
1

The Dummies’ GuiDe To

Software Engineering

Rosina S Khan

2

 Dedicated to:

 You, the Valued Reader

3

Copyright Information

Copyright © 2020 by Rosina S Khan. All rights reserved. No part(s) of this
eBook may be used or reproduced in any form whatsoever, without written
permission by the author.
https://rosinaskhan.weebly.com

https://rosinaskhan.weebly.com/

4

Table of Contents

Preface ... 7

C H A P T E R 1 ...10

Introduction .. 10

1.1 Professional Software Development .. 10

1.2 Software: Problems and Prospects ... 11

1.3 Software Crisis .. 14

1.4 Remedy: Software Engineering .. 14

1.5 Software Engineering Ethics ... 15

C H A P T E R 2 ...16

Requirements Engineering ... 16

2.1 How to Elicit Requirements .. 16

2.2 Requirements Specification .. 17

2.3 Structure of a Requirements Specification ... 18

2.4 Use Cases ... 19

2.5 Use Case Diagrams ... 20

C H A P T E R 3 ...21

Design .. 21

3.1 User Interface Design .. 21

3.2 Modularity .. 26

3.3 Architecture-Based Design ... 31

3.4 Pattern-Based Design .. 37

3.5 WebApp Design .. 40

3.6 WebApp Architecture ... 50

3.7 Navigation Design ... 51

3.8 Component-Level Design ... 52

3.9 Object-Oriented Hypermedia Design Method (OOHDM) 53

5

3.10 Object-Oriented Design Using UML ... 54

3.11 Data Flow Design .. 55

C H A P T E R 4 ...63

Software Processes ... 63

4.1 Waterfall Model ... 63

4.2 The Spiral Model ... 65

4.3 Prototyping ... 68

4.4 Incremental Development .. 69

4.5 Open Source Software Development .. 70

4.6 Agile Methods and Extreme Programming ... 72

4.7 The Unified Process ... 83

C H A P T E R 5 ...86

The Project Teams .. 86

5.1 Teams .. 86

C H A P T E R 6 ...92

Software Metrics and Quality Assurance ... 92

6.1 Introduction .. 92

6.2 Basic Metrics ... 93

6.3 Complexity Metrics .. 93

6.4 Faults and Reliability (Estimating Bugs) .. 95

6.5 Software Quality ... 96

6.6 Quality Assurance ... 97

6.7 Process Development .. 99

C H A P T E R 7 .. 100

Project Management ..100

7.1 Introduction .. 100

7.2 Project Inception ... 100

7.3 Cost Estimation ... 101

6

7.4 Selecting Tools and Methods .. 102

7.5 The Project Plan .. 103

7.6 Managing People ... 104

C H A P T E R 8 .. 106

Software Testing ..106

8.1 Introduction .. 106

8.2 Development Test .. 109

8.3 Test-Driven Development .. 113

8.4 Release Testing ... 115

8.5 User Testing ... 118

C H A P T E R 9 .. 121

Software Evolution ...121

9.1 Introduction .. 121

9.2 Evolution Processes ... 123

APPENDIX A: Case Studies ..129

APPENDIX B: UML Summary ...132

About the Author ...138

Awesome Free Resources ...139

7

Preface

This book is for Computer Science and Engineering undergraduate students which is

simple to comprehend and is especially written in the format these students would

enjoy reading and benefit from learning the foundation concepts of Software

Engineering. It has been integrated from various resources including but not limited to

the following titles:

[1] Roger S Pressman, Software Engineering- A Practitioner’s Approach, McGraw Hill, 7th

Edition, 2010

[2] Ian Sommerville, Software Engineering, Addison-Wesley, 9th Edition, 2011

[3] Douglas Bell, Software Engineering for Students – A Programming Approach,

Addison-Wesley, 4th Edition, 2005

Organization of the Book

The book is organized into nine chapters and two Appendices.

In the first introductory chapter, we become familiar with professional software

development that would consist of people developing software products including code,

programs and documentation. [2,3]

In chapter 2, we are concerned with Requirements Engineering introducing user and

system requirements. The former tells the system users what service the system will

provide while the latter defines system’s functions, services and constraints in greater

detail. In this phase, a requirements specification is also developed for users describing

their view of the system, and expressed in natural language. [2,3]

The third chapter on Design is lengthy taking into account all possible types of system

designs such as User Interface Design, Modularity, Architectural-Based Design, Pattern-

Based Design, WebApp Design, Navigation Design, Component-Level Design, Object-

8

Oriented Hypermedia Design Method (OOHDM), Object-Oriented Design using UML

(Unified Modeling Language) as well as Data Flow Design. [1,2,3]

Chapter 4 deals with software processes such as Waterfall Model, The Spiral Model,

Prototyping, Incremental Development, Open Source Software Development, Agile

Methods and Extreme Programming and the Unified Process. [1,2,3]

Chapter 5 describes the Project Teams in respect of the principles behind the teams

working, how functional and project teams operate and finally how the chief

programmer team operates. [3]

Chapter 6 is about Software Metrics and Quality Assurance. Metrics or measures applied

on software will help us determine the quality of software, monitor and improve the

software as well as they are helpful for assessing different software development

approaches. Quality assurance is similar in that monitoring and controlling the process

of a software development system helps meet its quality goals. [3].

Chapter 7 portrays about Project Management on the overall. It is an activity trying to

verify that the software development is successful. [3]

Chapter 8 summarizes software testing. Testing is done to ensure that the software

does what it is intended to do and to discover any defects the program has before

putting it to use. [2]

Chapter 9 goes on to explain software evolution. As a matter of fact, software

development does not stop after it has been developed but continues to evolve

throughout the lifetime of the system. [2]

Last comes the Appendix section. There are two short appendices A and B. Appendix A

considers several short sample case studies on software engineering. Appendix B

illustrates a UML summary showing the basic concepts and notations. [3]

9

Acknowledgments

I express my heart-felt gratitude to Roger S Pressmam, Ian Sommerville and Douglas

Bell and their publishers for gathering some of their resources and molding them with

what I have and therefore, this book becoming alive.

Last but not the least, I am thankful to my family for their support during the write-up

of this book.

10

C H A P T E R 1

Introduction

1.1 Professional Software Development

Teams rather than individuals develop software products such as for integrating in

other devices or in the form of information systems or CAD systems etc. The entire

system not only consists of software products but also documentation aided by other

programs, guides and data to make the whole system in the process of professional

software development. An amateur software development would consist of an individual

developing software for his needs without documentation and guides but a fully

professional software development would consist of people developing software

products including code, programs and documentation.

There are two kinds of software products that software engineers develop. They are:

Generic Products: These are stand-alone systems designed to meet customers’ needs

generally who are able to buy them. They include databases, word processors, drawing

packages, and project-management tools. Software products in this category also

include library information systems, accounting systems, or systems for maintaining

dental records, which are designed for a specific purpose.

Customized Products: These are systems that are tailored according to the needs of a

particular customer. Examples of such software products include control systems for

electronic devices or systems to support a particular business process.

The specific set of attributes you would like to expect from a software system are

summarized below:

Maintainability: There should be scope for software change in a changing business

environment.

11

Dependability and Security: Dependable software should be reliable, secure and

safe. They should not damage physically or economically in the case of system failure.

Efficiency: Software efficiency includes responsiveness, processing time and memory

utilization.

Acceptability: Software should be acceptable which means they should be

understandable, usable and compatible with other systems the users use.

1.2 Software: Problems and Prospects

The problems centered around software development and the goals software

developers seek to achieve are:

 meeting users’ needs

 low cost of production

 high performance

 portability

 cost of maintenance

 high reliability

 delivery on time

Meeting users’ needs:

It is obvious that software engineers should build products according to their clients’

needs but all along evidence has shown that 2% is only used as delivered. This shows

that requirements engineering or analysis should play an important role in the whole

process rather than reliability or cost. However, it should be taken into account that

smaller systems can be tailored to serve clients’ needs better.

12

Cost of Software Production

Industrialized nations spend on software development in significant proportions. The

cost of software is influenced by the productivity of the software developers and their

salaries. The performance of these software developers is dependent not only on their

ability to code but also to carry out clarifying the problem specification, software design,

coding, testing and documentation. It is sort of difficult to predict how much time a

piece of software will take to develop and hence the cost and delivery date of software

is also affected.

In the early days of computers, hardware was costly and software relatively cheap.

Nowadays due to mass production and miniaturization, hardware is cheap and software

costly. For instance in 1955, software cost only 10% of about a project while hardware

cost 90%. Nowadays software has risen to about 90% of a project’s cost, while the

remaining 10% cost comprises hardware. These proportions should be treated

carefully. They hold for certain projects only and not in each and every case.

Some software is simple and easy to write but most commercially used software is large

and extremely complex. Clearly, the cost of testing is enormous, whereas coding

constitutes only a small part of software development.

In summary, what we see today is that software is expensive:

 relative to the gross national product

 because developers exhibit apparently low productivity

 relative to the cost of hardware

 in popular perception.

Software Performance

Examples of software performance include:

 an interactive system responds within a reasonably short time

13

 a control signal is output to a plant in sufficient time

 a game runs sufficiently so fast that the animation appears smooth

 a batch job is not taking 12 hours when it should take one.

Portability

Software should be portable from one hardware to another and that is what is expected

given the advent of high-level languages and international standards. But that’s not

actually the case because clients are tied to their suppliers for switching allegiance at a

considerable cost in converting software.

Maintenance

This factor comes into the picture after a piece of software has been written and put

into operation. There are two types:

1) Remedial Maintenance: The software is tested for faults or bugs.

2) Adaptive Maintenance: The software is modified either because the user’s needs

have changed or the computer, operating system or the programming language has

changed.

Reliability

A software piece is reliable if it keeps working and working without undesirable

malfunctions.

Now we need to coin three terms that would make a software piece undesirable:

1) Error : a wrong decision made during software development.

2) Fault: a problem or bug causing software to malfunction.

3) Failure: an event causing software to malfunction.

An error is a mistake causing one or more faults in software. Failure will result while the

system is tested. Failures are symptoms that end-users experience while faults are what

the developers have to solve.

14

Delivery on Time

The fewer faults or bugs a software piece has, the higher the chances that it will be

delivered to the client on time.

1.3 Software Crisis

A software crisis arises when:

 it fails to do what users want it to do

 it is expensive

 it isn’t always fast enough

 it cannot be transferred to another machine easily

 it is expensive to maintain

 it is unreliable

 it is often late

 it is not always easy to use

1.4 Remedy: Software Engineering

There are problems in developing software and so what is the remedy? A number of

methods and tools comprising software engineering is the likely answer. Some of them

are as follows:

 greater emphasis on carrying out all stages of development systematically.

 computer assistance for software development – software tools.

 an emphasis on finding out exactly what the users of a system really want

(requirements engineering and validation)

 demonstrating an early version of a system to its customers (prototyping)

 use of new, innovative programming

 greater emphasis on trying to ensure that software is free of errors (verification).

 incremental development, where a project proceeds in small, manageable steps.

15

1.5 Software Engineering Ethics

Like other engineering disciplines, software engineering imposes professional

responsibilities without pertaining to laws among teams of people working to develop

software products. These responsibilities cover more than the appropriate application

of technical skills such as honesty and integrity as well as ethical and moral ways on the

part of the employees. Some of these responsibilities on a wider range are:

1) Confidentiality: You must respect the confidentiality of your employers or clients

although no such treaty may have been signed.

2) Competence: You should accept work only that you know you have the right skill set

and are competent. Accepting any other work might end in jeopardy and chaos.

3) Intellectual property rights: You should be aware of local laws governing intellectual

property rights such as patent and copyrights and protect those property rights of

employers and clients.

4) Computer misuse: You may not mishandle your employer’s computers by applying

your technical skills. This may range from playing games on their computers, for

instance, to infecting them with viruses and malware.

16

C H A P T E R 2

Requirements Engineering

Requirements Engineering fall under two categories: User Requirements and System

Requirements.

User Requirements are natural language statements and diagrams telling the system

users what service the system will provide and the constraints under which the system

will operate.

System Requirements define the software system’s functions, services and constraints

in greater detail. It should clearly state what should be implemented. It may even

become the part of the contract between the system buyer and software developer.

Software system requirements may be further categorized as functional and non-

functional requirements.

For instance, functional requirements define what service the system will provide, how

it reacts to particular inputs and how it should behave under certain conditions. It may

also mention what the system may not do.

Non-functional requirements consist of constraints and functions imposed by the system

such as timing constraints, constraints on the development process and standards-

based constraints. These may be applied to the system as a whole.

2.1 How to Elicit Requirements

We can categorize three activities to elicit requirements:

1. Listening

2. Thinking

3. Writing

17

Listening involves the users’ needs or requirements of the system, asking them about

goals and constraints of the system and finally recording their viewpoints of the system

requirements.

Requirements analysis is the level where the system simply thinks. S/he transforms the

users’ view of the system as an organized representation of the system as seen by the

analyst.

Requirements definition is a clear statement, usually in natural language, of what the

system should actually provide for its user. This definition translates into a requirements

specification.

2.2 Requirements Specification

Three important factors to be considered are:

 the level of detail

 to whom the document is addressed

 the notation used

The specification, as we have already mentioned, should tell in detail the user’s view of

the system rather than how the system should be implemented.

The specification is a contract between users and developers. While users will prefer it

in natural language, developers would like to use some mathematical notations to be

more precise. This problem can be resolved by drawing up two documents. These are:

 A requirements specification written for users, describing their view of the system

and expressed in natural language. This is the substance of the contract between

the users and the developers.

 A technical specification that is used by developers, expressed in some formal

notation and describing only a part of the information in the full requirements

specification.

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can

access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

