
i

title page



ii

copyright page



To my family, and to Jackie.



iv

λ



Preface

This book is intended for anyone who wants to become a better Lisp programmer.
It assumes some familiarity with Lisp, but not necessarily extensive programming
experience. The first few chapters contain a fair amount of review. I hope that
these sections will be interesting to more experienced Lisp programmers as well,
because they present familiar subjects in a new light.

It’s difficult to convey the essence of a programming language in one sentence,
but John Foderaro has come close:

Lisp is a programmable programming language.

There is more to Lisp than this, but the ability to bend Lisp to one’s will is a
large part of what distinguishes a Lisp expert from a novice. As well as writing
their programs down toward the language, experienced Lisp programmers build
the language up toward their programs. This book teaches how to program in the
bottom-up style for which Lisp is inherently well-suited.

Bottom-up Design

Bottom-up design is becoming more important as software grows in complexity.
Programs today may have to meet specifications which are extremely complex,
or even open-ended. Under such circumstances, the traditional top-down method
sometimes breaks down. In its place there has evolved a style of programming

v



vi PREFACE

quite different from what is currently taught in most computer science courses:
a bottom-up style in which a program is written as a series of layers, each one
acting as a sort of programming language for the one above. X Windows and TEX
are examples of programs written in this style.

The theme of this book is twofold: that Lisp is a natural language for programs
written in the bottom-up style, and that the bottom-up style is a natural way to
write Lisp programs. On Lisp will thus be of interest to two classes of readers.
For people interested in writing extensible programs, this book will show what
you can do if you have the right language. For Lisp programmers, this book offers
a practical explanation of how to use Lisp to its best advantage.

The title is intended to stress the importance of bottom-up programming in
Lisp. Instead of just writing your program in Lisp, you can write your own
language on Lisp, and write your program in that.

It is possible to write programs bottom-up in any language, but Lisp is the
most natural vehicle for this style of programming. In Lisp, bottom-up design is
not a special technique reserved for unusually large or difficult programs. Any
substantial program will be written partly in this style. Lisp was meant from the
start to be an extensible language. The language itself is mostly a collection of
Lisp functions, no different from the ones you define yourself. What’s more, Lisp
functions can be expressed as lists, which are Lisp data structures. This means
you can write Lisp functions which generate Lisp code.

A good Lisp programmer must know how to take advantage of this possibility.
The usual way to do so is by defining a kind of operator called a macro. Mastering
macros is one of the most important steps in moving from writing correct Lisp
programs to writing beautiful ones. Introductory Lisp books have room for no
more than a quick overview of macros: an explanation of what macros are, together
with a few examples which hint at the strange and wonderful things you can do
with them. Those strange and wonderful things will receive special attention here.
One of the aims of this book is to collect in one place all that people have till now
had to learn from experience about macros.

Understandably, introductory Lisp books do not emphasize the differences
between Lisp and other languages. They have to get their message across to
students who have, for the most part, been schooled to think of programs in Pascal
terms. It would only confuse matters to explain that, while defun looks like a
procedure definition, it is actually a program-writing program that generates code
which builds a functional object and indexes it under the symbol given as the first
argument.

One of the purposes of this book is to explain what makes Lisp different from
other languages. When I began, I knew that, all other things being equal, I would
much rather write programs in Lisp than in C or Pascal or Fortran. I knew also that
this was not merely a question of taste. But I realized that if I was actually going



PREFACE vii

to claim that Lisp was in some ways a better language, I had better be prepared to
explain why.

When someone asked Louis Armstrong what jazz was, he replied “If you have
to ask what jazz is, you’ll never know.” But he did answer the question in a way:
he showed people what jazz was. That’s one way to explain the power of Lisp—to
demonstrate techniques that would be difficult or impossible in other languages.
Most books on programming—even books on Lisp programming—deal with the
kinds of programs you could write in any language. On Lisp deals mostly with
the kinds of programs you could only write in Lisp. Extensibility, bottom-up
programming, interactive development, source code transformation, embedded
languages—this is where Lisp shows to advantage.

In principle, of course, any Turing-equivalent programming language can do
the same things as any other. But that kind of power is not what programming
languages are about. In principle, anything you can do with a programming
language you can do with a Turing machine; in practice, programming a Turing
machine is not worth the trouble.

So when I say that this book is about how to do things that are impossible
in other languages, I don’t mean “impossible” in the mathematical sense, but in
the sense that matters for programming languages. That is, if you had to write
some of the programs in this book in C, you might as well do it by writing a Lisp
compiler in C first. Embedding Prolog in C, for example—can you imagine the
amount of work that would take? Chapter 24 shows how to do it in 180 lines of
Lisp.

I hoped to do more than simply demonstrate the power of Lisp, though. I also
wanted to explain why Lisp is different. This turns out to be a subtle question—too
subtle to be answered with phrases like “symbolic computation.” What I have
learned so far, I have tried to explain as clearly as I can.

Plan of the Book

Since functions are the foundation of Lisp programs, the book begins with sev-
eral chapters on functions. Chapter 2 explains what Lisp functions are and the
possibilities they offer. Chapter 3 then discusses the advantages of functional
programming, the dominant style in Lisp programs. Chapter 4 shows how to use
functions to extend Lisp. Then Chapter 5 suggests the new kinds of abstractions
we can define with functions that return other functions. Finally, Chapter 6 shows
how to use functions in place of traditional data structures.

The remainder of the book deals more with macros than functions. Macros
receive more attention partly because there is more to say about them, and partly
because they have not till now been adequately described in print. Chapters 7–10



viii PREFACE

form a complete tutorial on macro technique. By the end of it you will know most
of what an experienced Lisp programmer knows about macros: how they work;
how to define, test, and debug them; when to use macros and when not; the major
types of macros; how to write programs which generate macro expansions; how
macro style differs from Lisp style in general; and how to detect and cure each of
the unique problems that afflict macros.

Following this tutorial, Chapters 11–18 show some of the powerful abstrac-
tions you can build with macros. Chapter 11 shows how to write the classic
macros—those which create context, or implement loops or conditionals. Chap-
ter 12 explains the role of macros in operations on generalized variables. Chap-
ter 13 shows how macros can make programs run faster by shifting computation
to compile-time. Chapter 14 introduces anaphoric macros, which allow you to
use pronouns in your programs. Chapter 15 shows how macros provide a more
convenient interface to the function-builders defined in Chapter 5. Chapter 16
shows how to use macro-defining macros to make Lisp write your programs for
you. Chapter 17 discusses read-macros, and Chapter 18, macros for destructuring.

With Chapter 19 begins the fourth part of the book, devoted to embedded
languages. Chapter 19 introduces the subject by showing the same program, a
program to answer queries on a database, implemented first by an interpreter
and then as a true embedded language. Chapter 20 shows how to introduce
into Common Lisp programs the notion of a continuation, an object representing
the remainder of a computation. Continuations are a very powerful tool, and
can be used to implement both multiple processes and nondeterministic choice.
Embedding these control structures in Lisp is discussed in Chapters 21 and 22,
respectively. Nondeterminism, which allows you to write programs as if they
had foresight, sounds like an abstraction of unusual power. Chapters 23 and 24
present two embedded languages which show that nondeterminism lives up to its
promise: a complete ATN parser and an embedded Prolog which combined total
about 200 lines of code.◦

The fact that these programs are short means nothing in itself. If you resorted to
writing incomprehensible code, there’s no telling what you could do in 200 lines.
The point is, these programs are not short because they depend on programming
tricks, but because they’re written using Lisp the way it’s meant to be used. The
point of Chapters 23 and 24 is not how to implement ATNs in one page of code
or Prolog in two, but to show that these programs, when given their most natural
Lisp implementation, simply are that short. The embedded languages in the latter
chapters provide a proof by example of the twin points with which I began: that
Lisp is a natural language for bottom-up design, and that bottom-up design is a
natural way to use Lisp.

The book concludes with a discussion of object-oriented programming, and
particularly CLOS, the Common Lisp Object System. By saving this topic till



PREFACE ix

last, we see more clearly the way in which object-oriented programming is an
extension of ideas already present in Lisp. It is one of the many abstractions that
can be built on Lisp.

A chapter’s worth of notes begins on page 387. The notes contain references,
additional or alternative code, or descriptions of aspects of Lisp not directly related
to the point at hand. Notes are indicated by a small circle in the outside margin,
like this. There is also an Appendix (page 381) on packages. ◦

Just as a tour of New York could be a tour of most of the world’s cultures, a
study of Lisp as the programmable programming language draws in most of Lisp
technique. Most of the techniques described here are generally known in the Lisp
community, but many have not till now been written down anywhere. And some
issues, such as the proper role of macros or the nature of variable capture, are only
vaguely understood even by many experienced Lisp programmers.

Examples

Lisp is a family of languages. Since Common Lisp promises to remain a widely
used dialect, most of the examples in this book are in Common Lisp. The language
was originally defined in 1984 by the publication of Guy Steele’s Common Lisp:
the Language (CLTL1). This definition was superseded in 1990 by the publication
of the second edition (CLTL2), which will in turn yield place to the forthcoming ◦
ANSI standard.

This book contains hundreds of examples, ranging from single expressions to
a working Prolog implementation. The code in this book has, wherever possible,
been written to work in any version of Common Lisp. Those few examples which
need features not found in CLTL1 implementations are explicitly identified in the
text. Later chapters contain some examples in Scheme. These too are clearly
identified.

The code is available by anonymous FTP from endor.harvard.edu, where
it’s in the directory pub/onlisp. Questions and comments can be sent to
onlisp@das.harvard.edu.

Acknowledgements

While writing this book I have been particularly thankful for the help of Robert
Morris. I went to him constantly for advice and was always glad I did. Several
of the examples in this book are derived from code he originally wrote, including
the version of for on page 127, the version of aand on page 191, match on
page 239, the breadth-first true-choose on page 304, and the Prolog interpreter



x PREFACE

in Section 24.2. In fact, the whole book reflects (sometimes, indeed, transcribes)
conversations I’ve had with Robert during the past seven years. (Thanks, rtm!)

I would also like to give special thanks to David Moon, who read large parts
of the manuscript with great care, and gave me very useful comments. Chapter 12
was completely rewritten at his suggestion, and the example of variable capture
on page 119 is one that he provided.

I was fortunate to have David Touretzky and Skona Brittain as the technical
reviewers for the book. Several sections were added or rewritten at their sugges-
tion. The alternative true nondeterministic choice operator on page 397 is based
on a suggestion by David Toureztky.

Several other people consented to read all or part of the manuscript, including
Tom Cheatham, Richard Draves (who also rewrote alambda and propmacro
back in 1985), John Foderaro, David Hendler, George Luger, Robert Muller,
Mark Nitzberg, and Guy Steele.

I’m grateful to Professor Cheatham, and Harvard generally, for providing the
facilities used to write this book. Thanks also to the staff at Aiken Lab, including
Tony Hartman, Janusz Juda, Harry Bochner, and Joanne Klys.

The people at Prentice Hall did a great job. I feel fortunate to have worked
with Alan Apt, a good editor and a good guy. Thanks also to Mona Pompili,
Shirley Michaels, and Shirley McGuire for their organization and good humor.

The incomparable Gino Lee of the Bow and Arrow Press, Cambridge, did the
cover. The tree on the cover alludes specifically to the point made on page 27.

This book was typeset using LATEX, a language written by Leslie Lamport atop
Donald Knuth’s TEX, with additional macros by L. A. Carr, Van Jacobson, and
Guy Steele. The diagrams were done with Idraw, by John Vlissides and Scott
Stanton. The whole was previewed with Ghostview, by Tim Theisen, which is
built on Ghostscript, by L. Peter Deutsch. Gary Bisbee of Chiron Inc. produced
the camera-ready copy.

I owe thanks to many others, including Paul Becker, Phil Chapnick, Alice
Hartley, Glenn Holloway, Meichun Hsu, Krzysztof Lenk, Arman Maghbouleh,
Howard Mullings, Nancy Parmet, Robert Penny, Gary Sabot, Patrick Slaney, Steve
Strassman, Dave Watkins, the Weickers, and Bill Woods.

Most of all, I’d like to thank my parents, for their example and encouragement;
and Jackie, who taught me what I might have learned if I had listened to them.

I hope reading this book will be fun. Of all the languages I know, I like Lisp
the best, simply because it’s the most beautiful. This book is about Lisp at its
lispiest. I had fun writing it, and I hope that comes through in the text.

Paul Graham



Contents

1. The Extensible Language 1

1.1. Design by Evolution 1
1.2. Programming Bottom-Up 3
1.3. Extensible Software 5
1.4. Extending Lisp 6
1.5. Why Lisp (or When) 8

2. Functions 9

2.1. Functions as Data 9
2.2. Defining Functions 10
2.3. Functional Arguments 13
2.4. Functions as Properties 15
2.5. Scope 16
2.6. Closures 17
2.7. Local Functions 21
2.8. Tail-Recursion 22
2.9. Compilation 24
2.10. Functions from Lists 27

3. Functional Programming 28

3.1. Functional Design 28
3.2. Imperative Outside-In 33
3.3. Functional Interfaces 35
3.4. Interactive Programming 37

4. Utility Functions 40

4.1. Birth of a Utility 40
4.2. Invest in Abstraction 43
4.3. Operations on Lists 44

4.4. Search 48
4.5. Mapping 53
4.6. I/O 56
4.7. Symbols and Strings 57
4.8. Density 59

5. Returning Functions 61

5.1. Common Lisp Evolves 61
5.2. Orthogonality 63
5.3. Memoizing 65
5.4. Composing Functions 66
5.5. Recursion on Cdrs 68
5.6. Recursion on Subtrees 70
5.7. When to Build Functions 75

6. Functions as Representation 76

6.1. Networks 76
6.2. Compiling Networks 79
6.3. Looking Forward 81

7. Macros 82

7.1. How Macros Work 82
7.2. Backquote 84
7.3. Defining Simple Macros 88
7.4. Testing Macroexpansion 91
7.5. Destructuring in Parameter

Lists 93
7.6. A Model of Macros 95
7.7. Macros as Programs 96

xi



xii CONTENTS

7.8. Macro Style 99
7.9. Dependence on Macros 101
7.10. Macros from Functions 102
7.11. Symbol Macros 105

8. When to Use Macros 106

8.1. When Nothing Else Will
Do 106

8.2. Macro or Function? 109
8.3. Applications for Macros 111

9. Variable Capture 118

9.1. Macro Argument Capture 118
9.2. Free Symbol Capture 119
9.3. When Capture Occurs 121
9.4. Avoiding Capture with Better

Names 125
9.5. Avoiding Capture by Prior

Evaluation 125
9.6. Avoiding Capture with

Gensyms 128
9.7. Avoiding Capture with

Packages 130
9.8. Capture in Other

Name-Spaces 130
9.9. Why Bother? 132

10. Other Macro Pitfalls 133

10.1. Number of Evaluations 133
10.2. Order of Evaluation 135
10.3. Non-functional Expanders 136
10.4. Recursion 139

11. Classic Macros 143

11.1. Creating Context 143
11.2. The with- Macro 147
11.3. Conditional Evaluation 150
11.4. Iteration 154
11.5. Iteration with Multiple

Values 158
11.6. Need for Macros 161

12. Generalized Variables 165

12.1. The Concept 165

12.2. The Multiple Evaluation
Problem 167

12.3. New Utilities 169
12.4. More Complex Utilities 171
12.5. Defining Inversions 178

13. Computation at
Compile-Time 181

13.1. New Utilities 181
13.2. Example: Bezier Curves 185
13.3. Applications 186

14. Anaphoric Macros 189

14.1. Anaphoric Variants 189
14.2. Failure 195
14.3. Referential Transparency 198

15. Macros Returning
Functions 201

15.1. Building Functions 201
15.2. Recursion on Cdrs 204
15.3. Recursion on Subtrees 208
15.4. Lazy Evaluation 211

16. Macro-Defining Macros 213

16.1. Abbreviations 213
16.2. Properties 216
16.3. Anaphoric Macros 218

17. Read-Macros 224

17.1. Macro Characters 224
17.2. Dispatching Macro

Characters 226
17.3. Delimiters 227
17.4. When What Happens 229

18. Destructuring 230

18.1. Destructuring on Lists 230
18.2. Other Structures 231
18.3. Reference 236
18.4. Matching 238



CONTENTS xiii

19. A Query Compiler 246

19.1. The Database 247
19.2. Pattern-Matching Queries 248
19.3. A Query Interpreter 250
19.4. Restrictions on Binding 252
19.5. A Query Compiler 254

20. Continuations 258

20.1. Scheme Continuations 258
20.2. Continuation-Passing

Macros 266
20.3. Code-Walkers and CPS

Conversion 272

21. Multiple Processes 275

21.1. The Process Abstraction 275
21.2. Implementation 277
21.3. The Less-than-Rapid

Prototype 284

22. Nondeterminism 286

22.1. The Concept 286
22.2. Search 290
22.3. Scheme Implementation 292
22.4. Common Lisp

Implementation 294
22.5. Cuts 298
22.6. True Nondeterminism 302

23. Parsing with ATNs 305

23.1. Background 305
23.2. The Formalism 306
23.3. Nondeterminism 308
23.4. An ATN Compiler 309
23.5. A Sample ATN 314

24. Prolog 321

24.1. Concepts 321
24.2. An Interpreter 323
24.3. Rules 329
24.4. The Need for

Nondeterminism 333
24.5. New Implementation 334
24.6. Adding Prolog Features 337

24.7. Examples 344
24.8. The Senses of Compile 346

25. Object-Oriented Lisp 348

25.1. Plus ça Change 348
25.2. Objects in Plain Lisp 349
25.3. Classes and Instances 364
25.4. Methods 368
25.5. Auxiliary Methods and

Combination 374
25.6. CLOS and Lisp 377
25.7. When to Object 379



1

The Extensible Language

Not long ago, if you asked what Lisp was for, many people would have answered
“for artificial intelligence.” In fact, the association between Lisp and AI is just an
accident of history. Lisp was invented by John McCarthy, who also invented the
term “artificial intelligence.” His students and colleagues wrote their programs in
Lisp, and so it began to be spoken of as an AI language. This line was taken up
and repeated so often during the brief AI boom in the 1980s that it became almost
an institution.

Fortunately, word has begun to spread that AI is not what Lisp is all about.
Recent advances in hardware and software have made Lisp commercially viable:
it is now used in Gnu Emacs, the best Unix text-editor; Autocad, the industry stan-
dard desktop CAD program; and Interleaf, a leading high-end publishing program.
The way Lisp is used in these programs has nothing whatever to do with AI.

If Lisp is not the language of AI, what is it? Instead of judging Lisp by the
company it keeps, let’s look at the language itself. What can you do in Lisp that
you can’t do in other languages? One of the most distinctive qualities of Lisp is
the way it can be tailored to suit the program being written in it. Lisp itself is a
Lisp program, and Lisp programs can be expressed as lists, which are Lisp data
structures. Together, these two principles mean that any user can add operators to
Lisp which are indistinguishable from the ones that come built-in.

1.1 Design by Evolution

Because Lisp gives you the freedom to define your own operators, you can mold
it into just the language you need. If you’re writing a text-editor, you can turn

1



2 THE EXTENSIBLE LANGUAGE

Lisp into a language for writing text-editors. If you’re writing a CAD program,
you can turn Lisp into a language for writing CAD programs. And if you’re not
sure yet what kind of program you’re writing, it’s a safe bet to write it in Lisp.
Whatever kind of program yours turns out to be, Lisp will, during the writing of
it, have evolved into a language for writing that kind of program.

If you’re not sure yet what kind of program you’re writing? To some ears
that sentence has an odd ring to it. It is in jarring contrast with a certain model
of doing things wherein you (1) carefully plan what you’re going to do, and then
(2) do it. According to this model, if Lisp encourages you to start writing your
program before you’ve decided how it should work, it merely encourages sloppy
thinking.

Well, it just ain’t so. The plan-and-implement method may have been a good
way of building dams or launching invasions, but experience has not shown it to
be as good a way of writing programs. Why? Perhaps it’s because computers
are so exacting. Perhaps there is more variation between programs than there
is between dams or invasions. Or perhaps the old methods don’t work because
old concepts of redundancy have no analogue in software development: if a dam
contains 30% too much concrete, that’s a margin for error, but if a program does
30% too much work, that is an error.

It may be difficult to say why the old method fails, but that it does fail, anyone
can see. When is software delivered on time? Experienced programmers know
that no matter how carefully you plan a program, when you write it the plans will
turn out to be imperfect in some way. Sometimes the plans will be hopelessly
wrong. Yet few of the victims of the plan-and-implement method question its
basic soundness. Instead they blame human failings: if only the plans had been
made with more foresight, all this trouble could have been avoided. Since even
the very best programmers run into problems when they turn to implementation,
perhaps it’s too much to hope that people will ever have that much foresight.
Perhaps the plan-and-implement method could be replaced with another approach
which better suits our limitations.

We can approach programming in a different way, if we have the right tools.
Why do we plan before implementing? The big danger in plunging right into
a project is the possibility that we will paint ourselves into a corner. If we had
a more flexible language, could this worry be lessened? We do, and it is. The
flexibility of Lisp has spawned a whole new style of programming. In Lisp, you
can do much of your planning as you write the program.

Why wait for hindsight? As Montaigne found, nothing clarifies your ideas
like trying to write them down. Once you’re freed from the worry that you’ll paint
yourself into a corner, you can take full advantage of this possibility. The ability
to plan programs as you write them has two momentous consequences: programs
take less time to write, because when you plan and write at the same time, you



1.2 PROGRAMMING BOTTOM-UP 3

have a real program to focus your attention; and they turn out better, because the
final design is always a product of evolution. So long as you maintain a certain
discipline while searching for your program’s destiny—so long as you always
rewrite mistaken parts as soon as it becomes clear that they’re mistaken—the final
product will be a program more elegant than if you had spent weeks planning it
beforehand.

Lisp’s versatility makes this kind of programming a practical alternative.
Indeed, the greatest danger of Lisp is that it may spoil you. Once you’ve used
Lisp for a while, you may become so sensitive to the fit between language and
application that you won’t be able to go back to another language without always
feeling that it doesn’t give you quite the flexibility you need.

1.2 Programming Bottom-Up

It’s a long-standing principle of programming style that the functional elements of
a program should not be too large. If some component of a program grows beyond
the stage where it’s readily comprehensible, it becomes a mass of complexity
which conceals errors as easily as a big city conceals fugitives. Such software
will be hard to read, hard to test, and hard to debug.

In accordance with this principle, a large program must be divided into pieces,
and the larger the program, the more it must be divided. How do you divide
a program? The traditional approach is called top-down design: you say “the
purpose of the program is to do these seven things, so I divide it into seven major
subroutines. The first subroutine has to do these four things, so it in turn will
have four of its own subroutines,” and so on. This process continues until the
whole program has the right level of granularity—each part large enough to do
something substantial, but small enough to be understood as a single unit.

Experienced Lisp programmers divide up their programs differently. As well
as top-down design, they follow a principle which could be called bottom-up
design—changing the language to suit the problem. In Lisp, you don’t just write
your program down toward the language, you also build the language up toward
your program. As you’re writing a program you may think “I wish Lisp had such-
and-such an operator.” So you go and write it. Afterward you realize that using
the new operator would simplify the design of another part of the program, and so
on. Language and program evolve together. Like the border between two warring
states, the boundary between language and program is drawn and redrawn, until
eventually it comes to rest along the mountains and rivers, the natural frontiers
of your problem. In the end your program will look as if the language had been
designed for it. And when language and program fit one another well, you end up
with code which is clear, small, and efficient.



4 THE EXTENSIBLE LANGUAGE

It’s worth emphasizing that bottom-up design doesn’t mean just writing the
same program in a different order. When you work bottom-up, you usually end
up with a different program. Instead of a single, monolithic program, you will get
a larger language with more abstract operators, and a smaller program written in
it. Instead of a lintel, you’ll get an arch.

In typical code, once you abstract out the parts which are merely bookkeeping,
what’s left is much shorter; the higher you build up the language, the less distance
you will have to travel from the top down to it. This brings several advantages:

1. By making the language do more of the work, bottom-up design yields
programs which are smaller and more agile. A shorter program doesn’t
have to be divided into so many components, and fewer components means
programs which are easier to read or modify. Fewer components also
means fewer connections between components, and thus less chance for
errors there. As industrial designers strive to reduce the number of moving
parts in a machine, experienced Lisp programmers use bottom-up design to
reduce the size and complexity of their programs.

2. Bottom-up design promotes code re-use. When you write two or more
programs, many of the utilities you wrote for the first program will also
be useful in the succeeding ones. Once you’ve acquired a large substrate
of utilities, writing a new program can take only a fraction of the effort it
would require if you had to start with raw Lisp.

3. Bottom-up design makes programs easier to read. An instance of this type
of abstraction asks the reader to understand a general-purpose operator; an
instance of functional abstraction asks the reader to understand a special-
purpose subroutine.1

4. Because it causes you always to be on the lookout for patterns in your
code, working bottom-up helps to clarify your ideas about the design of
your program. If two distant components of a program are similar in form,
you’ll be led to notice the similarity and perhaps to redesign the program in
a simpler way.

Bottom-up design is possible to a certain degree in languages other than Lisp.
Whenever you see library functions, bottom-up design is happening. However,
Lisp gives you much broader powers in this department, and augmenting the
language plays a proportionately larger role in Lisp style—so much so that Lisp
is not just a different language, but a whole different way of programming.

1“But no one can read the program without understanding all your new utilities.” To see why such
statements are usually mistaken, see Section 4.8.



Thank You for previewing this eBook 
You can read the full version of this eBook in different formats: 

 HTML (Free /Available to everyone) 
 

 PDF / TXT (Available to V.I.P. members. Free Standard members can 
access up to 5 PDF/TXT eBooks per month each month) 
 

 Epub & Mobipocket (Exclusive to V.I.P. members) 

To download this full book, simply select the format you desire below 

 

 

 

http://www.free-ebooks.net/

