GATE INSTRUCTORS

 \section*{GATE
 \section*{GATE 2015} 2015}
COMPUTER SCIENCE / IT Gate Practice Test booklet

GATE 2015 Online Test Series

FREE (No Hidden Costs!!!):

Now Enjoy 25+ GATE 2015 Tests in each branch
(CS, IT, EC, ME, EE, and CE) Free!!!

By GATE Instructors Online Test Series.
http://gateinstructors.in
http://gateinstructors.in/test_series_registration.php

Contents

Practice Test No. 1 1
Practice Test No. 2 14
Practice Test No. 3 29
Practice Test No. 4 43
Practice Test No. 5 57
Answers Practice Test No. 1 71
Answers Practice Test No. 2 88
Answers Practice Test No. 3 105
Answers Practice Test No. 4 118
Answers Practice Test No. 5 133

Gate Practice Test No. 1

All questions carry 1 marks each.
Q. 1. Given: $\operatorname{Pr}(C \mid D)=0.2$ and $\operatorname{Pr}(D \mid C)=0.06$. What is $\operatorname{Pr}(C)$ and $\operatorname{Pr}(D)$?
(1) $0.2,0.06$
(2) $0.30,0.70$
(3) 0.06, 0.2
(4) None of above
Q. 2. Which of the following is tautology?
(1) $x \cup y \rightarrow y \cap z$
(2) $x \cap y \rightarrow y \cup z$
(3) $x \cup y \rightarrow(y \rightarrow z)$
(4) $x \rightarrow y \rightarrow(y \rightarrow z)$
Q. 3. Suppose $A=\{ \}, B=\{1,2,3\}$. What does the set $B \times A$ contain?
(1) $\}$
(2) $\{1,2,3\}$
(3) $\{(1),(2),(3)\}$
(4) None of the above
Q. 4. Which of the following statement is not correct?
(1) Continuity is a necessary and sufficient condition for differentiability
(2) Differentiability is sufficient condition for continuity
(3) Continuity is a necessary condition for differentiability
(4) Existent of $\lim _{\delta x \rightarrow 0} \frac{f(x+\delta x)-f(x)}{\delta x}$ is a necessary and sufficient condition fordifferentiability
Q. 5. The number -45 in 2's complement representation is:
(1) 00101101
(2) 11010011
(3) 00010010
(4) 00101110
Q. 6. A Latch remembered previous output as 1 . With $\mathrm{S}=1$ and $\mathrm{R}=0$, what is value of Q ?
(1) 1
(2) 0
(3) 1 or 0
(4) None of the above
Q. 7. How many select lines does $1: 16$ multiplexer have?
(1) 1
(2) 4
(3) 5
(4) 16
Q. 8. Software interrupts are useful to processor to
(1) test processor interrupts system
(2) implement co-routines
(3) obtain system service which need execution of privilege instructions
(4) return from subroutine
Q. 9. Which of the following identities are correct?
(1) $r s^{*}=r s s^{*}$
(2) $\left(r^{*} s^{*}\right)=(r+s)^{*}$
(3) $(r+s)^{*}=r^{*}+s^{*}$
(4) $\left(r^{*} s^{*}\right)^{*}=(r+s)^{*}$
Q. 10. Let L_{1} and L_{2} are regular sets defined over alphabet Σ^{*}. Mark the false statement.
(1) $L_{1} \cup L_{2}$ is regular
(2) $L_{1} \cap L_{2}$ is not regular
(3) $\Sigma^{*}-L_{1}$ is regular
(4) L_{1}^{*} is regular
Q. 11. Suppose A and B are two sets of strings from Σ^{*}. Further suppose that B is a subset of A. Which of the following statement must always be true for A and B.
I. If A is finite then B is finite
II. If A is regular then B is regular
III. If A is context free then B is context free
(1) I only
(2) II only
(3) III only
(4) All three
Q. 12. Minimum number of edges in a connected cyclic graph on n-nodes is
(1) $\log _{2} n$
(2) $n-1$
(3) n
(4) $n+1$
Q. 13. Tree Sort is:
(1) Insertion of n values in a tree and then pre-order
(2) Insertion of n values in a binary search tree and then in-order
(3) Insertion of n values in a binary search tree and then pre-order
(4) None of the above
Q. 14. Prim's Algorithm can be improved by
(1) Heap
(2) Binomial Heap
(3) Fibonacci Heap
(4) Priority Queues
Q. 15. What is the worse case and best case complexity of bubble sort?
(1) $O\left(n^{2}\right)$ and $O(\log n)$
(2) $O\left(n^{2}\right)$ and $O(n \log n)$
(3) $O\left(n^{2}\right)$ and $O(n)$
(4) $O(n \log n)$ and $O(\log n)$
Q. 16. Number of edges of a complete binary tree with 16 leaf nodes is
(1) 14
(2) 30
(3) 32
(4) 28
Q. 17. Which data structure can be used for checking palindrome
(1) Queue
(2) Singly Linked List
(3) Stack
(4) Doubly Linked List
Q. 18. In compilers, the type checking is done in:
(1) Lexical Analysis
(2) Semantic Analysis
(3) Code Generation phase
(4) None of the above
Q. 19. What is time and space complexity for determining $x \in L(r)$ with DFA?
(1) Space complexity $O(x)$ and time complexity $O(|r|)$
(2) Space complexity $O(r)$ and time complexity $O(|r| *|x|)$
(3) Space complexity $O\left(2^{|r|}\right)$ and time complexity $O(|x|)$
(4) Space and time complexity both $O(|r|)$
Q. 20. Which grammar causes recursive-descent parser to go into infinite loop?
(1) LL(1)
(2) Left recursive grammar
(3) Right recursive grammar
(4) Grammar with left factors
Q. 21. Consider a situation, in which several people are executing copies of the mail program, which of the following statements are not correct:
I. All the users share one program counter and stack for mail program.
II. All the users share the same execution sequence.
III. All the users share same text section, but data section varies necessarily.
(1) I and II
(2) only I
(3) only II
(4) only III
Q. 22. A computer system has 6 tape drives with n process competing for them. Each process may need up-to 2 tape drives. The maximum value of n from which the system is guaranteed to be deadlock free is:
(1) 2
(2) 3
(3) 4
(4) 1
Q. 23. Consider a logical address space of eight pages of 1024 words each mapped onto a physical memory of 32 frames. How many bits are there in the logical address?
(1) 13
(2) 15
(3) 23
(4) 14
Q. 24. Which of the following languages will be equivalent:

$$
\begin{aligned}
& L_{1}=\left\{0^{n} 1^{n} ; n \geq 1\right\} \\
& L_{2}=S \rightarrow 0 S 1 \mid 01 \\
& L_{3}=01 \mid 0^{+} 011^{+}
\end{aligned}
$$

(1) L_{1} and L_{2}
(2) L_{1} and L_{2}
(3) L_{2} and L_{3}
(4) L_{1}, L_{2} and L_{3}
Q. 25. A graph has n nodes and k components. A node with two edges, connecting two separate components is added. Number of components in the new graph will be:
(1) $k+1$
(2) k
(3) $k-1$
(4) $k-2$

All questions carry 2 marks each.

Q. 26. Locality of reference implies that the page reference made by a process
(1) will always be the page used in previous page
(2) is likely to be one of the pages used in the last
(3) will always be one of the pages in memory
(4) will always save you from page fault
Q. 27. Is the natural left outer join operation associative?
(1) Yes
(2) No
(3) Depends on the relations
(4) None of the above.
Q. 28. When doing merge-join, the preferred buffer management algorithm is
(1) LRU
(2) FCFS
(3) MRU
(4) None of the above
Q. 29. Quality of Service (QoS) is related with
(1) Transport Layer
(2) Application Layer
(3) Network Layer
(4) Physical Layer
Q. 30. In CRC, what is CRC?
(1) divisor
(2) quotient
(3) dividend (4) remainder
Q. 31 .
I. An SQL query automatically eliminates duplicates
II. An SQL query will not work if there are no indexes on the relations
III. SQL permits attribute names to be repeated in the same relation

Which of the above are true?
(1) I only
(2) II only
(3) III only
(4) I and II only
Q. 32. Cost of joining 3 relations is - than joining 4 relations
(1) greater
(2) always smaller
(3) sometimes smaller
(4) never smaller
Q. 33. There are pencils in the box: 10 red ones, 8 blue, 8 green, 4 yellow. Let us take, with eyes closed, some number of pencils from the box. What is the least number of pencils we have to take in order to ensure that we get at least 4 pencils of the same color?
(1) 4
(2) 16
(3) 12
(4) 13
Q. 34. Consider a binary relation R shown in the following matrix on set $S=\{1,2,3,4\}$.

$$
R=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The relation R is:
(1) Equivalence relation
(2) irreflexive and antisymmetric
(3) irreflexive, symmetric and transitive
(4) transitive but neither reflexive nor irreflexive
Q. 35. What could we say about the following system of linear equations?

GATE INSTRUCTORS

$$
\begin{array}{r}
x_{2}-4 x_{3}=8 \\
2 x_{1}-3 x_{2}+2 x_{3}=1 \\
5 x_{1}-8 x_{2}+7 x_{3}=1
\end{array}
$$

(1) The system is consistent with a unique solution
(2) The system is consistent
(3) The system is inconsistent
(4) None of the above
Q. 36. How many iterations are required to find the smallest positive roots of the following equation by secant method

$$
f(x)=x^{3}-3 x^{2}+x+1
$$

with initial guesses of 0 and 1.5.
(1) 3
(2) 2
(3) 5
(4) 7
Q. 37. A cylindrical container with a circular base and an open top is hold to $64 \mathrm{~cm}^{3}$. Find its dimensions so that the surface area is minimized.
(1) Radius $=4$ and Height $=4 / \pi^{(1 / 2)}$
(2) Radius and Height $=4$
(3) Radius and Height $=8$
(4) Radius and Height $=4 / \pi^{(1 / 3)}$
Q. 38. Fig. (1.1) shows relation on set $S=\{2,3,6,8\}$. The relation is
(1) Equivalence Relation
(2) Poset
(3) Symmetric and Reflexive relation
(4) None of the above

Figure 1: Fig. for Q. 38
Q. 39. While transmitting binary digits through a communication channel, the number of digits received correctly, Cn out of n transmitted digits has a binomial distribution $b(k ; n, p)$. Find out the probability of error free transmission.
(1) $p^{(n-1)}$
(2) p^{n}
(3) p^{0}
(4) None of the above
Q. 40. What is the baud rate for standard 10 Mbps Ethernet link?
(1) 100 MBaud
(2) 200 MBaud
(3) 10 MBaud
(4) 20 MBaud
Q. 41. Q: Which of the following is part of congestion prevention policies at network layer
(1) Out-of-order caching policy
(2) Retransmission policy
(3) Acknowledgment policy
(4) Routing Algorithm
Q. 42. Q: What is the subnetwork address for IP:213.23.47.37 and Mask: 255.255.255.240
(1) 213.23 .47 .16
(2) 213.23 .47 .32
(3) 213.23.48.32
(4) 213.23.47.48
Q. 43. According to IEEE standard, a 32 bit single precision floating point number N is defined as

$$
N=(-1)^{s} \times 1 . F \times 2^{(E-127)}
$$

S is sign bit, F is fractional mantissa, and E is biased exponent. S uses 1 bit, F uses 8 bits, and E uses 23 bits. What will be decimal value of the floating point number defined in above format as $C 1 E 00000$.
(1) 26
(2) -15
(3) -26
(4) -28
Q. 44. Match the pairs about implementation and addressing modes:

Group A

A. Array
B. Relocatable code
C. Array as parameter

Group B

I. Indirect Addressing
II. Indexed Addressing
III. Base Register Addressing
(1) (A-II), (B-III), (C-I)
(2) (A-III), (B-I), (C-II)
(3) (A-III), (B-II), (C-I)
(4) (A-I), (B-III), (C-II)
Q. 45. Consider the following K-Map
BC
A

1	0	1	0
0	1	0	1

Which of the following is not equation of the system?
(1) $A \odot B \oplus C$
(2) $A \oplus B \oplus C$
(3) $A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C+A^{\prime} B C+A B C$
(4) $A \oplus B \odot C$
Q. 46. A complete binary tree can be stored in array. Then to access child of i th node, - th and - th index of array needs to be used.(index starts at 1)
(1) $2 i-1,2 i$
(2) $2 i, 2 i+1$
(3) $2 i+1,2 i+2$
(4) $2 i-1,2 i+1$
Q. 47. Consider the grammar,

$$
\begin{aligned}
S & \rightarrow P Q|S Q| P S \\
P & \rightarrow x \\
Q & \rightarrow y
\end{aligned}
$$

To get a set of n terminals, the number of productions to be used are
(1) n^{2}
(2) $n+1$
(3) $2 n$
(4) $2 n-1$
Q. 48. Consider a DFA accepting all strings over $\{a, b\}$ such that number of a's and b's are even. What is the minimum number of states such DFA will have?
(1) 4
(2) 2
(3) 6
(4) 8
Q. 49. Which of the following languages are context free:

$$
\begin{aligned}
& L_{1}=a^{i} b^{i} c^{j} \mid i \geq 1 \text { and } j \geq 1 \\
& L_{2}=a^{i} b^{i} c^{j} \mid j \geq i \\
& L_{3}=a^{i} b^{i} c^{i} \mid i \geq 1
\end{aligned}
$$

(1) Only L_{1}
(2) L_{2} and L_{3}
(3) Only L_{2}
(4) Only L_{3}
Q. 50. Which of the following functions are computable with Turing machine?
(1) $n *(n-1) *(n-2) \ldots * 2 * 1$
(2) $\left\lceil\log _{2} n\right\rceil$
(3) $2^{2^{n}}$
(4) None of the above
Q. 51. Consider the grammar

$$
\begin{aligned}
& S \rightarrow A \\
& A \rightarrow B A \mid \epsilon \\
& B \rightarrow a B \mid b
\end{aligned}
$$

The grammar is
(1) LALR
(2) $\operatorname{LR}(0)$
(3) $\mathrm{LR}(1)$
(4) None of the above
Q. 52. Consider

$$
\begin{aligned}
& L_{1}=O^{n} 1^{n} \\
& L_{2}=0^{n} c 1^{n}
\end{aligned}
$$

Which of the following statements are correct:
I. L_{1} and L_{2} are accepted by non-deterministic PDA.
II. L_{1} and L_{2} are accepted by deterministic PDA.
III. Only L_{2} is accepted by deterministic PDA
(1) Only I
(2) I and II
(3) I and III
(4) All three
Q. 53. How many height balanced trees with 5 nodes are possible?
(1) 3
(2) 4
(3) 5
(4) 6
Q. 54. Consider a knapsack problem with

$$
\begin{aligned}
n & =3, m=20 \\
(p 1, p 2, p 3) & =(25,24,15), \text { and } \\
(w 1, w 2, w 3) & =(18,15,10)
\end{aligned}
$$

Which is the optimal solution for $(x 1, x 2, x 3)$:
(1) $1 / 2,1 / 3,1 / 4$
(2) $1,2 / 15,0$
(3) $0,2 / 3,1$
(4) $0,1,1 / 2$
Q. 55. Given array representation of a heap, does that represent a min-heap

I:	0	2	4	7	5	5	6
II:	5	7	8	6	9	9	10

(1) I only
(2) II only
(3) I and II both
(4) None
Q. 56. If the following function is to find GCD recursively, fill in the blank:

```
int GCD(int a, int b) {
    if( b == 0 ) return a;
    else return GCD(b, ...);
}
```

(1) a / b
(2) b / a
(3) $b \% a$
(4) $a \% b$
Q. 57. Consider

$$
\begin{aligned}
& T_{1}(n)=T_{1}(n / 3)+T_{1}(2 n / 3)+n . \\
& T_{2}(n)=3 T_{2}(n / 4)+n
\end{aligned}
$$

Which of the following statement is not incorrect?
(1) T_{1} has faster order growth than T_{2}
(2) T_{2} has faster order growth than T_{1}
(3) T_{1} and T_{2} has same order growth
(4) None of the above
Q. 58. The recurrence relation below is

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n^{2} \\
T(1) & =1
\end{aligned}
$$

(1) $O\left(n^{3}\right)$
(2) $O\left(n^{2}\right)$
(3) $O(n)$
(4) $O(n \log n)$
Q. 59. Find the weight of the following spanning tree:
(1) 35
(2) 37
(3) 32
(4) 39

Figure 2: Fig. for Q. 59
Q. 60. What is the post-order traversal of a tree whose pre-order and in-order are:

PRE: ABDEHICFGJK
 IN : DBHEIAFCJGK

(1) DIHBEFKJCGA
(2) DHIBEFKJCGA
(3) DHIEBFJKGCA
(4) DHBIEFJKCGA
Q. 61. Given pointer to a node which is to be deleted, what is the time complexity of deletion of that node in a circular linked list? (n is no. of nodes in the list).
(1) $O(n)$
(2) $O(\log n)$
(3) $O(1)$
(4) $O\left(n^{2}\right)$
Q. 62. What is the number of edges in a graph if degree of each node is ≥ 4 and ≤ 6. Thus the number of nodes will be
(1) $>4 n$ and $<6 n$
(2) $>2 n$ and $<3 n$
(3) $\geq 2 n$ and $\leq 3 n$
(4) $>2(n-1)$ and $<3(n-1)$
Q. 63. In a box there are random number of white and black marbles. At a time two marbles are taken out at random and if
A. Both Black: Discard both and insert a white
B. Both White: Discard one and retain one
C. One Black and One White: Discard White and retain Black.

If initially there are n_{b} black and n_{w} white marbles then determine the color of the only marble remaining at the end.
(1) white if n_{b} is even
(2) white if n_{w} is odd
(3) black if n_{b} is even
(4) black if n_{w} is odd
Q. 64. A 8-queens problem is example of

GATE INSTRUCTORS
(1) Dynamic Programming
(2) Backtracking
(3) Greedy
(4) None of the above
Q. 65. How many tokens will be generated from the following C statement:

```
if(x > 10) y ++;
else y --;
```

(1) 13
(2) 8
(3) 11
(4) 9
Q. 66. Consider the following two parse trees for the expression: 9-5-2.

Consider the following statements:

1. The parse tree (a) represents right associative operator evaluation and that of (b) represents left associative evaluation.
2. The grammar generating the sentence is not ambiguous.

Which of the above statements are false?
(1) Only 2
(2) 1 and 2
(3) Only 1
(4) Both the statements are correct.
Q. 67. Consider the following production rules and their syntax directed definition:

Production	Semantic Rule	
expr \rightarrow expr $1+$ term	expr.t $:=$ expr $1 . t\| \| t e r m . t\| \|^{\prime}+{ }^{\prime}$	
expr \rightarrow expr $1-$ term	expr.t $:=$ expr $1 . t\| \|$ term $m . t \\|^{\prime \prime}-^{\prime \prime}$	
expr \rightarrow term	expr. $:=$ term.t	
term $\rightarrow 0$	term.t $:=^{\prime} 0^{\prime}$	
term $\rightarrow 1$	term. $:=^{\prime} 1^{\prime}$	
\cdots	\ldots	
term $\rightarrow 9$	term.t $:=^{\prime} 9^{\prime}$	

What will be the translation of expression: $8-5+2$?
(1) $8-5+2$
(2) $852-+$
(3) -+852
(4) $85-2+$
Q. 68. Consider the following activation tree in Fig.(1.3). How many elements will be present on the stack after completion of execution of $\mathrm{p}(1,0)$?
(1) 3
(2) 6
(3) 5
(4) 4
Q. 69. Let A be a 10×20 array. What will be the height of annotated parse tree for the assign-

GATE INSTRUCTORS

Figure 3: Fig. for Q. 68
ment: $x:=A[y, z]$. The grammar is as follows:

$$
\begin{aligned}
S & \rightarrow L:=E \\
E & \rightarrow L \\
L & \rightarrow i d \\
L & \left.\rightarrow E_{\text {list }}\right] \\
E_{\text {list }} & \rightarrow E_{\text {list }}, E \\
E_{\text {list }} & \rightarrow i d[E
\end{aligned}
$$

(1) 7
(2) 6
(3) 9
(4) 11
Q. 70. Consider the following grammar

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E) \mid i d
\end{aligned}
$$

Write the productions for E, T and F after converting this grammar to $\mathrm{LL}(1)$ grammar.
(1) $E \rightarrow+T E^{\prime}, T \rightarrow * F T^{\prime}, F \rightarrow(E) \mid i d$
(2) $E \rightarrow+T E^{\prime}\left|\in, T \rightarrow * F T^{\prime}\right| \in$
(3) $E \rightarrow T, T \rightarrow F, F \rightarrow(E) \mid i d$
(4) $E \rightarrow T E^{\prime}, T \rightarrow F T^{\prime}, F \rightarrow(E) \mid i d$
Q. 71. Arrange the following systems in ascending order in terms of CPU utilization:

1. Hands-on computer system
2. Batch System
3. Batch System with Spooling
4. Batch System with similar jobs executed together
(1) $1,3,4,2$
(2) $3,2,4,1$
(3) $2,4,3,1$
(4) $4,2,3,1$
Q. 72. Consider the following set of processes that arrive at time 0 in the order P_{1}, P_{2}, P_{3}, and P_{4} and the length of their CPU burst is given below:

Process	Burst Time
P_{1}	5
P_{2}	4
P_{3}	6
P_{4}	3

Further suppose that we're interested in running the processes in FCFS or Round Robin scheduling with time quantum of 6 . Which of the following holds true in the situation:
(1) FCFS out performs Round robin scheduling
(2) Round robin performs better than FCFS
(3) Both yield exactly the same performance
(4) None of the above.
Q. 73. Consider a system with five processes P_{0} to P_{4} and three resources R_{1}, R_{2} and R_{3}, each having 10, 5, 7 instances respectively. The system snapshot at time T_{0} is shown below:

	Allocation			Max			Available		
	R_{1}	R_{2}	R_{3}	R_{1}	R_{2}	R_{3}	R_{1}	R_{2}	R_{3}
P_{0}	0	1	0	7	5	3	3	3	2
P_{1}	2	0	0	3	2	2			
P_{2}	3	0	2	9	0	2			
P_{3}	2	1	1	2	2	2			
P_{4}	0	0	2	4	3	3			

Which of the following execution sequence ensures safety in the system?
(1) $P_{1}, P_{3}, P_{4}, P_{2}, P_{0}$
(2) $P_{1}, P_{4}, P_{2}, P_{3}, P_{0}$
(3) $P_{3}, P_{1}, P_{2}, P_{4}, P_{0}$
(4) $P_{4}, P_{2}, P_{3}, P_{0}$
Q. 74. Consider a paging system with the page table in memory. Each memory reference takes 200 ns . The TLB has hit ratio of 75% and the time to look for pages in TLB is almost negligible. What is the effective paged memory reference take?
(1) 400
(2) 250
(3) 150
(4) 200
Q. 75. In a system with 62 frames there are two processes running, P_{1} of size 10 k and P_{2} of size 127 k . How many frames will be allocated to each of the processes by proportional allocation scheme?
(1) 31 frames each to P_{1} and P_{2}
(2) 4 frames to P_{1} and 57 frames to P_{2}
(3) 2 frames to P_{1} and 60 frames to P_{2}
(4) None of the above
Q. 76 .

```
void abc(char *s) {
    if( s[0] == '\0') return;
    abc(s+1);
    abc(s+1);
    printf("%c",s[0]);
}
main() {
    abc("123");
}
```

What is the output of the program:
(1) 3321321
(2) 3231321
(3) 3323321
(4) 3331332

GATE INSTRUCTORS

Q. 77 .

```
int f(int num) {
    int bits=0;
    while( num ) {
        num &= (num -1);
        ++bits ;
    }
    return bits;
}
int main(void) {
    printf("%d",f(11));
}
```

(1) 2
(2) 3
(3) 4
(4) 5
Q. 78. Consider a program in a language with C like syntax but do not assume the C language semantics: What will be the value of x, y, and k after execution:

```
x=5, y = 6;
k = 0;
while( x != 0 ) {
    if( --x && y-- ) k++;
}
```

(1) 024
(2) 013
(3) 014
(4) 023
Q. 79. Union is not recommended in C because
(1) It saves memory but memory is very cheap now a days
(2) It unnecessarily complicates the program
(3) One type of data can be accessed as other type which
(4) None of the above
Q. 80. How many times $\mathrm{fib}(3)$ is called during invocation of $\mathrm{fib}(6)$?
$\mathrm{fib}(\mathrm{x})=\mathrm{fib}(\mathrm{x}-1)+\mathrm{fib}(\mathrm{x}-2)$
fib $(0)=1$
fib(1) $=1$
(1) 3
(2) 4
(3) 5
(4) 6
Q.81-90 are in the set of two each. We have not implemented dependency of 81b on 81a so that you can get correct answers for both. But in exam, you will be evaluated on dependency basis

> | Information pertains to Q. 81-82 |
| :--- |

Analysis of the daily registrations at GateGenie on a certain day indicated that the source of registrations from North India are 15%, South India are 35% and that from Western part of India are 50%. Further suppose that the probabilities that a registration being a free registration from these parts are $0.01,0.05$ and 0.02 , respectively.
Q. 81. Find the probability that a registration chosen at random is a free-registration.
(1) 0.603
(2) 0.029
(3) 0.009
(4) None of the above
Q. 82. Find the probability that a randomly chosen registration comes from South India, given that its a free registration.
(1) 60%
(2) 3%
(3) 17%
(4) None of the above

$$
\begin{array}{|l|}
\hline \text { Information pertains to Q. 83-84 } \\
\hline
\end{array}
$$

Array $S 1$ contains 256 elements 4 bytes each. Its first element is stored at physical address 4096. Array $S 2$ contains 512 elements 4 bytes each stored from physical address location 8192. Assume that only arrays $S 1$ and $S 2$ can be cached in an initially empty, physically addressed, physically tagged, direct mapped 2 kb cache with 8 byte block size.
Q. 83. The following loop is then executed:

```
for( i=0; i<256; i++) {
    A[i] = A[i] + B[2*i]
}
```

During the execution of loop, how many bytes will be written to memory if the cache has write through policy?
(1) 0
(2) 256
(3) 1024
(4) 2048
Q. 84. If the cache has write back policy, how many bytes will be written to memory during execution of loop?
(1) 0
(2) 256
(3) 1024
(4) 2048

Information pertains to Q. 85-86
Let $X=\{1,2,3,4\}$. If
$R=\{<x, y\rangle \mid x \in X ; y \in X ;(x-y)>0 ;(x-y) \% 2=0\}$
$S=\{\langle x, y\rangle \mid x \in X ; y \in X ;(x-y)>0 ;(x-y) \% 3=0\}$
Q. 85. Find $|R \cup S|$ and $|R \cap S|$.
(1) $|R \cup S|=6,|R \cap S|=0$
(2) $|R \cup S|=3,|R \cap S|=6$
(3) $|R \cup S|=2,|R \cap S|=2$
(4) $|R \cup S|=5,|R \cap S|=3$
Q. 86. If $X=\{1,2,3, \ldots\}$, what is $R \cap S$?
(1) $R=\{<x, y\rangle \mid x \in X ; y \in X ;(x-y)>0$;
$(x-y) \% 2=0$ or $(x-y) \% 3=0\}$
(2) $R=\{\langle x, y\rangle \mid x \in X ; y \in X ;(x-y)>0 ;(x-y) \% 6=0\}$
(3) $R=\{<x, y>\mid x \in X ; y \in X ;(x-y)>0 ;(x-y) \% 5=0\}$
(4) None of the above

> | Information pertains to Q. $87-88$ |
| :--- |

Q. 87. What will be the array representation of a max-heap with insertions:

$$
40,80,35,90,45,50,70
$$

(1) 90807040453550
(2) 90807045405035
(3) 90708040453550
(4) 90708045405035
Q. 88. If 100 is added to the heap above, what will be the new array representation
(1) 90807040453550100
(2) 10090708045355040
(3) 10090807040453550
(4) 10080907040453550

Consider the following relational database
Student(ID, name, dept-no, hostel-no, ...) PK:ID
Department (dept-no, name, ...) PK:dept-no
Hostel(hostel-no, warden-name, ...) PK:hostel-no
Q. 89. What does following query gives:
select h.hostel-no, d.dept-no, count (*)
from Hostel h, Department d, Student s
where s.dept-no = d.dept-no
and s.hostel-no $=$ h.hostel-no
order by h.hostel-no
group by h.hostel-no, d.dept-no;
(1) Number of students per dept. for each hostel
(2) Number of students in all hostels for each dept.
(3) Number of students per hostel in each dept.
(4) None of the above
Q. 90. Write a query to print hostel-no in which there is no student from department name CSE.
(1) select h.hostel-no from Hostel h where h.hostel-no
IN (select distinct h.hostel-no
from Hostel h, Department d, Student s
where h.hostel-no = s.hostel-no
and s.dept-no = d.dept-no
and d.name = 'CSE');
(2) select h.hostel-no from Hostel h
where h.hostel-no
NOT IN (select distinct h.hostel-no
from Hostel h, Department d, Student s
where h.hostel-no=s.hostel-no
and s.dept-no=d.dept-no
and d.name='CSE');
(3) select h.hostel-no from Hostel h where h.hostel-no
NOT IN (select distinct h.hostel-no
from Hostel h, Department d, Student s
where h.hostel-no=s.hostel-no
and s.dept-no=d.dept-no
and d.name <> 'CSE');
(4) select h.hostel-no from Hostel h
where h.hostel-no IN
(select distinct h.hostel-no
from Hostel h, Department d, Student s
where h.hostel-no=s.hostel-no
and s.dept-no=d.dept-no
and d.name <> 'CSE');

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:
> HTML (Free /Available to everyone)
$>$ PDF / TXT (Available to V.I.P. members. Free Standard members can access up to 5 PDF/TXT eBooks per month each month)
> Epub \& Mobipocket (Exclusive to V.I.P. members)
To download this full book, simply select the format you desire below

