much to do with what you had done. How do I know this? I was once one

of those flowchart drawing programmers who got a flowchart rejected with that exact

phrase. A week later I submitted that exact same flowchart and it was accepted.

During that week I did flowcharts for the other analysts because they had time to chat

with me.

Developers who paid their dues got to be programmer analysts. These were the

cherished job titles. Once you became a programmer analyst you never had to draw

another program flowchart. You got to code straight from the specification. When the

specification was only a few lines on a napkin you got to work with an analyst to flesh

out the specification. Developers weren’t allowed to reject a specification from an

analyst with the phrase “Needs more detail.”

The result was that everyone wanted to be a programmer analyst. Everyone

wanted to just “throw code at a problem and see what sticks.” That was the fun job in

IT. Some geeks prided themselves on how close to the metal they could code. Even if

the shop had chosen BASIC or COBOL, they would find a way to toss in some

Assembler code just to prove how much of a geek they were. The fact that the

Assembler code could never port to a new machine, even in the same family of

computers, never stopped the geek of geeks from throwing it into the application.

I-8 Introduction

During your stint as a programmer analyst, you would get to cut your teeth writing

program specifications. Because you weren’t a systems analyst, your specification

could never be three lines on a napkin. Normally you would be the one receiving three

lines on a napkin and be told to flesh it out. Then your specification would have to be

reviewed by an analyst or systems analyst before it would be assigned to a

programmer.

Life would then take an ugly turn for you. After one to five years as a programmer

analyst you would be promoted to analyst. It was the only way to get further pay

increases. You would also be relieved of writing any more code. Instead, your life

would be application specifications and programmer management. While you would

toggle between writing systems specifications and application specifications, you would

never really do systems design. The task of systems design fell to the systems analyst.

When it came to bidding on contracts or very large applications, they would have to

draw a system flow diagram showing how all of the pieces were to fit together. Filling

in the actual details would fall to those below. The only code you would ever get to

write was the occasional operating system command script.

Most programmers went into IT not only for the money, but because they really

liked the idea of coding up solutions to problems. Once they got to the skill level of

programmer analyst, most would change jobs. Indeed, the average length of stay when

I was at that level was two years. Developers who loved to program simply didn’t want

to give it up. The only way to avoid it was to leave the company.

Never let it be said that marketing won’t sell you a product that will kill you.

Along came case tools followed by pick and drag code generators. They would market

these products claiming great leaps in productivity. The tools would have an interface

so appealing that even an MBA could generate the sample contact manager program

in under half an hour. That poisoned apple sure tasted sweet to upper management.

They threw tractor trailers full of money at the vendors of those products. Once PCs

with graphical desktops came out, an even bigger slew of “visual” type tools flooded the

market. Every one of them promised to make programmers more productive. Every

one of them cost the industry more than will ever truly be known.

The argument was made on college campuses that students would never have to

flowchart in real life, so why make them do it now? Grading those flowcharts certainly

took a lot of time. Drawing flowcharts was a lot of work. It was agreed that flowcharts

would be dropped. Because pseudocoding was taught in the same class as

flowcharting, it died a death by association.

Perhaps the saddest part of this story is that nobody with any clout stood up and

answered the question “Why make them do it now?” Had anyone answered that

question, it wouldn’t have been dropped. Specification writing would have been added

to each and every language/tool class added to the curriculum and IT would have

remained a shining star instead of a downwardly spiraling industry.

Introduction I-9

Flowcharting is shunned because it is a lot of work. College students want to do

nothing but party when they first get away from home. Nobody wanted to spend their

evenings with a table full of eraser crumbs, which is pretty much what a class

requiring flowcharting made of their evenings.

Flowcharting is shunned because management didn’t want to eat the cost of

training a developer who was only going to spend two years at their company. They

expected colleges to do that. When colleges failed, they threw money at tools to

eliminate the need, or so they thought.

Flowcharting is shunned because this is a Visa/MasterCard society. Buy now, rack

up enough debt to declare bankruptcy, and avoid paying altogether.

Pseudocoding at the program level died with flowcharting. It survives in a watered

down form at the much higher level of program specification. Until you see actual

application pseudocode, you won’t understand just how watered down it is.

Nobody wants to pay their dues. That first year of flowcharting is horrible. If you

don’t drink, you will find yourself starting. The first few months are bad because you

aren’t any good at logic then. You understand some of it, but don’t really know how to

put it all together. By the end of the first year, you were approaching the level of

quality the IT industry needed: The kind of individual who could hear a problem and

begin the design in their head. Not an entire application or system problem, but a

single module or program problem. You would find yourself looking forward to hearing

newer developers ask, “How am I supposed to do this?” Turning around with a smile

you would say “It is accomplished this way” and give a detailed verbal explanation.

You looked forward to that day because that was the day all would know you had paid

your dues in full.

Flowcharting is shunned because nobody wants to pay their dues.

I.7 Flowcharting and the Current State of IT

Admittedly, this section probably belongs in one of my “Ruminations” chapters, but

it fits here. There are few uglier tasks in the world of IT than being asked to draw a

flowchart. While it may take you months to track down a bug in a particularly nasty

piece of code, there is an immense sense of accomplishment that follows fixing it and

pointing the fix out to all of those programmers who shied away from the task. When

you are asked to draw a flowchart for a large program, it can feel like being asked to

lug rocks from one pile to a new pile ten feet away, then lug them back again.

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

