

The Dummies’ GuiDe To
Compiler Design

Rosina S Khan

1

Dedicated to You,

The Valued Reader

2

Copyright © 2018 by Rosina S Khan. All rights reserved. No part(s) of this
eBook may be used or reproduced in any form whatsoever, without written
permission by the author.

http://rosinaskhan.weebly.com

3

http://rosinaskhan.weebly.com/

 Contents

Preface ... 8

C H A P T E R 1 .. 11

Introduction to Compilers ... 11

1.1 What actually is a Compiler? ... 11

1.2 Other Translators ... 11

1.3 What is the Significance of Translators? ... 12

1.4 Macros ... 13

1.5 High-Level Languages ... 14

1.6 The Structure of a Compiler .. 15

C H A P T E R 2 .. 18

Lexical Analysis .. 18

2.1 How a Lexical Analyzer Works ... 18

2.2 Input Buffering ... 19

2.3 Preliminary Scanning .. 20

2.4 A Simple Design of Lexical Analyzers ... 21

2.5 Regular Expressions ... 26

2.6 Finite Automata .. 29

2.7 Nondeterministic Automata ... 29

2.8 Converting an NFA to a DFA .. 31

2.9 Minimizing the Number of States of a DFA ... 41

2.10 A Language for Specifying Lexical Analyzers ... 43

2.11 Implementation of a Lexical Analyzer ... 48

C H A P T E R 3 .. 52

Syntax Analysis - Part 1 .. 52

3.1 Context-Free Grammars .. 52

3.2 Derivations and Parse Trees .. 55

3.3 Regular expressions vs Context-Free Grammar ... 58

 4

3.4 Further example of Context-Free Grammar .. 59

C H A P T E R 4 .. 62

Syntax Analysis - Part 2 .. 62

4.1 Shift-Reduce Parsing .. 62

4.2 Operator-Precedence Parsing .. 64

4.3 Top-Down Parsing .. 67

4.4 Recursive-Descent Parsing .. 70

4.5 Predictive Parsers ... 72

C H A P T E R 5 .. 79

Syntax Analysis - Part 3 .. 79

5.1 LR Parsers ... 80

5.2 CLOSURE ... 81

5.3 Parsing Table ... 87

5.4 Moves of LR parser on an Input String ... 90

C H A P T E R 6 .. 92

Syntax-Directed Translation .. 92

6.1 Syntax-Directed Translation Scheme .. 92

Semantic Actions .. 92

6.2 Implementation of Syntax-Directed Translators ... 95

6.3 Intermediate Code .. 100

6.4 Postfix Notation .. 101

6.5 Parse Trees and Syntax Trees ... 105

6.6 Three-Address Code ... 106

C H A P T E R 7 ... 114

Run-Time Storage Organization .. 114

7.1 Memory Layout of an Executable Program ... 114

7.2 Run-Time Stack .. 115

7.3 Storage Allocation .. 118

 5

7.4 Accessing a Variable ... 121

7.5 The Code for the Call of Q(x,c) .. 122

7.6 The Code for a Function Body ... 123

C H A P T E R 8 ... 124

Intermediate Representation (IR) Based on Frames 124

8.1 Example of IR Tree ... 125

8.2 Expression IRs ... 125

8.3 Statement IRs .. 126

8.4 Local Variables ... 127

8.5 L-values ... 128

8.6 Data Layout : Vectors ... 128

C H A P T E R 9 ... 130

Type Checking .. 130

9.1 Type Checking ... 130

9.2 Type Systems ... 131

9.3 Type Expressions.. 131

9.4 Type Expressions Grammar ... 132

9.5 A Simple Typed Language ... 132

9.6 Type Checking Expressions ... 133

9.7 Type Checking Statements .. 133

C H A P T E R 10 ... 135

Code Optimization ... 135

10.1 Introduction to Code Optimization ... 135

10.2 Loop Optimization ... 135

C H A P T E R 11 ... 143

Code Generation ... 143

11.1 Problems in Code Generation .. 143

11.2 A Machine Model .. 145

 6

11.3 The Function GETREG ... 149

Appendix: A Miscellaneous Exercise on Compiler Design

154

About the Author ... 160

Further Free Resources ... 161

7

Preface

While students in Computer Science and Engineering (CSE) field or any other equivalent

field program in high-level languages and run their programs in editors using a compiler,

they do need to understand the mysteries and complexities about how a compiler

functions. And the best way to do that is to grasp the underlying principles and actually

design a compiler in lab. This is where this book comes into the picture. In a simple,

lucid way, the content of this book is made available to the students of CSE or any other

equivalent program so that they can understand and grab all the concepts behind

Compiler Design conveniently and thoroughly.

Now the principles and theory behind designing a compiler presented in this book are

nothing new and they are presented as they have always been known but the real

difference lies in the fact that they have been outlined in a really simple and easy-to

understand way. Now I have collected some of the resources from varying sources and

assembled with mine to make the flow of reading logical, comprehensible and easy to

grasp.

Some of these resources are:

[1] Aho A. V., Lam M. S., Sethi R., Ullman J.D., Compilers: Principles, Techniques &

Tools, Pearson Education, 2nd Ed., 2007

[2] Aho A. V., Ullman J. D., Principles of Compiler Design, Addison-Wesley/Narosa,

Twenty-third Reprint, 2004

[3] Dr Fegarsas’s Lecture Notes on Compilers, CSE, UTA

8

Organization

Let me now explain the organization of this book.

Chapter 1 is an introductory chapter explaining compilers, translators, their significances

and structure of a compiler.

Chapter 2 illustrates lexical analyzers which take input from source programs and

produce group of characters called tokens, how they work and function and finally their

implementation introducing such concepts as regular expressions, nondeterministic finite

automata and deterministic finite automata.

Chapter 3 covers syntactic analysis which groups tokens into syntactic structures such as

expressions and statements. For this, we use concepts such as context free grammar,

derivations and parse trees.

Chapter 4 continues with syntactic analysis further covering shift-reduce parsing,

operator-precedence parsing, top-down parsing, recursive-descent parsing and

predictive parsers.

Chapter 5 further continues with syntactic analysis, portraying a special kind of bottom-

up parser, the LR parser which scans input from left to right and how they help with

syntactic analysis.

Chapter 6 outlines syntax directed translation that introduces intermediate code

generation, which is actually an extension of context-free grammars.

9

Chapter 7 mainly covers storage of variables within program code in a run-time stack.

Chapter 8 explains intermediate representation (IR) specification in areas of frame

layout.

Chapter 9 portrays the role of a type checker in the design of a compiler.

Chapter 10 includes code optimization in order to improve the code space and time-wise

before the final code generation.

Chapter 11 introduces code generation in machine language format, the final phase of a

compiler.

There is also an Appendix at the very end outlining a miscellaneous exercise on compiler

design on which students can work out throughout the whole semester in parallel with

theory lectures.

Acknowledgments

I deeply acknowledge my heart-felt thanks to the authors and publisher of Compilers:

Principles, Techniques & Tools and Principles of Compiler Design as well as Dr Fegaras,

for using and collecting their resources and combining them with mine and hence the

birth of this very book.

Last but not the least I am thankful to my family for all their support while writing out

this book.

10

C H A P T E R 1

Introduction to Compilers

1.1 What actually is a Compiler?

A translator converts one program in a specific programming language as input to a

program in another programming language as output. If the source language is a high-

level language such as C++ or Java and the object or target language is assembly

language or machine language, then such a translator is known as a compiler.

The function of the compiler takes place in two steps:

1) First, the source program is compiled or translated into the object program.

2) Second, the resulting object program is stored in memory and executed.

1.2 Other Translators

Certain translators transform a programming language into a less complex language

called intermediate code, which can be executed directly with a program called

interpreter. Here we can interpret the intermediate code acting as some sort of machine

language.

Interpreters are smaller in size than compilers and help in the implementation of

complex programming language structures. However, the main downside of interpreters

is that they take more execution time than compilers.

11

Besides compilers, there are other translators as well. For instance, if the source

language is assembly language and the target language is machine language, the

translator is known as an assembler. As another instance, if a translator converts a high-

level language to another high-level language, it is termed as a preprocessor.

1.3 What is the Significance of Translators?

We know machine languages are only sequences of 0’s and 1’s. If we program an

algorithm in machine language, it not only becomes tedious but also becomes prone to

making errors. All operations and operands must be numeric and therefore it becomes

difficult to distinguish them, which is a serious downside. Another problem that arises is

that it becomes inconvenient to modify them. So under these circumstances, machine

languages are not reliable to start coding and this is exactly where the picture of high-

level languages comes in.

A family of high-level languages has been invented so that the programmer can code in

a way nearer to his thought processes, ideas and concepts rather than always think at

the machine language level and code, which is almost always impossible. A step away

from the machine language is the assembly language which uses mnemonic codes for

both operations and data addresses. Thus, a programmer could write ADD X, Y in

assembly language rather than use sequences of 0’s and 1’s for the same operation

using machine language. However, the computer only understands machine language

and so the assembly language needs to be translated to machine language and the

translator which carries out this function is known as an assembler.

12

1.4 Macros

Macros are statements nearer to assembly language statements but different from them

in that they use a single memory address along with the operation code. For example,

our previous assembly code, ADD X, Y could be broken down into three macro

operations, LOAD, ADD and STORE – all using single memory addresses as shown

below:

MACRO ADD2 X, Y

LOAD Y

ADD X

STORE Y

ENDMACRO

The first statement gives the name ADD2 to the macro along with its dummy arguments

X, Y. The next three statements define the macro, assuming the machine has only one

register, the Accumulator, the other name for Register A.

LOAD Y is equivalent to Y -> Acc

which means content of memory address Y is transferred to the Accumulator.

The next statement ADD X is equivalent to Acc + X -> Acc

which means content of the Accumulator is added to the content of memory address X

and the result is stored in the Accumulator.

13

The third statement STORE Y is equivalent to Acc -> Y

which means the content of the Accumulator is stored in memory address Y.

In this way the assembly code ADD X, Y is broken into macro statements and the same

Add operation happens in the latter case. This is useful when the number of registers in

the machine is limited.

In the above code, we defined a macro. Now I shall explain how we can use a macro.

After definition of ADD2 X, Y, a macro use happens when we come across the statement

ADD2 A, B. In ADD2 A, B statement, A and B replace X and Y respectively and is

translated to:

LOAD B

ADD A

STORE B

Thus macro use is like a function call to the function definition as in a high-level

language such as C, C# or Java.

1.5 High-Level Languages

A high-level programming language makes the programming task simpler, but it also

introduces a problem. We now need a program to convert to a language the machine

understands - in other words, the machine language. In that case, this program

becomes a compiler similar to the assembler for an assembly language.

14

A compiler is more complex to write than an assembler. Sometimes compilers have

appended with them an assembler so that the compiler produces assembly code initially,

which is then assembled, loaded and converted into machine language.

1.6 The Structure of a Compiler

Fig. 1: Phases of a Compiler

15

As with our definition, a compiler converts a high-level language program into a machine

language program. But the whole process does not occur in a single step but in a series

of subprocesses called phases as shown in Fig. 1.

Each phase of the diagram becomes a chapter of this book because the phases of the

compiler structure leads to the compiler design and that is what this book is about. Now

let’s go briefly through all the phases of the compiler.

The first phase of the compiler called lexical analyzer or scanner separates the

characters of the source program into groups called tokens that logically belong

together. Tokens can be keywords such as, DO or IF, identifiers or variables such as, X

or NUM, operator symbols such as <= or + and punctuation symbols such as

parenthesis or commas. The tokens can be represented by integer codes for instance,

DO can have the integer code 1, ‘+’ can have 2 while ‘identifiers’ 3.

The syntax analyzer or parser, the next phase of the compiler, groups tokens into

syntactic structures. For instance, the three tokens in A+B can be grouped together to

form a syntactic structure called an expression. Expressions can further be grouped to

form statements. Sometimes the syntactic structure can be represented as a tree whose

leaves form the tokens.

The output of syntax analyzer or parser is a stream of simple instructions called

intermediate code. The intermediate code generator which produces the intermediate

code in the third phase usually use instructions such as simple macros with one operator

and a small number of operands. The macro ADD2 statement explained in section 1.4 is

16

a bright example of this. The main difference between intermediate code and assembly

code is that the former does not need to specify registers for each operation unlike the

latter.

Code optimization, the next phase after intermediate code generator, is an optional

phase that is geared to improving the intermediate code so that the ultimate object

program runs faster and/or takes less space.

The final phase, Code Generator, should be designed in such a way that it produces a

truly efficient object code, which is challenging, both in practical and theoretical terms.

In table management or bookkeeping portion of the compiler, a data structure called

symbol table keeps track of the names (identifiers) used by the program and records

important information about each such as, its type whether integer, real etc.

The error handler handles errors as the information passes from the source program

through one phase to another.

Both the table management and error handling routines interact with all phases of the

compiler.

17

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can

access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

