
Programming from the Ground Up

Jonathan Bartlett

Edited by

Dominick Bruno, Jr.

Programming from the Ground Up
by Jonathan Bartlett

Edited by Dominick Bruno, Jr.

Copyright © 2003 by Jonathan Bartlett

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with no

Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included inAppendix H. In addition, you are

granted full rights to use the code examples for any purpose without even having to credit the authors.

This book can be purchased in paperback at http://www.bartlettpublishing.com/

This book is not a reference book, it is an introductory book. It is therefore not suitable by itself to learn how to

professionally program in x86 assembly language, as some details have been left out to make the learning process

smoother. The point of the book is to help the student understand how assembly language and computer programming

works, not to be a definitive reference to the subject.

To receive a copy of this book in electronic form, please visit the website http://savannah.nongnu.org/projects/pgubook/

This site contains the instructions for downloading a transparent copy (as defined by the GNU FDL) of this book.

Table of Contents
1. Introduction ..1

Welcome to Programming...1
Your Tools..2

2. Computer Architecture ...5

Structure of Computer Memory...5
The CPU...6
Some Terms...7
Interpreting Memory..9
Data Accessing Methods..10
Review...11

3. Your First Programs ..13

Entering in the Program...13
Outline of an Assembly Language Program..15
Planning the Program...19
Finding a Maximum Value...22
Addressing Modes...29
Review...31

4. All About Functions...35

Dealing with Complexity...35
How Functions Work...35
Assembly-Language Functions using the C Calling Convention..37
A Function Example..41
Recursive Functions...45
Review...51

5. Dealing with Files...53

The UNIX File Concept...53
Buffers and.bss ...54
Standard and Special Files...55
Using Files in a Program..56
Review...65

6. Reading and Writing Simple Records...67

Writing Records...70
Reading Records..74
Modifying the Records..79
Review...82

iii

7. Developing Robust Programs..85

Where Does the Time Go?...85
Some Tips for Developing Robust Programs...86
Handling Errors Effectively...88
Making Our Program More Robust...89
Review...91

8. Sharing Functions with Code Libraries...93

Using a Shared Library..94
How Shared Libraries Work..96
Finding Information about Libraries..97
Useful Functions..101
Building a Shared Library..102
Review...103

9. Intermediate Memory Topics..107

How a Computer Views Memory..107
The Instruction Pointer..108
The Memory Layout of a Linux Program..109
Every Memory Address is a Lie..110
Getting More Memory...112
A Simple Memory Manager..112
Review...127

10. Counting Like a Computer...129

Counting...129
Truth, Falsehood, and Binary Numbers...133
The Program Status Register...139
Other Numbering Systems...140
Octal and Hexadecimal Numbers..142
Order of Bytes in a Word...143
Converting Numbers for Display...145
Review...150

11. High-Level Languages...153

Compiled and Interpreted Languages..153
Your First C Program...154
Perl...156
Python..157
Review...157

iv

12. Optimization...159

When to Optimize..159
Where to Optimize...160
Local Optimizations...160
Global Optimization...163
Review...164

13. Moving On from Here ...167

From the Bottom Up..167
From the Top Down...168
From the Middle Out...168
Specialized Topics...169
Further Resources on Assembly Language..170

A. GUI Programming ..171

B. Common x86 Instructions..185

C. Important System Calls..195

D. Table of ASCII Codes...197

E. C Idioms in Assembly Language...199

F. Using the GDB Debugger..209

G. Document History...217

H. GNU Free Documentation License..219

Index..227

v

vi

Chapter 1. Introduction

Welcome to Programming

I love programming. I enjoy the challenge to not only make a working program, but to do so with
style. Programming is like poetry. It conveys a message, not only to the computer, but to those
who modify and use your program. With a program, you build your own world with your own
rules. You create your world according to your conception of both the problem and the solution.
Masterful programmers create worlds with programs that are clear and succinct, much like a
poem or essay.

One of the greatest programmers, Donald Knuth, describes programming not as telling a
computer how to do something, but telling a person how they would instruct a computer to do
something. The point is that programs are meant to be read by people, not just computers. Your
programs will be modified and updated by others long after you move on to other projects. Thus,
programming is not as much about communicating to a computer as it is communicating to those
who come after you. A programmer is a problem-solver, a poet, and an instructor all at once.
Your goal is to solve the problem at hand, doing so with balance and taste, and teach your
solution to future programmers. I hope that this book can teach at least some of the poetry and
magic that makes computing exciting.

Most introductory books on programming frustrate me to no end. At the end of them you can still
ask "how does the computer really work?" and not have a good answer. They tend to pass over
topics that are difficult even though they are important. I will take you through the difficult issues
because that is the only way to move on to masterful programming. My goal is to take you from
knowing nothing about programming to understanding how to think, write, and learn like a
programmer. You won’t know everything, but you will have a background for how everything fits
together. At the end of this book, you should be able to do the following:

• Understand how a program works and interacts with other programs

• Read other people’s programs and learn how they work

• Learn new programming languages quickly

• Learn advanced concepts in computer science quickly

I will not teach you everything. Computer science is a massive field, especially when you
combine the theory with the practice of computer programming. However, I will attempt to get
you started on the foundations so you can easily go wherever you want afterwards.

There is somewhat of a chicken and egg problem in teaching programming, especially assembly
language. There is a lot to learn - it’s almost too much to learn almost at once, but each piece

1

Chapter 1. Introduction

depends on all the others. Therefore, you must be patient with yourself and the computer while
learning to program. If you don’t understand something the first time, reread it. If you still don’t
understand it, it is sometimes best to take it by faith and come back to it later. Often after more
exposure to programming the ideas will make more sense. Don’t get discouraged. It’s a long
climb, but very worthwhile.

At the end of each chapter are three sets of review exercises. The first set is more or less
regurgitation - they check to see if can you give back what you learned in the chapter. The second
set contains application questions - they check to see if you can apply what you learned to solve
problems. The final set is to see if you are capable of broadening your horizons. Some of these
questions may not be answerable until later in the book, but they give you some things to think
about. Other questions require some research into outside sources to discover the answer. Still
others require you to simply analyze your options and explain a best solution. Many of the
questions don’t have right or wrong answers, but that doesn’t mean they are unimportant.
Learning the issues involved in programming, learning how to research answers, and learning
how to look ahead are all a major part of a programmer’s work.

If you have problems that you just can’t get past, there is a mailing list for this book where
readers can discuss and get help with what they are reading. The address is
pgubook-readers@nongnu.org . This mailing list is open for any type of question or
discussion along the lines of this book.

Your Tools

This book teaches assembly language for x86 processors and the GNU/Linux operating system.
Therefore we will be giving all of the examples using the GNU/Linux standard GCC tool set. If
you are not familiar with GNU/Linux and the GCC tool set, they will be described shortly. If you
are new to Linux, you should check out the guide available at http://rute.sourceforge.net/1 What I
intend to show you is more about programming in general than using a specific tool set on a
specific platform, but standardizing on one makes the task much easier.

Those new to Linux should also try to get involved in their local GNU/Linux User’s Group.
User’s Group members are usually very helpful for new people, and will help you from
everything from installing Linux to learning to use it most efficiently. A listing of GNU/Linux
User’s Groups is available at http://www.linux.org/groups/

All of these programs have been tested using Red Hat Linux 8.0, and should work with any other
GNU/Linux distribution, too.2 They will not work with non-Linux operating systems such as

1. This is quite a large document. You certainly don’t need to know everything to get started with this book.
You simply need to know how to navigate from the command line and how to use an editor likepico , emacs,
or vi (or others).
2. By "GNU/Linux distribution", I mean an x86 GNU/Linux distribution. GNU/Linux distributions for the
Power Macintosh, the Alpha processor, or other processors will not work with this book.

2

Chapter 1. Introduction

BSD or other systems. However, all of theskills learned in this book should be easily transferable
to any other system.

If you do not have access to a GNU/Linux machine, you can look for a hosting provider who
offers a Linuxshell account, which is a command-line only interface to a Linux machine. There
are many low-cost shell account providers, but you have to make sure that they match the
requirements above (i.e. - Linux on x86). Someone at your local GNU/Linux User’s Group may
be able to give you one as well. Shell accounts only require that you already have an Internet
connection and a telnet program. If you use Windows, you already have a telnet client - just click
onstart , thenrun , then type intelnet . However, it is usually better to download PuTTY from
http://www.chiart.greenend.co.uk/~sgtatham/putty/ because Windows’ telnet has some weird
problems. There are a lot of options for the Macintosh, too. NiftyTelnet is my favorite.

If you don’t have GNU/Linux and can’t find a shell account service, then you can download
Knoppix from http://www.knoppix.org/ Knoppix is a GNU/Linux distribution that boots from CD
so that you don’t have to actually install it. Once you are done using it, you just reboot and
remove the CD and you are back to your regular operating system.

So what is GNU/Linux? GNU/Linux is an operating system modeled after UNIX. The GNU part
comes from the GNU Project (http://www.gnu.org/)3, which includes most of the programs you
will run, including the GCC tool set that we will use to program with. The GCC tool set contains
all of the programs necessary to create programs in various computer languages.

Linux is the name of thekernel. The kernel is the core part of an operating system that keeps
track of everything. The kernel is both an fence and a gate. As a gate, it allows programs to access
hardware in a uniform way. Without the kernel, you would have to write programs to deal with
every device model ever made. The kernel handles all device-specific interactions so you don’t
have to. It also handles file access and interaction between processes. For example, when you
type, your typing goes through several programs before it hits your editor. First, the kernel is
what handles your hardware, so it is the first to receive notice about the keypress. The keyboard
sends inscancodesto the kernel, which then converts them to the actual letters, numbers, and
symbols they represent. If you are using a windowing system (like Microsoft Windows or the X
Window System), then the windowing system reads the keypress from the kernel, and delivers it
to whatever program is currently in focus on the user’s display.

Example 1-1. How the computer processes keyboard sigals

Keyboard -> Kernel -> Windowing system -> Application program

The kernel also controls the flow of information between programs. The kernel is a program’s
gate to the world around it. Every time that data moves between processes, the kernel controls the

3. The GNU Project is a project by the Free Software Foundation to produce a complete, free operating
system.

3

Chapter 1. Introduction

messaging. In our keyboard example above, the kernel would have to be involved for the
windowing system to communicate the keypress to the application program.

As a fence, the kernel prevents programs from accidentally overwriting each other’s data and
from accessing files and devices that they don’t have permission to. It limits the amount of
damage a poorly-written program can do to other running programs.

In our case, the kernel is Linux. Now, the kernel all by itself won’t do anything. You can’t even
boot up a computer with just a kernel. Think of the kernel as the water pipes for a house. Without
the pipes, the faucets won’t work, but the pipes are pretty useless if there are no faucets. Together,
the user applications (from the GNU project and other places) and the kernel (Linux) make up the
entire operating system, GNU/Linux.

For the most part, this book will be using the computer’s low-level assembly language. There are
essentially three kinds of languages:

Machine Language

This is what the computer actually sees and deals with. Every command the computer sees
is given as a number or sequence of numbers.

Assembly Language

This is the same as machine language, except the command numbers have been replaced by
letter sequences which are easier to memorize. Other small things are done to make it easier
as well.

High-Level Language

High-level languages are there to make programming easier. Assembly language requires
you to work with the machine itself. High-level languages allow you to describe the program
in a more natural language. A single command in a high-level language usually is equivalent
to several commands in an assembly language.

In this book we will learn assembly language, although we will cover a bit of high-level
languages.

4

Chapter 2. Computer Architecture

Before learning how to program, you need to first understand how a computer interprets
programs. You don’t need a degree in electrical engineering, but you need to understand some
basics.

Modern computer architecture is based off of an architecture called the Von Neumann
architecture, named after its creator. The Von Neumann architecture divides the computer up into
two main parts - the CPU (for Central Processing Unit) and the memory. This architecture is used
in all modern computers, including personal computers, supercomputers, mainframes, and even
cell phones.

Structure of Computer Memory

To understand how the computer views memory, imagine your local post office. They usually
have a room filled with PO Boxes. These boxes are similar to computer memory in that each are
numbered sequences of fixed-size storage locations. For example, if you have 256 megabytes of
computer memory, that means that your computer contains roughly 256 million fixed-size storage
locations. Or, to use our analogy, 256 million PO Boxes. Each location has a number, and each
location has the same, fixed-length size. The difference between a PO Box and computer memory
is that you can store all different kinds of things in a PO Box, but you can only store a single
number in a computer memory storage location.

Memory locations are like PO Boxes

You may wonder why a computer is organized this way. It is because it is simple to implement. If

5

Chapter 2. Computer Architecture

the computer were composed of a lot of differently-sized locations, or if you could store different
kinds of data in them, it would be difficult and expensive to implement.

The computer’s memory is used for a number of different things. All of the results of any
calculations are stored in memory. In fact, everything that is "stored" is stored in memory. Think
of your computer at home, and imagine what all is stored in your computer’s memory.

• The location of your cursor on the screen

• The size of each window on the screen

• The shape of each letter of each font being used

• The layout of all of the controls on each window

• The graphics for all of the toolbar icons

• The text for each error message and dialog box

• The list goes on and on...

In addition to all of this, the Von Neumann architecture specifies that not only computer data
should live in memory, but the programs that control the computer’s operation should live there,
too. In fact, in a computer, there is no difference between a program and a program’s data except
how it is used by the computer. They are both stored and accessed the same way.

The CPU

So how does the computer function? Obviously, simply storing data doesn’t do much help - you
need to be able to access, manipulate, and move it. That’s where the CPU comes in.

The CPU reads in instructions from memory one at a time and executes them. This is known as
thefetch-execute cycle. The CPU contains the following elements to accomplish this:

• Program Counter

• Instruction Decoder

• Data bus

• General-purpose registers

• Arithmetic and logic unit

Theprogram counteris used to tell the computer where to fetch the next instruction from. We
mentioned earlier that there is no difference between the way data and programs are stored, they
are just interpreted differently by the CPU. The program counter holds the memory address of the
next instruction to be executed. The CPU begins by looking at the program counter, and fetching

6

Chapter 2. Computer Architecture

whatever number is stored in memory at the location specified. It is then passed on to the
instruction decoderwhich figures out what the instruction means. This includes what process
needs to take place (addition, subtraction, multiplication, data movement, etc.) and what memory
locations are going to be involved in this process. Computer instructions usually consist of both
the actual instruction and the list of memory locations that are used to carry it out.

Now the computer uses thedata busto fetch the memory locations to be used in the calculation.
The data bus is the connection between the CPU and memory. It is the actual wire that connects
them. If you look at the motherboard of the computer, the wires that go out from the memory are
your data bus.

In addition to the memory on the outside of the processor, the processor itself has some special,
high-speed memory locations called registers. There are two kinds of registers -general registers
andspecial-purpose registers. General-purpose registers are where the main action happens.
Addition, subtraction, multiplication, comparisions, and other operations generally use
general-purpose registers for processing. However, computers have very few general-purpose
registers. Most information is stored in main memory, brought in to the registers for processing,
and then put back into memory when the processing is completed.special-purpose registersare
registers which have very specific purposes. We will discuss these as we come to them.

Now that the CPU has retrieved all of the data it needs, it passes on the data and the decoded
instruction to thearithmetic and logic unitfor further processing. Here the instruction is actually
executed. After the results of the computation have been calculated, the results are then placed on
the data bus and sent to the appropriate location in memory or in a register, as specified by the
instruction.

This is a very simplified explanation. Processors have advanced quite a bit in recent years, and
are now much more complex. Although the basic operation is still the same, it is complicated by
the use of cache hierarchies, superscalar processors, pipelining, branch prediction, out-of-order
execution, microcode translation, coprocessors, and other optimizations. Don’t worry if you don’t
know what those words mean, you can just use them as Internet search terms if you want to learn
more about the CPU.

Some Terms

Computer memory is a numbered sequence of fixed-size storage locations. The number attached
to each storage location is called it’saddress. The size of a single storage location is called abyte.
On x86 processors, a byte is a number between 0 and 255.

You may be wondering how computers can display and use text, graphics, and even large
numbers when all they can do is store numbers between 0 and 255. First of all, specialized
hardware like graphics cards have special interpretations of each number. When displaying to the

7

Chapter 2. Computer Architecture

screen, the computer uses ASCII code tables to translate the numbers you are sending it into
letters to display on the screen, with each number translating to exactly one letter or numeral.1

For example, the capital letter A is represented by the number 65. The numeral 1 is represented
by the number 49. So, to print out "HELLO", you would actually give the computer the sequence
of numbers 72, 69, 76, 76, 79. To print out the number 100, you would give the computer the
sequence of numbers 49, 48, 48. A list of ASCII characters and their numeric codes is found in
Appendix D.

In addition to using numbers to represent ASCII characters, you as the programmer get to make
the numbers mean anything you want them to, as well. For example, if I am running a store, I
would use a number to represent each item I was selling. Each number would be linked to a series
of other numbers which would be the ASCII codes for what I wanted to display when the items
were scanned in. I would have more numbers for the price, how many I have in inventory, and so
on.

So what about if we need numbers larger than 255? We can simply use a combination of bytes to
represent larger numbers. Two bytes can be used to represent any number between 0 and 65536.
Four bytes can be used to represent any number between 0 and 4294967295. Now, it is quite
difficult to write programs to stick bytes together to increase the size of your numbers, and
requires a bit of math. Luckily, the computer will do it for us for numbers up to 4 bytes long. In
fact, four-byte numbers are what we will work with by default.

We mentioned earlier that in addition to the regular memory that the computer has, it also has
special-purpose storage locations calledregisters. Registers are what the computer uses for
computation. Think of a register as a place on your desk - it holds things you are currently
working on. You may have lots of information tucked away in folders and drawers, but the stuff
you are working on right now is on the desk. Registers keep the contents of numbers that you are
currently manipulating.

On the computers we are using, registers are each four bytes long. The size of a typical register is
called a computer’swordsize. x86 processors have four-byte words. This means that it is most
natural on these computers to do computations four bytes at a time. This gives us roughly 4
billion values.

Addresses are also four bytes (1 word) long, and therefore also fit into a register. x86 processors
can access up to 4294967296 bytes if enough memory is installed. Notice that this means that we
can store addresses the same way we store any other number. In fact, the computer can’t tell the
difference between a value that is an address, a value that is a number, a value that is an ASCII
code, or a value that you have decided to use for another purpose. A number becomes an ASCII
code when you attempt to display it. A number becomes an address when you try to look up the

1. With the advent of international character sets and Unicode, this is not entirely true anymore. However,
for the purposes of keeping this simple for beginners, we will use the assumption that one number translates
directly to one character. For more information, seeAppendix D.

8

Chapter 2. Computer Architecture

byte it points to. Take a moment to think about this, because it is crucial to understanding how
computer programs work.

Addresses which are stored in memory are also calledpointers, because instead of having a
regular value in them, they point you to a different location in memory.

As we’ve mentioned, computer instructions are also stored in memory. In fact, they are stored
exactly the same way that other data is stored. The only way the computer knows that a memory
location is an instruction is that a special-purpose register called the instruction pointer points to
them at one point or another. If the instruction pointer points to a memory word, it is loaded as an
instruction. Other than that, the computer has no way of knowing the difference between
programs and other types of data.2

Interpreting Memory

Computers are very exact. Because they are exact, programmers have to be equally exact. A
computer has no idea what your program is supposed to do. Therefore, it will only do exactly
what you tell it to do. If you accidentally print out a regular number instead of the ASCII codes
that make up the number’s digits, the computer will let you - and you will wind up with jibberish
on your screen (it will try to look up what your number represents in ASCII and print that). If you
tell the computer to start executing instructions at a location containing data instead of program
instructions, who knows how the computer will interpret that - but it will certainly try. The
computer will execute your instructions in the exact order you specify, even if it doesn’t make
sense.

The point is, the computer will do exactly what you tell it, no matter how little sense it makes.
Therefore, as a programmer, you need to know exactly how you have your data arranged in
memory. Remember, computers can only store numbers, so letters, pictures, music, web pages,
documents, and anything else are just long sequences of numbers in the computer, which
particular programs know how to interpret.

For example, say that you wanted to store customer information in memory. One way to do so
would be to set a maximum size for the customer’s name and address - say 50 ASCII characters
for each, which would be 50 bytes for each. Then, after that, have a number for the customer’s age
and their customer id. In this case, you would have a block of memory that would look like this:

Start of Record:
Customer’s name (50 bytes) - start of record
Customer’s address (50 bytes) - start of record + 50 bytes
Customer’s age (1 word - 4 bytes) - start of record + 100 bytes

2. Note that here we are talking about general computer theory. Some processors and operating systems
actually mark the regions of memory that can be executed with a special marker that indicates this.

9

Chapter 2. Computer Architecture

Customer’s id number (1 word - 4 bytes) - start of record + 104 bytes

This way, given the address of a customer record, you know where the rest of the data lies.
However, it does limit the customer’s name and address to only 50 ASCII characters each.

What if we didn’t want to specify a limit? Another way to do this would be to have in our record
pointers to this information. For example, instead of the customer’s name, we would have a
pointer to their name. In this case, the memory would look like this:

Start of Record:
Customer’s name pointer (1 word) - start of record
Customer’s address pointer (1 word) - start of record + 4
Customer’s age (1 word) - start of record + 8
Customer’s id number (1 word) - start of record + 12

The actual name and address would be stored elsewhere in memory. This way, it is easy to tell
where each part of the data is from the start of the record, without explicitly limitting the size of
the name and address. If the length of the fields within our records could change, we would have
no idea where the next field started. Because records would be different sizes, it would also be
hard to find where the next record began. Therefore, almost all records are of fixed lengths.
Variable-length data is usually store separately from the rest of the record.

Data Accessing Methods

Processors have a number of different ways of accessing data, known as addressing modes. The
simplest mode isimmediate mode, in which the data to access is embedded in the instruction
itself. For example, if we want to initialize a register to 0, instead of giving the computer an
address to read the 0 from, we would specify immediate mode, and give it the number 0.

In theregister addressing mode, the instruction contains a register to access, rather than a
memory location. The rest of the modes will deal with addresses.

In thedirect addressing mode, the instruction contains the memory address to access. For
example, I could say, please load this register with the data at address 2002. The computer would
go directly to byte number 2002 and copy the contents into our register.

In the indexed addressing mode, the instruction contains a memory address to access, and also
specifies anindex registerto offset that address. For example, we could specify address 2002 and
an index register. If the index register contains the number 4, the actual address the data is loaded
from would be 2006. This way, if you have a set of numbers starting at location 2002, you can
cycle between each of them using an index register. On x86 processors, you can also specify a
multiplier for the index. This allows you to access memory a byte at a time or a word at a time (4
bytes). If you are accessing an entire word, your index will need to be multiplied by 4 to get the

10

Chapter 2. Computer Architecture

exact location of the fourth element from your address. For example, if you wanted to access the
fourth byte from location 2002, you would load your index register with 3 (remember, we start
counting at 0) and set the multiplier to 1 since you are going a byte at a time. This would get you
location 2005. However, if you wanted to access the fourth word from location 2002, you would
load your index register with 3 and set the multiplier to 4. This would load from location 2014 -
the fourth word. Take the time to calculate these yourself to make sure you understand how it
works.

In the indirect addressing mode, the instruction contains a register that contains a pointer to
where the data should be accessed. For example, if we used indirect addressing mode and
specified the%eax register, and the%eax register contained the value 4, whatever value was at
memory location 4 would be used. In direct addressing, we would just load the value 4, but in
indirect addressing, we use 4 as the address to use to find the data we want.

Finally, there is thebase-pointer addressing mode. This is similar to indirect addressing, but you
also include a number called theoffsetto add to the register’s value before using it for lookup. We
will use this mode quite a bit in this book.

In the Section calledInterpreting Memorywe discussed having a structure in memory holding
customer information. Let’s say we wanted to access the customer’s age, which was the eighth
byte of the data, and we had the address of the start of the structure in a register. We could use
base-pointer addressing and specify the register as the base pointer, and 8 as our offset. This is a
lot like indexed addressing, with the difference that the offset is constant and the pointer is held in
a register, and in indexed addressing the offset is in a register and the pointer is constant.

There are other forms of addressing, but these are the most important ones.

Review

Know the Concepts

• Describe the fetch-execute cycle.

• What is a register? How would computation be more difficult without registers?

• How do you represent numbers larger than 255?

• How big are the registers on the machines we will be using?

• How does a computer know how to interpret a given byte or set of bytes of memory?

• What are the addressing modes and what are they used for?

• What does the instruction pointer do?

11

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

