
1.
Optimizing software in C++

An optimization guide for Windows, Linux and Mac
platforms

By Agner Fog. Technical University of Denmark.

Copyright © 2004 - 2015. Last updated 2015-12-23.

Contents
1 Introduction ... 3

1.1 The costs of optimizing ... 4
2 Choosing the optimal platform ... 5

2.1 Choice of hardware platform ... 5
2.2 Choice of microprocessor ... 6
2.3 Choice of operating system ... 6
2.4 Choice of programming language ... 8
2.5 Choice of compiler .. 10
2.6 Choice of function libraries .. 12
2.7 Choice of user interface framework ... 14
2.8 Overcoming the drawbacks of the C++ language .. 14

3 Finding the biggest time consumers .. 16
3.1 How much is a clock cycle? .. 16
3.2 Use a profiler to find hot spots .. 16
3.3 Program installation .. 18
3.4 Automatic updates .. 19
3.5 Program loading ... 19
3.6 Dynamic linking and position-independent code ... 20
3.7 File access .. 20
3.8 System database .. 20
3.9 Other databases ... 21
3.10 Graphics ... 21
3.11 Other system resources .. 21
3.12 Network access .. 21
3.13 Memory access ... 22
3.14 Context switches ... 22
3.15 Dependency chains .. 22
3.16 Execution unit throughput ... 22

4 Performance and usability ... 23
5 Choosing the optimal algorithm ... 24
6 Development process .. 25
7 The efficiency of different C++ constructs .. 26

7.1 Different kinds of variable storage ... 26
7.2 Integers variables and operators ... 29
7.3 Floating point variables and operators .. 32
7.4 Enums .. 33
7.5 Booleans ... 34
7.6 Pointers and references .. 36
7.7 Function pointers .. 37
7.8 Member pointers ... 38
7.9 Smart pointers .. 38
7.10 Arrays ... 39
7.11 Type conversions .. 40
7.12 Branches and switch statements ... 44
7.13 Loops .. 45

 2

7.14 Functions .. 48
7.15 Function parameters ... 50
7.16 Function return types .. 50
7.17 Structures and classes .. 51
7.18 Class data members (properties) .. 52
7.19 Class member functions (methods) ... 53
7.20 Virtual member functions .. 54
7.21 Runtime type identification (RTTI) ... 54
7.22 Inheritance .. 54
7.23 Constructors and destructors .. 55
7.24 Unions .. 55
7.25 Bitfields ... 56
7.26 Overloaded functions .. 56
7.27 Overloaded operators ... 56
7.28 Templates ... 57
7.29 Threads .. 60
7.30 Exceptions and error handling .. 61
7.31 Other cases of stack unwinding .. 65
7.32 Preprocessing directives ... 65
7.33 Namespaces ... 65

8 Optimizations in the compiler .. 66
8.1 How compilers optimize .. 66
8.2 Comparison of different compilers ... 74
8.3 Obstacles to optimization by compiler ... 77
8.4 Obstacles to optimization by CPU ... 81
8.5 Compiler optimization options ... 81
8.6 Optimization directives .. 82
8.7 Checking what the compiler does ... 84

9 Optimizing memory access ... 87
9.1 Caching of code and data ... 87
9.2 Cache organization ... 87
9.3 Functions that are used together should be stored together 88
9.4 Variables that are used together should be stored together 88
9.5 Alignment of data .. 90
9.6 Dynamic memory allocation .. 90
9.7 Container classes ... 93
9.8 Strings .. 96
9.9 Access data sequentially .. 96
9.10 Cache contentions in large data structures ... 96
9.11 Explicit cache control .. 99

10 Multithreading .. 101
10.1 Hyperthreading ... 103

11 Out of order execution ... 103
12 Using vector operations ... 105

12.1 AVX instruction set and YMM registers ... 107
12.2 AVX-512 instruction set and ZMM registers .. 107
12.3 Automatic vectorization ... 107
12.4 Using intrinsic functions .. 109
12.5 Using vector classes ... 113
12.6 Transforming serial code for vectorization ... 117
12.7 Mathematical functions for vectors .. 119
12.8 Aligning dynamically allocated memory ... 120
12.9 Aligning RGB video or 3-dimensional vectors ... 120
12.10 Conclusion .. 120

13 Making critical code in multiple versions for different instruction sets 122
13.1 CPU dispatch strategies.. 122
13.2 Model-specific dispatching .. 124
13.3 Difficult cases .. 125

 3

13.4 Test and maintenance .. 126
13.5 Implementation ... 127
13.6 CPU dispatching in Gnu compiler ... 129
13.7 CPU dispatching in Intel compiler ... 130

14 Specific optimization topics ... 132
14.1 Use lookup tables ... 132
14.2 Bounds checking .. 134
14.3 Use bitwise operators for checking multiple values at once 135
14.4 Integer multiplication ... 136
14.5 Integer division .. 138
14.6 Floating point division ... 139
14.7 Don't mix float and double ... 140
14.8 Conversions between floating point numbers and integers 141
14.9 Using integer operations for manipulating floating point variables 142
14.10 Mathematical functions ... 146
14.11 Static versus dynamic libraries .. 146
14.12 Position-independent code .. 148
14.13 System programming .. 150

15 Metaprogramming ... 151
16 Testing speed .. 154

16.1 Using performance monitor counters .. 156
16.2 The pitfalls of unit-testing .. 156
16.3 Worst-case testing .. 157

17 Optimization in embedded systems ... 159
18 Overview of compiler options... 161
19 Literature ... 164
20 Copyright notice .. 165

1 Introduction
This manual is for advanced programmers and software developers who want to make their
software faster. It is assumed that the reader has a good knowledge of the C++
programming language and a basic understanding of how compilers work. The C++
language is chosen as the basis for this manual for reasons explained on page 8 below.

This manual is based mainly on my study of how compilers and microprocessors work. The
recommendations are based on the x86 family of microprocessors from Intel, AMD and VIA
including the 64-bit versions. The x86 processors are used in the most common platforms
with Windows, Linux, BSD and Mac OS X operating systems, though these operating
systems can also be used with other microprocessors. Many of the advices may apply to
other platforms and other compiled programming languages as well.

This is the first in a series of five manuals:

1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac
platforms.

2. Optimizing subroutines in assembly language: An optimization guide for x86
platforms.

3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for
assembly programmers and compiler makers.

4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA CPUs.

5. Calling conventions for different C++ compilers and operating systems.

 4

The latest versions of these manuals are always available from www.agner.org/optimize.
Copyright conditions are listed on page 165 below.

Those who are satisfied with making software in a high-level language need only read this
first manual. The subsequent manuals are for those who want to go deeper into the
technical details of instruction timing, assembly language programming, compiler
technology, and microprocessor microarchitecture. A higher level of optimization can
sometimes be obtained by the use of assembly language for CPU-intensive code, as
described in the subsequent manuals.

Please note that my optimization manuals are used by thousands of people. I simply don't
have the time to answer questions from everybody. So please don't send your programming
questions to me. You will not get any answer. Beginners are advised to seek information
elsewhere and get a good deal of programming experience before trying the techniques in
the present manual. There are various discussion forums on the Internet where you can get
answers to your programming questions if you cannot find the answers in the relevant
books and manuals.

I want to thank the many people who have sent me corrections and suggestions for my
optimization manuals. I am always happy to receive new relevant information.

1.1 The costs of optimizing

University courses in programming nowadays stress the importance of structured and
object-oriented programming, modularity, reusability and systematization of the software
development process. These requirements are often conflicting with the requirements of
optimizing the software for speed or size.

Today, it is not uncommon for software teachers to recommend that no function or method
should be longer than a few lines. A few decades ago, the recommendation was the
opposite: Don't put something in a separate subroutine if it is only called once. The reasons
for this shift in software writing style are that software projects have become bigger and
more complex, that there is more focus on the costs of software development, and that
computers have become more powerful.

The high priority of structured software development and the low priority of program
efficiency is reflected, first and foremost, in the choice of programming language and
interface frameworks. This is often a disadvantage for the end user who has to invest in
ever more powerful computers to keep up with the ever bigger software packages and who
is still frustrated by unacceptably long response times, even for simple tasks.

Sometimes it is necessary to compromise on the advanced principles of software develop-
ment in order to make software packages faster and smaller. This manual discusses how to
make a sensible balance between these considerations. It is discussed how to identify and
isolate the most critical part of a program and concentrate the optimization effort on that
particular part. It is discussed how to overcome the dangers of a relatively primitive
programming style that doesn't automatically check for array bounds violations, invalid
pointers, etc. And it is discussed which of the advanced programming constructs are costly
and which are cheap, in relation to execution time.

http://www.agner.org/optimize

 5

2 Choosing the optimal platform

2.1 Choice of hardware platform

The choice of hardware platform has become less important than it used to be. The
distinctions between RISC and CISC processors, between PC's and mainframes, and
between simple processors and vector processors are becoming increasingly blurred as the
standard PC processors with CISC instruction sets have got RISC cores, vector processing
instructions, multiple cores, and a processing speed exceeding that of yesterday's big
mainframe computers.

Today, the choice of hardware platform for a given task is often determined by
considerations such as price, compatibility, second source, and the availability of good
development tools, rather than by the processing power. Connecting several standard PC's
in a network may be both cheaper and more efficient than investing in a big mainframe
computer. Big supercomputers with massively parallel vector processing capabilities still
have a niche in scientific computing, but for most purposes the standard PC processors are
preferred because of their superior performance/price ratio.

The CISC instruction set (called x86) of the standard PC processors is not optimal from a
technological point of view. This instruction set is maintained for the sake of backwards
compatibility with a lineage of software that dates back to around 1980 where RAM memory
and disk space were scarce resources. However, the CISC instruction set is better than its
reputation. The compactness of the code makes caching more efficient today where cache
size is a limited resource. The CISC instruction set may actually be better than RISC in
situations where code caching is critical. The worst problem of the x86 instruction set is the
scarcity of registers. This problem has been alleviated in the 64-bit extension to the x86
instruction set where the number of registers has been doubled.

Thin clients that depend on network resources are not recommended for critical applications
because the response times for network resources cannot be controlled.

Small hand-held devices are becoming more popular and used for an increasing number of
purposes such as email and web browsing that previously required a PC. Similarly, we are
seeing an increasing number of devices and machines with embedded microcontrollers. I
am not making any specific recommendation about which platforms and operating systems
are most efficient for such applications, but it is important to realize that such devices
typically have much less memory and computing power than PCs. Therefore, it is even
more important to economize the resource use on such systems than it is on a PC platform.
However, with a well optimized software design, it is possible to get a good performance for
many applications even on such small devices, as discussed on page 159.

This manual is based on the standard PC platform with an Intel, AMD or VIA processor and
a Windows, Linux, BSD or Mac operating system running in 32-bit or 64-bit mode. Much of
the advice given here may apply to other platforms as well, but the examples have been
tested only on PC platforms.

Graphics accelerators

The choice of platform is obviously influenced by the requirements of the task in question.
For example, a heavy graphics application is preferably implemented on a platform with a
graphics coprocessor or graphics accelerator card. Some systems also have a dedicated
physics processor for calculating the physical movements of objects in a computer game or
animation.

It is possible in some cases to use the high processing power of the processors on a
graphics accelerator card for other purposes than rendering graphics on the screen.
However, such applications are highly system dependent and therefore not recommended if
portability is important. This manual does not cover graphics processors.

 6

Programmable logic devices

A programmable logic device is a chip that can be programmed in a hardware definition
language, such as VHDL or Verilog. Common devices are CPLDs and FPGAs. The
difference between a software programming language, e.g. C++, and a hardware definition
language is that the software programming language defines an algorithm of sequential
instructions, where a hardware definition language defines hardware circuits consisting of
digital building blocks such as gates, flip-flops, multiplexers, arithmetic units, etc. and the
wires that connect them. The hardware definition language is inherently parallel because it
defines electrical connections rather than sequences of operations.

A complex digital operation can often be executed faster in a programmable logic device
than in a microprocessor because the hardware can be wired for a specific purpose.

It is possible to implement a microprocessor in an FPGA as a so-called soft processor. Such
a soft processor is much slower than a dedicated microprocessor and therefore not
advantageous by itself. But a solution where a soft processor activates critical application-
specific instructions that are coded in a hardware definition language in the same chip can
be a very efficient solution in some cases. An even more powerful solution is the
combination of a dedicated microprocessor core and an FPGA in the same chip. Such
hybrid solutions are now used in some embedded systems.

A look in my crystal ball reveals that similar solutions may some day be implemented in PC
processors. The application program will be able to define application-specific instructions
that can be coded in a hardware definition language. Such a processor will have an extra
cache for the hardware definition code in addition to the code cache and the data cache.

2.2 Choice of microprocessor

The benchmark performance of competing brands of microprocessors are very similar
thanks to heavy competition. Processors with multiple cores are advantageous for
applications that can be divided into multiple threads that run in parallel. Small lightweight
processors with low power consumption are actually quite powerful and may be sufficient for
less intensive applications.

Some systems have a graphics processing unit, either on a graphics card or integrated in
the CPU chip. Such units can be used as coprocessors to take care of some of the heavy
graphics calculations. In some cases it is possible to utilize the computational power of the
graphics processing unit for other purposes than it is intended for. Some systems also have
a physics processing unit intended for calculating the movements of objects in computer
games. Such a coprocessor might also be used for other purposes. The use of
coprocessors is beyond the scope of this manual.

2.3 Choice of operating system

All newer microprocessors in the x86 family can run in both 16-bit, 32-bit and 64-bit mode.

16-bit mode is used in the old operating systems DOS and Windows 3.x. These systems
use segmentation of the memory if the size of program or data exceeds 64 kbytes. This is
quite inefficient. The modern microprocessors are not optimized for 16-bit mode and some
operating systems are not backwards compatible with 16-bit programs. It is not
recommended to make 16-bit programs, except for small embedded systems.

Today (2013) both 32-bit and 64-bit operating systems are common, and there is no big
difference in performance between the systems. There is no heavy marketing of 64-bit
software, but it is quite certain that the 64-bit systems will dominate in the future.

 7

The 64-bit systems can improve the performance by 5-10% for some CPU-intensive
applications with many function calls. If the bottleneck is elsewhere then there is no
difference in performance between 32-bit and 64-bit systems. Applications that use large
amounts of memory will benefit from the larger address space of the 64-bit systems.

A software developer may choose to make memory-hungry software in two versions. A 32-
bit version for the sake of compatibility with existing systems and a 64-bit version for best
performance.

The Windows and Linux operating systems give almost identical performance for 32-bit
software because the two operating systems are using the same function calling
conventions. FreeBSD and Open BSD are identical to Linux in almost all respects relevant
to software optimization. Everything that is said here about Linux also applies to BSD
systems.

The Intel-based Mac OS X operating system is based on BSD, but the compiler uses
position-independent code and lazy binding by default, which makes it less efficient. The
performance can be improved by using static linking and by not using position-independent

code (option -fno-pic).

64 bit systems have several advantages over 32 bit systems:

 The number of registers is doubled. This makes it possible to store intermediate data
and local variables in registers rather than in memory.

 Function parameters are transferred in registers rather than on the stack. This makes
function calls more efficient.

 The size of the integer registers is extended to 64 bits. This is only an advantage in
applications that can take advantage of 64-bit integers.

 The allocation and deallocation of big memory blocks is more efficient.

 The SSE2 instruction set is supported on all 64-bit CPUs and operating systems.

 The 64 bit instruction set supports self-relative addressing of data. This makes position-
independent code more efficient.

64 bit systems have the following disadvantages compared to 32 bit systems:

 Pointers, references, and stack entries use 64 bits rather than 32 bits. This makes data
caching less efficient.

 Access to static or global arrays require a few extra instructions for address calculation
in 64 bit mode if the image base is not guaranteed to be less than 231. This extra cost is
seen in 64 bit Windows and Mac programs but rarely in Linux.

 Address calculation is more complicated in a large memory model where the combined
size of code and data can exceed 2 Gbytes. This large memory model is hardly ever
used, though.

 Some instructions are one byte longer in 64 bit mode than in 32 bit mode.

 Some 64-bit compilers are inferior to their 32-bit counterparts.

In general, you can expect 64-bit programs to run a little faster than 32-bit programs if there
are many function calls, if there are many allocations of large memory blocks, or if the

 8

program can take advantage of 64-bit integer calculations. It is necessary to use 64-bit
systems if the program uses more than 2 gigabytes of data.

The similarity between the operating systems disappears when running in 64-bit mode
because the function calling conventions are different. 64-bit Windows allows only four
function parameters to be transferred in registers, whereas 64-bit Linux, BSD and Mac allow
up to fourteen parameters to be transferred in registers (6 integer and 8 floating point).
There are also other details that make function calling more efficient in 64-bit Linux than in
64-bit Windows (See page 50 and manual 5: "Calling conventions for different C++
compilers and operating systems"). An application with many function calls may run slightly
faster in 64-bit Linux than in 64-bit Windows. The disadvantage of 64-bit Windows may be
mitigated by making critical functions inline or static or by using a compiler that can do
whole program optimization.

2.4 Choice of programming language

Before starting a new software project, it is important to decide which programming
language is best suited for the project at hand. Low-level languages are good for optimizing
execution speed or program size, while high-level languages are good for making clear and
well-structured code and for fast and easy development of user interfaces and interfaces to
network resources, databases, etc.

The efficiency of the final application depends on the way the programming language is
implemented. The highest efficiency is obtained when the code is compiled and distributed
as binary executable code. Most implementations of C++, Pascal and Fortran are based on
compilers.

Several other programming languages are implemented with interpretation. The program
code is distributed as it is and interpreted line by line when it is run. Examples include
JavaScript, PHP, ASP and UNIX shell script. Interpreted code is very inefficient because the
body of a loop is interpreted again and again for every iteration of the loop.

Some implementations use just-in-time compilation. The program code is distributed and
stored as it is, and is compiled when it is executed. An example is Perl.

Several modern programming languages use an intermediate code (byte code). The source
code is compiled into an intermediate code, which is the code that is distributed. The
intermediate code cannot be executed as it is, but must go through a second step of
interpretation or compilation before it can run. Some implementations of Java are based on
an interpreter which interprets the intermediate code by emulating the so-called Java virtual
machine. The best Java machines use just-in-time compilation of the most used parts of the
code. C#, managed C++, and other languages in Microsoft's .NET framework are based on
just-in-time compilation of an intermediate code.

The reason for using an intermediate code is that it is intended to be platform-independent
and compact. The biggest disadvantage of using an intermediate code is that the user must
install a large runtime framework for interpreting or compiling the intermediate code. This
framework typically uses much more resources than the code itself.

Another disadvantage of intermediate code is that it adds an extra level of abstraction which
makes detailed optimization more difficult. On the other hand, a just-in-time compiler can
optimize specifically for the CPU it is running on, while it is more complicated to make CPU-
specific optimizations in precompiled code.

The history of programming languages and their implementations reveal a zigzag course
that reflects the conflicting considerations of efficiency, platform independence, and easy
development. For example, the first PC's had an interpreter for Basic. A compiler for Basic
soon became available because the interpreted version of Basic was too slow. Today, the

 9

most popular version of Basic is Visual Basic .NET, which is implemented with an
intermediate code and just-in-time compilation. Some early implementations of Pascal used
an intermediate code like the one that is used for Java today. But this language gained
remarkably in popularity when a genuine compiler became available.

It should be clear from this discussion that the choice of programming language is a
compromise between efficiency, portability and development time. Interpreted languages
are out of the question when efficiency is important. A language based on intermediate code
and just-in-time compilation may be a viable compromise when portability and ease of
development are more important than speed. This includes languages such as C#, Visual
Basic .NET and the best Java implementations. However, these languages have the
disadvantage of a very large runtime framework that must be loaded every time the program
is run. The time it takes to load the framework and compile the program are often much
more than the time it takes to execute the program, and the runtime framework may use
more resources than the program itself when running. Programs using such a framework
sometimes have unacceptably long response times for simple tasks like pressing a button
or moving the mouse. The .NET framework should definitely be avoided when speed is
critical.

The fastest execution is no doubt obtained with a fully compiled code. Compiled languages
include C, C++, D, Pascal, Fortran and several other less well-known languages. My
preference is for C++ for several reasons. C++ is supported by some very good compilers
and optimized function libraries. C++ is an advanced high-level language with a wealth of
advanced features rarely found in other languages. But the C++ language also includes the
low-level C language as a subset, giving access to low-level optimizations. Most C++
compilers are able to generate an assembly language output, which is useful for checking
how well the compiler optimizes a piece of code. Furthermore, most C++ compilers allow
assembly-like intrinsic functions, inline assembly or easy linking to assembly language
modules when the highest level of optimization is needed. The C++ language is portable in
the sense that C++ compilers exist for all major platforms. Pascal has many of the
advantages of C++ but is not quite as versatile. Fortran is also quite efficient, but the syntax
is very old-fashioned.

Development in C++ is quite efficient thanks to the availability of powerful development
tools. One popular development tool is Microsoft Visual Studio. This tool can make two
different implementations of C++, directly compiled code and intermediate code for the
common language runtime of the .NET framework. Obviously, the directly compiled version
is preferred when speed is important.

An important disadvantage of C++ relates to security. There are no checks for array bounds
violation, integer overflow, and invalid pointers. The absence of such checks makes the
code execute faster than other languages that do have such checks. But it is the responsi-
bility of the programmer to make explicit checks for such errors in cases where they cannot
be ruled out by the program logic. Some guidelines are provided below, on page 15.

C++ is definitely the preferred programming language when the optimization of performance
has high priority. The gain in performance over other programming languages can be quite
substantial. This gain in performance can easily justify a possible minor increase in develop-
ment time when performance is important to the end user.

There may be situations where a high level framework based on intermediate code is
needed for other reasons, but part of the code still needs careful optimization. A mixed
implementation can be a viable solution in such cases. The most critical part of the code
can be implemented in compiled C++ or assembly language and the rest of the code,
including user interface etc., can be implemented in the high level framework. The optimized
part of the code can possibly be compiled as a dynamic link library (DLL) which is called by
the rest of the code. This is not an optimal solution because the high level framework still
consumes a lot of resources, and the transitions between the two kinds of code gives an

 10

extra overhead which consumes CPU time. But this solution can still give a considerable
improvement in performance if the time-critical part of the code can be completely contained
in a DLL.

Another alternative worth considering is the D language. D has many of the features of Java
and C# and avoids many of the drawbacks of C++. Yet, D is compiled to binary code and
can be linked together with C or C++ code. Compilers and IDE's for D are not yet as well
developed as C++ compilers.

2.5 Choice of compiler

There are several different C++ compilers to choose between. It is difficult to predict which
compiler will do the best job optimizing a particular piece of code. Each compiler does some
things very smart and other things very stupid. Some common compilers are mentioned
below.

Microsoft Visual Studio

This is a very user friendly compiler with many features, but also very expensive. A limited
"express" edition is available for free. Visual Studio can build code for the .NET framework
as well as directly compiled code. (Compile without the Common Language Runtime, CLR,
to produce binary code). Supports 32-bit and 64-bit Windows. The integrated development
environment (IDE) supports multiple programming languages, profiling and debugging. A
command-line version of the C++ compiler is available for free in the Microsoft platform
software development kit (SDK or PSDK). Supports the OpenMP directives for multi-core
processing. Visual Studio optimizes reasonably well, but it is not the best optimizer.

Borland/CodeGear/Embarcadero C++ builder

Has an IDE with many of the same features as the Microsoft compiler. Supports only 32-bit
Windows. Does not support the SSE and later instruction sets. Does not optimize as good
as the Microsoft, Intel, Gnu and PathScale compilers.

Intel C++ compiler (parallel composer)

This compiler does not have its own IDE. It is intended as a plug-in to Microsoft Visual
Studio when compiling for Windows and to Eclipse when compiling for Linux. It can also be
used as a stand alone compiler when called from a command line or a make utility. It
supports 32-bit and 64-bit Windows and 32-bit and 64-bit Linux as well as Intel-based Mac
OS and Itanium systems.

The Intel compiler supports vector intrinsics, automatic vectorization (see page 107),
OpenMP and automatic parallelization of code into multiple threads. The compiler supports
CPU dispatching to make multiple code versions for different CPUs. (See page 130 for how
to make this work on non-Intel processors). It has excellent support for inline assembly on
all platforms and the possibility of using the same inline assembly syntax in both Windows
and Linux. The compiler comes with some of the best optimized math function libraries
available.

The most important disadvantage of the Intel compiler is that the compiled code may run
with reduced speed or not at all on AMD and VIA processors. It is possible to avoid this
problem by bypassing the so-called CPU-dispatcher that checks whether the code is
running on an Intel CPU. See page 130 for details).

The Intel compiler is a good choice for code that can benefit from its many optimization
features and for code that is ported to multiple operating systems.

 11

Gnu

This is one of the best optimizing compilers available, though less user friendly. It is free
and open source. It comes with most distributions of Linux, BSD and Mac OS X, 32-bit and
64-bit. Supports OpenMP and automatic parallelization. Supports vector intrinsics and
automatic vectorization (see page 107). The Gnu function libraries are not fully optimized
yet. Supports both AMD and Intel vector math libraries. The Gnu C++ compiler is available
for many platforms, including 32-bit and 64-bit Linux, BSD, Windows and Mac. The Gnu
compiler is a very good choice for all Unix-like platforms.

Clang

The Clang compiler combined with the LLVM is a new compiler which is similar to the Gnu
compiler in many respects and highly compatible with Gnu. It is expected to replace the Gnu
compiler on the Mac platform, but also supports Linux and Windows platforms. The Clang
compiler is a good choice for all platforms.

PathScale

C++ compiler for 32- and 64-bit Linux. Has many good optimization options. Supports
parallel processing, OpenMP and automatic vectorization. It is possible to insert
optimization hints as pragmas in the code to tell the compiler e.g. how often a part of the
code is executed. Optimizes very well. This compiler is a good choice for Linux platforms if
the bias of the Intel compiler in favor of Intel CPUs cannot be tolerated.

PGI

C++ compiler for 32- and 64-bit Windows, Linux and Mac. Supports parallel processing,
OpenMP and automatic vectorization. Optimizes reasonably well. Very poor performance
for vector intrinsics.

Digital Mars

This is a cheap compiler for 32-bit Windows, including an IDE. Does not optimize well.

Open Watcom

Another open source compiler for 32-bit Windows. Does not, by default, conform to the
standard calling conventions. Optimizes reasonably well.

Codeplay VectorC

A commercial compiler for 32-bit Windows. Integrates into the Microsoft Visual Studio IDE.
Has not been updated since 2004. Can do automatic vectorization. Optimizes moderately
well. Supports three different object file formats.

Comments

All of these compilers can be used as command-line versions without an IDE. Free trial
versions are available for the commercial compilers.

Mixing object files from different compilers is generally possible on Linux platforms, and in
some cases on Windows platforms. The Microsoft and Intel compilers for Windows are fully
compatible on the object file level, and the Digital Mars compiler is mostly compatible with
these. The CodeGear, Codeplay and Watcom compilers are not compatible with other
compilers at the object file level.

My recommendation for good code performance is to use the Gnu, Clang, Intel or
PathScale compiler for Unix applications and the Gnu, Clang, Intel or Microsoft compiler for
Windows applications.

The choice of compiler may in some cases be determined by the requirements of
compatibility with legacy code, specific preferences for the IDE, for debugging facilities,
easy GUI development, database integration, web application integration, mixed language

 12

programming, etc. In cases where the chosen compiler doesn't provide the best optimization
it may be useful to make the most critical modules with a different compiler. Object files
generated by the Intel and PathScale compilers can in most cases be linked into projects
made with Microsoft or Gnu compilers without problems if the necessary library files are also
included. Combining the Borland compiler with other compilers or function libraries is more

difficult. The functions must have extern "C" declaration and the object files need to be

converted to OMF format. Alternatively, make a DLL with the best compiler and call it from a
project built with another compiler.

2.6 Choice of function libraries

Some applications spend most of their execution time on executing library functions. Time-
consuming library functions often belong to one of these categories:

 File input/output

 Graphics and sound processing

 Memory and string manipulation

 Mathematical functions

 Encryption, decryption, data compression

Most compilers include standard libraries for many of these purposes. Unfortunately, the
standard libraries are not always fully optimized.

Library functions are typically small pieces of code that are used by many users in many
different applications. Therefore, it is worthwhile to invest more efforts in optimizing library
functions than in optimizing application-specific code. The best function libraries are highly
optimized, using assembly language and automatic CPU-dispatching (see page 122) for the
latest instruction set extensions.

If a profiling (see page 16) shows that a particular application uses a lot of CPU-time in
library functions, or if this is obvious, then it may be possible to improve the performance
significantly simply by using a different function library. If the application uses most of its
time in library functions then it may not be necessary to optimize anything else than finding
the most efficient library and economize the library function calls. It is recommended to try
different libraries and see which one works best.

Some common function libraries are discussed below. Many libraries for special purposes
are also available.

Microsoft

Comes with Microsoft compiler. Some functions are optimized well, others are not. Supports
32-bit and 64-bit Windows.

Borland / CodeGear / Embarcadero

Comes with the Borland C++ builder. Not optimized for SSE2 and later instruction sets.
Supports only 32-bit Windows.

Gnu

Comes with the Gnu compiler. Not optimized as good as the compiler itself is. The 64-bit
version is better than the 32-bit version. The Gnu compiler often inserts built-in code instead
of the most common memory and string instructions. The built-in code is not optimal. Use

 13

option -fno-builtin to get library versions instead. The Gnu libraries support 32-bit and

64-bit Linux and BSD. The Windows version is currently not up to date.

Mac

The libraries included with the Gnu compiler for Mac OS X (Darwin) are part of the Xnu
project. Some of the most important functions are included in the operating system kernel in
the so-called commpage. These functions are highly optimized for the Intel Core and later
Intel processors. AMD processors and earlier Intel processors are not supported at all. Can
only run on Mac platform.

Intel

The Intel compiler includes standard function libraries. Several special purpose libraries are
also available, such as the "Intel Math Kernel Library" and "Integrated Performance
Primitives". These function libraries are highly optimized for large data sets. However, the
Intel libraries do not always work well on AMD and VIA processors. See page 130 for an
explanation and possible workaround. Supports all x86 and x86-64 platforms.

AMD

AMD Math core library contains optimized mathematical functions. It also works on Intel
processors. The performance is inferior to the Intel libraries. Supports 32- and 64-bit
Windows and Linux.

Asmlib

My own function library made for demonstration purposes. Available from
www.agner.org/optimize/asmlib.zip. Currently includes optimized versions of memory and
string functions and some other functions that are difficult to find elsewhere. Faster than
most other libraries when running on the newest processors. Supports all x86 and x86-64
platforms.

Comparison of function libraries

Test Processor

M
ic

ro
s

o
ft

C
o

d
e

G
e

a
r

In
te

l

M
a

c

G
n

u
 3

2
-b

it

G
n

u
 3

2
-b

it

-fn
o

-b
u

iltin

G
n

u
 6

4
 b

it

-fn
o

-b
u

iltin

A
s

m
lib

memcpy 16kB

aligned operands

Intel
Core 2

0.12 0.18 0.12 0.11 0.18 0.18 0.18 0.11

memcpy 16kB

unaligned op.

Intel
Core 2

0.63 0.75 0.18 0.11 1.21 0.57 0.44 0.12

memcpy 16kB

aligned operands

AMD
Opteron K8

0.24 0.25 0.24 n.a. 1.00 0.25 0.28 0.22

memcpy 16kB

unaligned op.

AMD
Opteron K8

0.38 0.44 0.40 n.a. 1.00 0.35 0.29 0.28

strlen 128

bytes

Intel
Core 2

0.77 0.89 0.40 0.30 4.5 0.82 0.59 0.27

strlen 128

bytes

AMD
Opteron K8

1.09 1.25 1.61 n.a. 2.23 0.95 0.6 1.19

http://www.agner.org/optimize/asmlib.zip

 14

Table 2.1. Comparing performance of different function libraries.
Numbers in the table are core clock cycles per byte of data (low numbers mean good
performance). Aligned operands means that source and destination both have addresses
divisible by 16.
Library versions tested (not up to date):
Microsoft Visual studio 2008, v. 9.0
CodeGear Borland bcc, v. 5.5
Mac: Darwin8 g++ v 4.0.1.
Gnu: Glibc v. 2.7, 2.8.
Asmlib: v. 2.00.

Intel C++ compiler, v. 10.1.020. Functions _intel_fast_memcpy and

__intel_new_strlen in library libircmt.lib. Function names are undocumented.

2.7 Choice of user interface framework

Most of the code in a typical software project goes to the user interface. Applications that
are not computationally intensive may very well spend more CPU time on the user interface
than on the essential task of the program.

Application programmers rarely program their own graphical user interfaces from scratch.
This would not only be a waste of the programmers' time, but also inconvenient to the end
user. Menus, buttons, dialog boxes, etc. should be as standardized as possible for usability
reasons. The programmer can use standard user interface elements that come with the
operating system or libraries that come with compilers and development tools.

A popular user interface library for Windows and C++ is Microsoft Foundation Classes
(MFC). A competing product is Borland's now discontinued Object Windows Library (OWL).
Several graphical interface frameworks are available for Linux systems. The user interface
library can be linked either as a runtime DLL or a static library. A runtime DLL takes more
memory resources than a static library, except when several applications use the same DLL
at the same time.

A user interface library may be bigger than the application itself and take more time to load.
A light-weight alternative is the Windows Template Library (WTL). A WTL application is
generally faster and more compact than an MFC application. The development time for
WTL applications can be expected to be higher due to poor documentation and lack of
advanced development tools.

The simplest possible user interface is obtained by dropping the graphical user interface
and use a console mode program. The inputs for a console mode program are typically
specified on a command line or an input file. The output goes to the console or to an output
file. A console mode program is fast, compact, and simple to develop. It is easy to port to
different platforms because it doesn't depend on system-specific graphical interface calls.
The usability may be poor because it lacks the self-explaining menus of a graphical user
interface. A console mode program is useful for calling from other applications such as a
make utility.

The conclusion is that the choice of user interface framework must be a compromise
between development time, usability, program compactness, and execution time. No
universal solution is best for all applications.

2.8 Overcoming the drawbacks of the C++ language

While C++ has many advantages when it comes to optimization, it does have some
disadvantages that make developers choose other programming languages. This section
discusses how to overcome these disadvantages when C++ is chosen for the sake of
optimization.

 15

Portability

C++ is fully portable in the sense that the syntax is fully standardized and supported on all
major platforms. However, C++ is also a language that allows direct access to hardware
interfaces and system calls. These are of course system-specific. In order to facilitate
porting between platforms, it is recommended to place the user interface and other system-
specific parts of the code in a separate module, and to put the task-specific part of the code,
which supposedly is system-independent, in another module.

The size of integers and other hardware-related details depend on the hardware platform
and operating system. See page 29 for details.

Development time

Some developers feel that a particular programming language and development tool is
faster to use than others. While some of the difference is simply a matter of habit, it is true
that some development tools have powerful facilities that do much of the trivial programming
work automatically. The development time and maintainability of C++ projects can be
improved by consistent modularity and reusable classes.

Security

The most serious problem with the C++ language relates to security. Standard C++ imple-
mentations have no checking for array bounds violations and invalid pointers. This is a
frequent source of errors in C++ programs and also a possible point of attack for hackers. It
is necessary to adhere to certain programming principles in order to prevent such errors in
programs where security matters.

Problems with invalid pointers can be avoided by using references instead of pointers, by
initializing pointers to zero, by setting pointers to zero whenever the objects they point to
become invalid, and by avoiding pointer arithmetics and pointer type casting. Linked lists
and other data structures that typically use pointers may be replaced by more efficient

container class templates, as explained on page 93. Avoid the function scanf.

Violation of array bounds is probably the most common cause of errors in C++ programs.
Writing past the end of an array can cause other variables to be overwritten, and even
worse, it can overwrite the return address of the function in which the array is defined. This
can cause all kinds of strange and unexpected behaviors. Arrays are often used as buffers
for storing text or input data. A missing check for buffer overflow on input data is a common
error that hackers often have exploited.

A good way to prevent such errors is to replace arrays by well-tested container classes. The
standard template library (STL) is a useful source of such container classes. Unfortunately,
many standard container classes use dynamic memory allocation in an inefficient way. See
page and 90 for examples of how to avoid dynamic memory allocation. See page 93 for
discussion of efficient container classes. An appendix to this manual at
www.agner.org/optimize/cppexamples.zip contains examples of arrays with bounds
checking and various efficient container classes.

Text strings are particularly problematic because there may be no certain limit to the length
of a string. The old C-style method of storing strings in character arrays is fast and efficient,
but not safe unless the length of each string is checked before storing. The standard

solution to this problem is to use string classes, such as string or CString. This is safe

and flexible, but quite inefficient in large applications. The string classes allocate a new
memory block every time a string is created or modified. This can cause the memory to be
fragmented and involve a high overhead cost of heap management and garbage collection.
A more efficient solution that doesn't compromise safety is to store all strings in one memory
pool. See the examples in the appendix at www.agner.org/optimize/cppexamples.zip for
how to store strings in a memory pool.

http://www.agner.org/optimize/cppexamples.zip
http://www.agner.org/optimize/cppexamples.zip

 16

Integer overflow is another security problem. The official C standard says that the behavior
of signed integers in case of overflow is "undefined". This allows the compiler to ignore
overflow or assume that it doesn't occur. In the case of the Gnu compiler, the assumption
that signed integer overflow doesn't occur has the unfortunate consequence that it allows
the compiler to optimize away an overflow check. There are a number of possible remedies
against this problem: (1) check for overflow before it occurs, (2) use unsigned integers -

they are guaranteed to wrap around, (3) trap integer overflow with the option -ftrapv, but

this is extremely inefficient, (4) get a compiler warning for such optimizations with option

-Wstrict-overflow=2, or (5) make the overflow behavior well-defined with option

-fwrapv or -fno-strict-overflow.

You may deviate from the above security advices in critical parts of the code where speed is
important. This can be permissible if the unsafe code is limited to well-tested functions,
classes, templates or modules with a well-defined interface to the rest of the program.

3 Finding the biggest time consumers

3.1 How much is a clock cycle?

In this manual, I am using CPU clock cycles rather than seconds or microseconds as a time
measure. This is because computers have very different speeds. If I write that something
takes 10 μs today, then it may take only 5 μs on the next generation of computers and my
manual will soon be obsolete. But if I write that something takes 10 clock cycles then it will
still take 10 clock cycles even if the CPU clock frequency is doubled.

The length of a clock cycle is the reciprocal of the clock frequency. For example, if the clock
frequency is 2 GHz then the length of a clock cycle is

ns.5.0
GHz2

1

A clock cycle on one computer is not always comparable to a clock cycle on another
computer. The Pentium 4 (NetBurst) CPU is designed for a higher clock frequency than
other CPUs, but it uses more clock cycles than other CPUs for executing the same piece of
code in general.

Assume that a loop in a program repeats 1000 times and that there are 100 floating point
operations (addition, multiplication, etc.) inside the loop. If each floating point operation
takes 5 clock cycles, then we can roughly estimate that the loop will take 1000 * 100 * 5 *
0.5 ns = 250 μs on a 2 GHz CPU. Should we try to optimize this loop? Certainly not! 250 μs
is less than 1/50 of the time it takes to refresh the screen. There is no way the user can see
the delay. But if the loop is inside another loop that also repeats 1000 times then we have
an estimated calculation time of 250 ms. This delay is just long enough to be noticeable but
not long enough to be annoying. We may decide to do some measurements to see if our
estimate is correct or if the calculation time is actually more than 250 ms. If the response
time is so long that the user actually has to wait for a result then we will consider if there is
something that can be improved.

3.2 Use a profiler to find hot spots

Before you start to optimize anything, you have to identify the critical parts of the program.
In some programs, more than 99% of the time is spent in the innermost loop doing
mathematical calculations. In other programs, 99% of the time is spent on reading and
writing data files while less than 1% goes to actually doing something on these data. It is
very important to optimize the parts of the code that matters rather than the parts of the
code that use only a small fraction of the total time. Optimizing less critical parts of the code

 17

will not only be a waste of time, it also makes the code less clear and more difficult to debug
and maintain.

Most compiler packages include a profiler that can tell how many times each function is
called and how much time it uses. There are also third-party profilers such as AQtime, Intel
VTune and AMD CodeAnalyst.

There are several different profiling methods:

 Instrumentation: The compiler inserts extra code at each function call to count how
many times the function is called and how much time it takes.

 Debugging. The profiler inserts temporary debug breakpoints at every function or every
code line.

 Time-based sampling: The profiler tells the operating system to generate an interrupt,
e.g. every millisecond. The profiler counts how many times an interrupt occurs in each
part of the program. This requires no modification of the program under test, but is less
reliable.

 Event-based sampling: The profiler tells the CPU to generate interrupts at certain
events, for example every time a thousand cache misses have occurred. This makes it
possible to see which part of the program has most cache misses, branch
mispredictions, floating point exceptions, etc. Event-based sampling requires a CPU-
specific profiler. For Intel CPUs use Intel VTune, for AMD CPUs use AMD CodeAnalyst.

Unfortunately, profilers are often unreliable. They sometimes give misleading results or fail
completely because of technical problems.

Some common problems with profilers are:

 Coarse time measurement. If time is measured with millisecond resolution and the
critical functions take microseconds to execute then measurements can become
imprecise or simply zero.

 Execution time too small or too long. If the program under test finishes in a short time
then the sampling generates too little data for analysis. If the program takes too long
time to execute then the profiler may sample more data than it can handle.

 Waiting for user input. Many programs spend most of their time waiting for user input or
network resources. This time is included in the profile. It may be necessary to modify the
program to use a set of test data instead of user input in order to make profiling feasible.

 Interference from other processes. The profiler measures not only the time spent in the
program under test but also the time used by all other processes running on the same
computer, including the profiler itself.

 Function addresses are obscured in optimized programs. The profiler identifies any hot
spots in the program by their address and attempts to translate these addresses to
function names. But a highly optimized program is often reorganized in such a way that
there is no clear correspondence between function names and code addresses. The
names of inlined functions may not be visible at all to the profiler. The result will be
misleading reports of which functions take most time.

 Uses debug version of the code. Some profilers require that the code you are testing
contains debug information in order to identify individual functions or code lines. The

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can

access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

