

i

ACKNOWLEDGEMENTS

This book would not have been possible without the input and support provided by

several people. The author would like to express a deep sense of gratitude and special

thanks to Dr. Muheet Butt, Scientist ‘D’, Kashmir University. It would have been

impossible to complete this work in this manner without his wise counsel and able

guidance.

The constant guidance and encouragement received from Dr. Majid zaman, Scientist

‘D’, Kashmir University, who has been very helpful in completing the book, for which

the author is highly indebted to his good-self.

The author expresses profound gratitude to Prof. Harkesh Sehrawat, Professor,

Maharishi Dayanand University, for his intellectual support throughout the course of

this work.

Finally, the author would like to express thanks to the many silent professionals whose

work, advice, and feedback influenced my thinking and work on this book. Despite the

efforts of so many to make this report better, there are undoubtedly weaknesses and

errors that remain. These are entirely the fault of the author.

Mehak Bashir

ii

TABLE OF CONTENTS

Topic Page No.

LIST OF FIGURES iv

LIST OF TABLES iv

ABSTRACT v

CHAPTER 1 INTRODUCTION 1 -12

1.1 OpenSSL Heartbleed 1

1.2 Naive Bayes Classifier 2

1.3 Vulnerability 3

1.4 Types of Vulnerabilities

CHAPTER 2 LITERATURE SURVEY 13 - 17

2.1 Introduction to Survey Report 13

2.2 General Survey 16

CHAPTER 3 THEORETICAL EXPLAINATIONS 18 - 30

3.1 How the Heartbeat Works 18

3.2 Data Leakage Leading to Heartbleed 19

3.3 Code Fix 21

3.4 Real world Impact of Heartbleed 22

3.5 Factors to Determine Severity of a Vulnerability- Common Vulnerability
Scoring System (CVSS)

24

3.6 Naive Bayes Classification 25

CHAPTER 4 PROPOSED WORK 31 - 37

4.1 Algorithm for Predicting severity/Threat of Exploitation Using Naïve
Bayes Approach

31

4.2 Frequency Table for Some Common Vulnerabilities Based on CVSS
(Version 2) parameters

31

4.3 Likelihood Table for Finding the Probabilities of Various CVSS (Version2)
Parameters

34

4.4 Using Naive Bayes Equation to Calculate the Posterior Probability for a
Sample class of Vulnerability, to predict its Severity

36

TABLE OF CONTENTS

iii

Topic Page No.

CHAPTER 5 RESULTS AND OUTPUTS 38 - 42

5.1 Checking Heartbleed Vulnerability with nmap in Kali Linux 38

5.2 Exploiting Heartbleed Vulnerability with Metasploit 39

5.3 Output of Naive Bayes Method for Prediction of Severity of Exploitation
for OpenSSL Heartbleed Vulnerability

41

5.4 C# Code Segments for Predicting Severity/Threat of Exploitation Using
Naive Bayes Approach

42

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 48 - 50

6.1 Conclusions 48

6.2 Recommendations 49

CERTIFICATE OF PUBLICATION 51

REFERENCES 52

iv

LIST OF FIGURES

S.No. Title Page No.

Figure 0 Graphic 1 and 2 shows the Heartbleed code 17

Figure 1 Memory Leak 20

Figure 2 The OpenSSL code fix for the Heartbleed bug 21

Figure 3 OpenSSL Security Advisory 22

Figure 4 Exploiting the Heartbleed Vulnerability 23

LIST OF TABLES

S.No. Title Page No.

Table 1
CVSS (Version 2) Base Metrics, with definitions
from Mell et al. (2007)

25

Table 2
Frequency table for some common vulnerabilities
using CVSS (Version 2) Base Metrics

32 - 34

Table 3
Likelihood table for calculation of probabilities of
CVSS (Version 2) Parameters

35

v

ABSTRACT

The Open Secure Sockets Layer (OpenSSL) provides secure platform for

transactions, such as online shopping, online banking and emails etc., that take place

over/across the internet. It is widely used open source implementation of the Secure

Sockets Layer (SSL) and Transport Layer Security (TLS). Vulnerabilities have

however been found in the OpenSSL which has resulted in a wide public outcry all

over the world. A confounding computer bug called “Heartbleed” is causing major

security worries across the internet. Heartbleed affects many things, including web

servers, routers that connect office networks to the internet, mobile apps and VPNs

(Virtual Private Network). It has been estimated that 60 percent of secure web sites

that are using OpenSSL are affected. In addition, Heartbleed cannot be traced. The

Heartbleed Bug has sent shockwaves all over the internet. Not only has all of this user

data been directly compromised, but, what are worse, the private keys of the servers

running the vulnerable versions of OpenSSL were also almost certainly

compromised. Patching of affected applications or/and upgrade to versions that are

not vulnerable, is recommended/suggested, in order to mitigate the risks identified.

The thesis/work describes OpenSSL Heartbleed vulnerability and also

proposes a methodology that explains the severity of exploitation posed by some

common types of vulnerabilities, based on Common Vulnerability Scoring System

(CVSS), using Naive Bayes classification algorithm.

Skip a Heartbeat: OpenSSL Heartbleed vulnerability & prediction of exploitation based on CVSS

using Naive Bayes classification algorithm

Mehak Bashir Page 1

CHAPTER 1

INTRODUCTION

1.1 OpenSSL Heartbleed

 The OpenSSL is an open source implementation of the

Secure Sockets Layer (SSL) and the Transport Layer Security (TLS)

[7].The OpenSSL platform provides security when data is transferred

from one point of the internet to another part [1]. The Secure socket layer

(SSL) is the most popular protocol used on the Internet for secure transfer

of data [4]. The OpenSSL protocol is used in two-thirds of all websites to

prevent hackers from stealing sensitive information like passwords or

credit card data [5]. If the data being transferred is edited/changed/

updated along the way, data integrity is compromised and if the data is

accessed and falls into the wrong hands, confidentiality of data is lost.

Data Integrity and confidentiality should be maintained as data moves

from point to point. The OpenSSL protocol works by authenticating the

server to the client and client to server through the use of digital

certificates signed by a trusted third party. Private and public keys are also

used in the OpenSSL to provide security. The OpenSSL protocol is

however subject to vulnerabilities [2], [3] whether directly or indirectly.

This can be seen by the trusted third parties who authenticate the identities

of transacting individuals have been exposed to continuous

attacks/threats. [6]. various other vulnerabilities have been found

Skip a Heartbeat: OpenSSL Heartbleed vulnerability & prediction of exploitation based on CVSS

using Naive Bayes classification algorithm

Mehak Bashir Page 2

within the OpenSSL protocol and the most notable has been the

Heartbleed bug.

The name ‘Heartbleed’ itself explains the vulnerability – ‘Heart’ of

the Heartbleed came from Heartbeat protocol and ‘bleed’ stands for data

leakage. That means data leakage in the Heartbeat protocol

implementation, specifically the OpenSSL implementation of the

protocol.

1.2 Naive Bayes Classifier

Naive Bayes is a kind of classifier which uses the Bayes Theorem.

It predicts membership probabilities for each class such as the probability

that given record or data point belongs to a particular class. The class

with the highest probability is considered as the most likely class. This is

also known as Maximum A Posteriori (MAP).

The MAP for a hypothesis is:

MAP(H) = max(P(H|E))

 = max((P(E|H)*P(H))/P(E))

 = max(P(E|H)*P(H))

P (E) is evidence probability, and it is used to normalize the result. It

remains same so, removing it won’t affect.

Naive Bayes is a classification algorithm for binary (two-class) and

multi-class classification problems. The technique is easiest to

understand when described using binary or categorical input values [8].

Skip a Heartbeat: OpenSSL Heartbleed vulnerability & prediction of exploitation based on CVSS

using Naive Bayes classification algorithm

Mehak Bashir Page 3

1.3 Vulnerability

Vulnerability, in information technology (IT), is a flaw in code or

design that creates a potential point of security compromise for an

endpoint or network.

Vulnerabilities create possible attack vectors, through which an

intruder could run code or access a target system’s memory. The means

by which vulnerabilities are exploited are varied and include code

injection and buffer overruns; they may be conducted through hacking

scripts, applications and free hand coding.

Vulnerabilities are constantly being researched and detected by the

security industry, software companies, cybercriminals and other

individuals. Some companies offer bug bounties for these discoveries.

Nevertheless, when vulnerability disclosure is considered, the question of

how much information to provide and when to make it public is a

contentious issue.

Some people argue for full and immediate disclosure, including the

specific information that could be used to exploit the vulnerability; others

believe that vulnerability information should not be published at all

because the information can be used by an intruder. A zero-day exploit,

for example, takes place as soon as vulnerability becomes generally

known. To mitigate risk, many experts believe that limited information

should be made available to a selected group after some specified amount

of time has elapsed since detection.

Both black hats and white hats regularly search for vulnerabilities

and test exploits, however, and if a cybercriminal finds a useful and

http://searchsecurity.techtarget.com/definition/attack-vector
http://searchsecurity.techtarget.com/definition/exploit
http://searchsecurity.techtarget.com/definition/vulnerability-disclosure
http://searchsecurity.techtarget.com/definition/black-hat
http://searchsecurity.techtarget.com/definition/white-hat

Skip a Heartbeat: OpenSSL Heartbleed vulnerability & prediction of exploitation based on CVSS

using Naive Bayes classification algorithm

Mehak Bashir Page 4

unreported security hole, he is likely to take advantage of it. Proponents

of disclosure maintain that it leads to more patching of vulnerabilities and

more secure software [2].

1.4 Types of Security Vulnerabilities

Most software security vulnerabilities fall into one of a small set of

categories:

 buffer overflows

 unvalidated input

 race conditions

 access-control problems

 weaknesses in authentication, authorization, or cryptographic practices

1.4.1 Buffer Overflows

A buffer overflow occurs when an application attempts to write

data past the end (or, occasionally, past the beginning) of a buffer.

Buffer overflows can cause applications to crash, can compromise

data, and can provide an attack vector for further privilege escalation to

compromise the system on which the application is running.

Books on software security invariably mention buffer overflows as

a major source of vulnerabilities. Exact numbers are hard to come by, but

as an indication, approximately 20% of the published exploits reported

by the United States Computer Emergency Readiness Team (US-CERT)

for 2004 involved buffer overflows.

Any application or system software that takes input from the user,

from a file, or from the network has to store that input, at least

Skip a Heartbeat: OpenSSL Heartbleed vulnerability & prediction of exploitation based on CVSS

using Naive Bayes classification algorithm

Mehak Bashir Page 5

temporarily. Except in special cases, most application memory is stored

in one of two places:

 stack— A part of an application’s address space that stores data that is

specific to a single call to a particular function, method, block, or other

equivalent construct.

 heap— General purpose storage for an application. Data stored in the

heap remains available as long as the application is running (or until

the application explicitly tells the operating system that it no longer

needs that data).

Class instances, data allocated with malloc, core foundation objects,

and most other application data resides on the heap. (Note, however, that

the local variables that actually point to the data are stored in the stack.)

Buffer overflow attacks generally occur by compromising the stack,

the heap, or both [1].

1.4.2 Unvalidated Input

As a general rule, we should check all input received by our

program to make sure that the data is reasonable.

For example, a graphics file can reasonably contain an image that is

200 by 300 pixels, but cannot reasonably contain an image that is 200 by

-1 pixel. Nothing prevents a file from claiming to contain such an image,

however (apart from convention and common sense). A naive program

attempting to read such a file would attempt to allocate a buffer of an

incorrect size, leading to the potential for a heap overflow attack or other

problem. For this reason, we must check our input data carefully. This

process is commonly known as input validation or sanity checking.

Skip a Heartbeat: OpenSSL Heartbleed vulnerability & prediction of exploitation based on CVSS

using Naive Bayes classification algorithm

Mehak Bashir Page 6

Any input received by our program from an untrusted source is a

potential target for attack. (In this context, an ordinary user is an

untrusted source.) Examples of input from an untrusted source include

(but are not restricted to):

 text input fields

 commands passed through a URL used to launch the program

 audio, video, or graphics files provided by users or other processes and read by

the program

 command line input

 any data read from an untrusted server over a network

 any untrusted data read from a trusted server over a network (user-submitted

HTML or photos on a bulletin board, for example)

Hackers look at every source of input to the program and attempt to

pass in malformed data of every type they can imagine. If the program

crashes or otherwise misbehaves, the hacker then tries to find a way to

exploit the problem. Unvalidated-input exploits have been used to take

control of operating systems, steal data, corrupt users’ disks, and more.

One such exploit was even used to “jail break” iPhones [1].

Validating Input and Inter-process Communication describes

common types of input-validation vulnerabilities and what to do about

them.

1.4.3 Race Conditions

A race condition exists when changes to the order of two or more

events can cause a change in behavior. If the correct order of execution is

required for the proper functioning of the program, this is a bug. If an

attacker can take advantage of the situation to insert malicious code,

Skip a Heartbeat: OpenSSL Heartbleed vulnerability & prediction of exploitation based on CVSS

using Naive Bayes classification algorithm

Mehak Bashir Page 7

change a filename, or otherwise interfere with the normal operation of the

program, the race condition is security vulnerability. Attackers can

sometimes take advantage of small time gaps in the processing of code to

interfere with the sequence of operations, which they then exploit [2].

1.4.4 Inter-process Communication

Separate processes—either within a single program or in two

different programs—sometimes have to share information. Common

methods include using shared memory or using some messaging

protocol, such as Sockets, provided by the operating system. These

messaging protocols used for inter-process communication are often

vulnerable to attack; thus, when writing an application, we must always

assume that the process at the other end of our communication channel

could be hostile.

1.4.5 Insecure File Operations

In addition to time-of-check–time-of-use problems, many other file

operations are insecure. Programmers often make assumptions about the

ownership, location, or attributes of a file that might not be true. For

example, we might assume that we can always write to a file created by

our program. However, if an attacker can change the permissions or flags

on that file after we create it, and if we fail to check the result code after a

write operation, we will not detect the fact that the file has been tampered

with.

Examples of insecure file operations include:

 writing to or reading from a file in a location writable by another user

 failing to make the right checks for file type, device ID, links, and other settings

before using a file

Skip a Heartbeat: OpenSSL Heartbleed vulnerability & prediction of exploitation based on CVSS

using Naive Bayes classification algorithm

Mehak Bashir Page 8

 failing to check the result code after a file operation

 assuming that if a file has a local pathname, it has to be a local file

1.4.6 Access Control Problems

Access control is the process of controlling who is allowed to do

what. This ranges from controlling physical access to a computer—

keeping our servers in a locked room, for example—to specifying who

has access to a resource (a file, for example) and what they are allowed to

do with that resource (such as read only). Some access control

mechanisms are enforced by the operating system, some by the

individual application or server, some by a service (such as a networking

protocol) in use. Many security vulnerabilities are created by the careless

or improper use of access controls, or by the failure to use them at all.

Much of the discussion of security vulnerabilities in the software

security literature is in terms of privileges, and many exploits involve an

attacker somehow gaining more privileges than they should have.

Privileges, also called permissions, are access rights granted by the

operating system, controlling who is allowed to read and write files,

directories, and attributes of files and directories (such as the permissions

for a file), who can execute a program, and who can perform other

restricted operations such as accessing hardware devices and making

changes to the network configuration.

Of particular interest to attackers is the gaining of root privileges,

which refers to having the unrestricted permission to perform any

operation on the system. An application running with root privileges can

access everything and change anything. Many security vulnerabilities

involve programming errors that allow an attacker to obtain root

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can

access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

