Rust Programming
Language Tutorial
(Basics)

Written by:
Apriorit Inc.

Author:

Alexey Lozovsky,
Software Designer in System Programming Team

https://www.apriorit.com info@apriorit.com

https://www.apriorit.com
mailto:info@apriorit.com

Introduction

This Rust Programming Language Tutorial and feature overview is prepared by system
programming professionals from the Apriorit team. The Tutorial goes in-depth about main
features of the Rust programming language, provides examples of their implementation, and
a brief comparative analysis with C++ language in terms of complexity and possibilities.

Rust is a relatively new systems programming language, but it has already gained a lot of
loyal fans in the development community. Created as a low-level language, Rust has
managed to achieve goals that are usually associated with high-level languages.

Main advantages of Rust are its increased concurrency, safety, and speed, that is achieved
due to the absence of a garbage collector, eliminating data races, and zero-cost
abstractions. Unlike other popular programming languages, Rust can ensure a minimal
runtime and safety checks, while also offering a wide range of libraries and binding with
other languages.

This tutorial is divided into sections, with each section covering one of the main features of
the Rust language:

« zero-cost abstractions

e« move semantics

« guaranteed memory safety
« threads without data races
« trait-based generics

« pattern matching

« type inference

e minimal runtime

« efficient C bindings

In addition, we have added a detailed chart comparing feature set of Rust to C++. As a
leading language for low-level software development, C++ serves as a great reference point
for illustrating advantages and disadvantages of Rust.

This tutorial will be useful for anyone who only starts their journey with Rust, as well as for
those who want to gain a more in-depth perspective on Rust features.

Table of Contents

Introduction

Summary of Features

Rust Language Features

Zero-Cost Abstractions
Move Semantics

Guaranteed Memory Safety

Ownership

Borrowing
Mutability and Aliasing

Option Types instead of Null Pointers
No Uninitialized Variables

Threads without Data Races
Passing Messages with Channels
Safe State Sharing with Locks

Trait-Based Generics
Traits Define Type Interfaces
Traits Implement Polymorphism
Traits May be Implemented Automatically

Pattern Matching

Type Inference

Minimal Runtime

Efficient C Bindings
Calling C from Rust
The Libc Crate and Unsafe Blocks
Beyond Primitive Types
Calling Rust from C

Rust vs. C++ Comparison

Introduction

Rust is focused on safety, speed, and concurrency. Its design allows you
to develop software with great performance by controlling a low-level
language using the powerful abstractions of a high-level language. This
makes Rust both a safer alternative to languages like C and C++ and a

faster alternative to languages like Python and Ruby.

The majority of safety checks and memory management decisions are
performed by the Rust compiler so the program’s runtime performance
isn’t slowed down by them. This makes Rust a great choice for use cases

where more secure languages like Java aren’t good:

e Programs with predictable resource requirements
e Embedded software

e Low-level code like device drivers

Rust can be used for web applications as well as for backend operations

due to the many libraries that are available through the Cargo package

reqistry.

Summary of Features

Before describing the features of Rust, we’d like to mention some issues

that the language successfully manages.

Table of content

https://www.rust-lang.org/en-US
https://crates.io/
https://crates.io/

Issue Rust’s Solution

Preferring code duplication to abstraction @ Zero-cost abstraction mechanisms
due to high cost of virtual method calls

Use-after-free, double-free bugs, dangling | Smart pointers and references avoid these
pointers issues by design

Compile-time restrictions on raw pointer

usage

Null dereference errors Optional types as a safe alternative to nullable
pointers

Buffer overflow errors Range checks performed at runtime

Checks are avoided where the compiler can
prove they’re unnecessary

Data races Built-in static analysis detects and prevents
possible data races at compilation time

Uninitialized variables Compiler requires all variables to be initialized
before first use

All types have defined default values

Legacy design of utility types heavily used | Built-in, composable, structured types:
by the standard library tuples, structures, enumerations

Pattern matching allows convenient use of
structured types

The standard library fully embraces available

pattern matching to provide easy-to-use
interfaces

Table of content

Embedded and bare-metal programming | Minimal runtime size (which can be reduced
place high restrictions on runtime | even further)
environment
Absence of built-in garbage collector, thread
scheduler, or virtual machine

Using existing libraries written in C and Only header declarations are needed to call C
other languages functions from Rust, or vice versa

No overhead in calling C functions from Rust
or calling Rust functions from C

Now let’s look more closely at the features provided by the Rust
programming language and see how they’re useful for developing system

software.

Rust Language Features

In the first part of this Rust language programming tutorial, we’ll describe

such two key features as zero-cost abstractions and move semantics.

Zero-Cost Abstractions

Zero-cost (or zero-overhead) abstractions are one of the most important
features explored by C++. Bjarne Stroustrup, the creator of C++,

describes them as follows:

“What you don’t use, you don’t pay for.” And further: “What you do

use, you couldn’t hand code any better.”

Abstraction is a great tool used by Rust developers to deal with complex

code. Generally, abstraction comes with runtime costs because

Table of content

abstracted code is less efficient than specific code. However, with clever
language design and compiler optimizations, some abstractions can be
made to have effectively zero runtime cost. The usual sources of these
optimizations are static polymorphism (templates) and aggressive inlining,

both of which Rust embraces fully.

Iterators are an example of commonly used (and thus heavily optimized)
abstractions that they decouple algorithms for sequences of values from
the concrete containers holding those values. Rust iterators provide many
built-in combinators for manipulating data sequences, enabling concise

expressions of a programmer’s intent. Consider the following code:

// Here we have two sequences of data. These could be stored in vectors
// or linked lists or whatever. Here we have _slices_ (references to

// arrays):
let datal = &[3, 1, 4, 1, 5, 9, 2, 6];
let data2 = &[2, 7, 1, 8, 2, 8, 1, 8];

// Let’s compute some valuable results from them!

let numbers =
// By iterating over the first array:
datal.iter() // {3, 1, 4, ...}
// Then zipping this iterator with an iterator over another array,
// resulting in an iterator over pairs of numbers:
.zip(data2.iter()) // {(3, 2), (1, 7), (4, 1), ...}
// After that we map each pair into the product of its elements
// via a lambda function and get an iterator over products:

.map([(a, b)| a * b) /] {6, 7, 4, !
// Given that, we filter some of the results with a predicate:
.filter(|n| *n > 5) // {6, 7, ...}

// And take no more than 4 of the entire sequence which is produced
// by the iterator constructed to this point:

.take(4)

// Finally, we collect the results into a vector. This is

// the point where the iteration is actually performed:
.collect::<Vec< >>();

// And here is what we can see if we print out the resulting vector:
println! ("{:?}", numbers); // ===> [6, 7, 8, 10]

Table of content

Combinators use high-level concepts such as closures and lambda
functions that have significant costs if compiled natively. However, due to
optimizations powered by LLVM, this code compiles as efficiently as the

explicit hand-coded version shown here:

use std::cmp::min;
let mut numbers = Vec::new();

for i in @..min(datal.len(), data2.len()) {
let n = datal[i] * data2[i];

if n> 5 {
numbers.push(n);

}
if numbers.len() == 4 {

break;

}

While this version is more explicit in what it does, the code using
combinators is easier to understand and maintain. Switching the type of
container where values are collected requires changes in only one line with
combinators versus three in the expanded version. Adding new conditions

and transformations is also less error-prone.

Iterators are Rust examples of “couldn’t hand code better” parts. Smart
pointers are an example of the “don’t pay for what you don’t use”

approach in Rust.

The C++ standard library has a shared ptr template class that’s used to

express shared ownership of an object. Internally, it uses reference

Table of content

counting to keep track of an object’s lifetime. An object is destroyed when

its last shared_ptr is destroyed and the count drops to zero.

Note that objects may be shared between threads, so we need to avoid
data races in reference count updates. One thread must not destroy an
object while it’s still in use by another thread. And two threads must not
concurrently destroy the same object. Thread safety can be ensured by

using atomic operations to update the reference counter.

However, some objects (e.g. tree nodes) may need shared ownership but
may not need to be shared between threads. Atomic operations are
unnecessary overhead in this case. It may be possible to implement some
non_atomic_shared_ptr class, but accidentally sharing it between threads
(for example, as part of some larger data structure) can lead to
hard-to-track bugs. Therefore, the designers of the Standard Template

Library chose not to provide a single-threaded option.

On the other hand, Rust is able to distinguish these use cases safely and
provides two reference-counted wrappers: Rc for single-threaded use and
Arc with an atomic counter. The cherry on top is the ability of the Rust
compiler to ensure at compilation time that Rcs are never shared between
threads (more on this later). Therefore, it’s not possible to accidentally
share data that isn’t meant to be shared and we can be freed from the

unnecessary overhead of atomic operations.

Move Semantics

C++11 has brought move semantics into the language. This is a source of

countless optimizations and safety improvements in libraries and

Table of content

programs by avoiding unnecessary copying of temporary values, enabling
safe storage of non-copyable objects like mutexes in containers, and

more.

Rust recognizes the success of move semantics and embraces them by
default. That is, all values are in fact moved when they’re assigned to a

different variable:

let foo
let bar

Foo::new();
foo; // the Foo is now in bar

The punchline here is that after the move, you generally can’t use the
previous location of the value (foo in our case) because no value remains
there. But C++ doesn’t make this an error. Instead, it declares foo to have
an unspecified value (defined by the move constructor). In some cases,
you can still safely use the variable (like with primitive types). In other

cases, you shouldn’t (like with mutexes).

Some compilers may issue a diagnostic warning if you do something
wrong. But the standard doesn’t require C++ compilers to do so, as
use-after-move may be perfectly safe. Or it may not be and might instead
lead to an undefined behavior. It’s the programmer’s responsibility to know

when use-after-move breaks and to avoid writing programs that break.

On the other hand, Rust has a more advanced type system and it’s a
compilation error to use a value after it has been moved, no matter how

complex the control flow or data structure:

Table of content

error[E@382]: use of moved value: "foo’
--> src/main.rs:13:1

11 | let bar = foo;
| --- value moved here
12 |
13 | foo.some_method();
| A~ value used here after move

|
Thus, use-after-move errors aren’t possible in Rust.

In fact, the Rust type system allows programmers to safely encode more
use cases than they can with C++. Consider converting between various
value representations. Let’s say you have a string in UTF-8 and you want
to convert it to a corresponding vector of bytes for further processing. You
don’t need the original string afterwards. In C++, the only safe option is to

copy the whole string using the vector copy constructor:

std::string string = “Hello, world!”;

std::vector<uint8 t> bytes(string.begin(), string.end());

However, Rust allows you to move the internal buffer of the string into a
new vector, making the conversion efficient and disallowing use of the

original string afterwards:

let string = String::from_str(“Hello, world!”);

let bytes = string.into_bytes(); // string may not be used now
Now, you may think that it’'s dumb to move all values by default. For
example, when doing arithmetic we expect that we can reuse the results
of intermediate calculations and that an individual constant may be used
more than once in the program. Rust makes it possible to copy a value

implicitly when it’s assigned to a new variable, based on its type. Numbers

Table of content

are an example of such copyable type, and any user-defined type can also

be marked as copyable with the #[derive(Copy)] attribute.

Guaranteed Memory Safety

Memory safety is the most prized and advertised feature of Rust. In short,
Rust guarantees the absence (or at least the detectability) of various
memory-related issues:

e segmentation faults

e use-after-free and double-free bugs
e dangling pointers

e null dereferences

e unsafe concurrent modification

e buffer overflows

These issues are declared as undefined behaviors in C++, but
programmers are mostly on their own to avoid them. On the other hand, in
Rust, memory-related issues are either immediately reported as

compile-time errors or if not then safety is enforced with runtime checks.

Ownership

The core innovation of Rust is ownership and borrowing, closely related to
the notion of object lifetime. Every object has a lifetime: the time span in
which the object is available for the program to use. There’s also an owner
for each object: an entity which is responsible for ending the lifetime of the
object. For example, local variables are owned by the function scope. The

variable (and the object it owns) dies when execution leaves the scope.

Table of content

1 fn f() {

2 let v = Foo::new(); // ----+ v's lifetime

3 // |

4 /* some code */ // |

5 } /] <---+

In this case, the object Foo is owned by the variable v and will die at line 5,

when function f() returns.

Ownership can be transferred by moving the object (which is performed by

default when the variable is assigned or used):

1 fn f() {

2 let v = Foo::new(); // ----+ v's lifetime

3 { // |

4 let u = v; // <---X---+ u's lifetime
5 // |

6 do_something(u); // <------- X

7 } //

8 } //

Initially, the variable v would be alive for lines 2 through 7, but its lifetime
ends at line 4 where v is assigned to u. At that point we can’t use v
anymore (or a compiler error will occur). But the object Foo isn’t dead yet;
it merely has a new owner u that is alive for lines 4 through 6. However, at
line 6 the ownership of Foo is transferred to the function do_something().

That function will destroy Foo as soon as it returns.

Borrowing

But what if you don’t want to transfer ownership to the function? Then you

need to use references to pass a pointer to an object instead:

1 fn f() {

2 let v = Foo::new(); // ---+ v's lifetime

2 /1

4 do_something(&v); /] i--|----.

5 // | } v's borrowed
6 do_something_else(&v); // :--|----"

Table of content

7 } /] <--+

In this case, the function is said to borrow the object Foo via references. It
can access the object, but the function doesn’t own it (i.e. it can’t destroy
it). References are objects themselves, with lifetimes of their own. In the
example above, a separate reference to v is created for each function call,
and that reference is transferred to and owned by the function call, similar

to the variable u above.

It's expected that a reference will be alive for at least as long as the object
it refers to. This notion is implicit in C++ references, but Rust makes it an

explicit part of the reference type:

fn do_something<’a>(v: &’a Foo) {
// something with v
}

The argument v is in fact a reference to Foo with the lifetime ‘a, where ‘a is

defined by the function do_something() as the duration of its call.

C++ can handle simple cases like this just as well. But what if we want to
return a reference? What lifetime should the reference have? Obviously,
not longer than the object it refers to. However, since lifetimes aren’t part
of C++ reference types, the following code is syntactically correct for C++

and will compile just fine:

const Foo& some_call(const Foo& v)
{
Foo wj;

/* 10 lines of complex code using v and w */

return w; // accidentally returns w instead of v

Table of content

Though this code is syntactically correct, however, it is semantically
incorrect and has undefined behavior if the caller of some_call() actually
uses the returned reference. Such errors may be hard to spot in casual
code review and generally require an external static code analyzer to

detect.

Consider the equivalent code in Rust:

fn some_call(v: &Foo) -> &Foo { // ------------------ + expected
let w = Foo::new(); // ---+ w's lifetime | lifetime
// | | of the
return &w; /] <--+ | returned
} // | value
[0 Slsisisisisimisio Sl +

The returned reference is expected to have the same lifetime as the
argument v, which is expected to live longer than the function call.
However, the variable w lives only for the duration of some_call(), so
references to it can’t live longer than that. The borrow checker detects this
conflict and complains with a compilation error instead of letting the issue

go unnoticed.

error[E@597]: "w does not live long enough
--> src/main.rs:10:13

10 | return &w;
| ~ does not live long enough

1 | }
| - borrowed value only lives until here
|
The compiler is able to detect this error because it tracks lifetimes

explicitly and thus knows exactly how long values must live for the

references to still be valid and safe to use. It’s also worth noting that you

Table of content

don’t have to explicitly spell out all lifetimes for all references. In many
cases, like in the example above, the compiler is able to automatically infer

lifetimes, freeing the programmer from the burden of manual specification.

Mutability and Aliasing

Another feature of the Rust borrow checker is alias analysis, which
prevents unsafe memory modification. Two pointers (or references) are
said to alias if they point to the same object. Let’s look at the following

Rust example:

Foo c;

Foo *a = &c;

const Foo *b = &c;

Here, pointers a and b are aliases of the Foo object owned by c.
Modifications performed via a will be visible when b is dereferenced.

Usually, aliasing doesn’t cause errors, but there are some cases where it

might.

Consider the memcpy() function. It can and is used for copying data, but
it’s known to be unsafe and can cause memory corruption when applied to

overlapping regions:

char array[5] {1, 2, 3, 4, 5 };
const char *a = &array[0];

char *b = &array[2];
memcpy(a, b, 3);

In the sample above, the first three elements are now undefined because

their values depend on the order in which memcpy/() performs the copying:

{3, 4, 5, 4, 5} // if the elements are copied from left to right
{5, 5,5, 4,5} // if the elements are copied from right to left

J) J J

Table of content

The ultimate issue here is that the program contains two aliasing
references to the same object (the array), one of which is non-constant. If
such programs were syntactically incorrect then memcpy() (and any other

function with pointer arguments as well) would always be safe to use.
Rust makes it possible by enforcing the following rules of borrowing:

1. At any given time, you can have either but not both of:
o one mutable reference
o any number of immutable references

2. References must always be valid.

The second rule relates to ownership, which was discussed in the previous

section. The first rule is the real novelty of Rust.

It’s obviously safe to have multiple aliasing pointers to the same object if
none of them can be used to modify the object (i.e. they are constant
references). If there are two mutable references, however, then
modifications can conflict with each other. Also, if there is a
const-reference A and a mutable reference B, then presumably the
constant object as seen via A can in fact change if modifications are made
via B. But it’s perfectly safe if only one mutable reference to the object is
allowed to exist in the program. The Rust borrow checker enforces these
rules during compilation, effectively making each reference act as a

read-write lock for the object.

The following is the equivalent of memcpy() as shown above:

let mut array = [1, 2, 3, 4, 5];
let a = &mut array[0..2];

let b = & array[2..4];
a.copy from slice(b);

Table of content

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

» HTML (Free /Available to everyone)

» PDF /TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

» Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

N\~
Ej Free-Ebooks.net

http://www.free-ebooks.net/

