
 
 
Table of Contents 

1 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Written by: 

 Apriorit Inc. 

 
Author: 

Artem Kotovsky, 

Software Analyst,  
Driver Development Team 

 
 
 
 
 
 
 
 
 
 
 
 

 
 www.apriorit.com 

  info@apriorit.com 

https://www.apriorit.com/
mailto:info@apriorit.com


 
 
Table of Contents 

2 

How to Develop Embedded Software Using The 
QEMU Machine Emulator 

 

 

What is it all about? 

 

This e-book has been written for embedded software developers by Apriorit experts. It goes 

in-depth on how to save time when developing a Windows device driver by emulating a 

physical device with QEMU and explores the details of device driver emulation based on QEMU 

virtual devices.   
  

Embedded devices are characterized by complex software that should provide stable and 

secure communication between operating systems and hardware. However, developing a 

device driver significantly increases the time to market for peripheral devices. Fortunately, 

virtualization technologies like QEMU allow developers to emulate a physical device and start 

software development before hardware is manufactured. 

  

The QEMU machine emulator and visualizer also allow developers to securely test device 

drivers, find and fix defects which can crash the entire operating system. Developing and 

debugging drivers on an emulator makes working with them similar to working with user-

space applications. At worst, bugs can lead to the emulator crashing. 

  

In this e-book, we explain our approach to developing Windows drivers using a QEMU virtual 

device. You’ll find out what are the benefits and limitations of device emulation for driver 

development and get a clear overview on how you can establish communication between a 

device and its driver. 

  

The e-book includes detailed steps to create a virtual hardware device and develop a 

Windows driver for it. You’ll discover how QEMU can be used for building running, testing, 

and debugging the whole environment and how embedded software can be developed for 

new virtual hardware even before a physical device becomes available. 

  

We’ve been using QEMU virtual devices to facilitate embedded software development for 

quite a long time, so this approach has already confirmed its value and effectiveness. 

 
 
 
 
 
 



 
 
Table of Contents 

3 

Table of Contents 

 

Introduction 

Why do we use QEMU? 

Pros and cons of using a QEMU virtual device 

Driver implementation stages 

Communication between a device and its driver 

I/O address space 

Interrupts 

Line-based interrupts 

Message-signaled interrupts 

Bus mastering 

Test device specifications 

Structure of the device I/O memory 

Interrupts 

Device description in QEMU 

Initializing the device in QEMU 

Working with the I/O memory space 

Working with interrupts 

Working with DMA memory 

Processing requests 

QEMU device 

Implementing a WDF driver for the test device 

The minimum driver 

Initializing device resources 

Working with I/O memory 

Interrupt handling 

Working with DMA 

Sending requests to the device 

Processing requests from a user mode application 

Testing and debugging 

Quality control of driver code 

Driver installation 

Driver communication 

Implementing driver unit tests 

Implementing driver autotest 

Driver verification with Driver Verifier and WDF Verifier 

References 



 
 
Table of Contents 

4 

Introduction 

  
Developing Windows device drivers and device firmware are difficult and interdependent 

processes. In this book, we consider how to speed up and improve device driver development 

from the earliest stages of the project, prior to or alongside the development of the device 

and its firmware. 

  

To begin, let’s consider the main stages of hardware and software development: 

  

1. Setting objectives and analyzing requirements 

2. Developing specifications 

3. Testing the operability of the specifications 

4. Developing the device and its firmware 

5. Developing the device driver 

6. Integrating software and hardware, debugging, and stabilizing 

  

To speed up the time for driver development, we propose using a mock device that can be 

implemented in a QEMU virtual machine. 

  

Why do we use QEMU? 

  

QEMU has all the necessary infrastructure to quickly implement virtual devices. Additionally, 

QEMU provides an extensive list of APIs for device development and control. For a guest 

operating system, the interface of such a virtual device will be the same as for a real physical 

device. However, a QEMU virtual device is a mock device, most likely with limited functionality 

(depending on the device’s capabilities) and will definitely be much slower than a real physical 

device. 

 

Pros and cons of using a QEMU virtual device 

 

Let’s consider the pros and cons of this approach, beginning with the pros: 

  

1. The driver and device are implemented independently and simultaneously, provided 

that there already is a device communication protocol. 

2. You get proof of driver-device communication before implementing the device 

prototype. When implementing a QEMU virtual device and driver, you can test their 

specifications and find any issues in the device-driver communication protocol. 

https://www.qemu.org/


 
 
Table of Contents 

5 

3. You can detect logical issues in the device communication specifications at early stages 

of development. 

4. QEMU provides driver developers with a better understanding of the logic of a 

device’s operation. 

5. You can stabilize drivers faster due to simple device debugging in QEMU. 

6. When integrating a driver with a device, you’ll already have a fairly stable and 

debugged driver. Thus, integration will be faster. 

7. Using unit tests written for the driver and QEMU device, you can iteratively check the 

specification requirements for a real physical device as you add functionality. 

8. A QEMU virtual device can be used to automatically test a driver on different versions 

of Windows. 

9. Using a QEMU virtual device, you can practice developing device drivers without a real 

device. 

  

Now let’s look at the cons of this approach: 

  

1. It takes additional time to implement a QEMU virtual device, debug it, and stabilize it. 

2. Since a QEMU virtual device isn’t a real device but is only a mock device with limited 

capabilities, not all features can be implemented. However, it’s enough to implement 

stubs for functionality. 

3. A QEMU virtual device is much slower than a real physical device, so not everything 

can be tested on it. Particularly, it’s impossible to test synchronization and boundary 

conditions that cause device failure. 

4. Driver logic functionality can’t be fully tested. Some parts remain to be finished during 

the device implementation stage. 

 

Driver implementation stages 

 

To understand when we can use a QEMU virtual device, let’s consider the stages of driver 

implementation: 

  

1. Developing device specifications and functionality, including the device 

communication protocol 

2. Implementing a mock device in QEMU (implementing the real physical device can 

begin simultaneously) 

3. Implementing the device and debugging it, including writing tests and providing the 

proof of driver-device communication 

4. Integrating and debugging the driver when running on a real device 



 
 
Table of Contents 

6 

5. General bug fixing, changing the requirements and functionality of both the device 

and its driver 

6. Releasing the device and its driver 

  

For a Windows guest operating system, a virtual device will have all the same characteristics 

and interfaces as a real device because the driver will work identically with both the virtual 

device and the real device (aside from bugs in any of the components). However, the 

Windows guest operating system itself will be limited by the resources allocated by QEMU. 

  

We’ve successfully tested this approach on Apriorit projects, confirming its value and 

effectiveness. Driver profiling can be used at early stages of working with a QEMU virtual 

device. This allows you to determine performance bottlenecks in driver code when working 

with high-performance devices (not all issues are possible to detect, however, because virtual 

device performance is several times slower). That’s why it’s essential to use Driver Verifier 

and the Windows Driver Frameworks (WDF) Verifier when developing any drivers for any 

environment. 

 

Communication between a device and its driver 

 

Let’s consider how a peripheral component interconnect (PCI) device and its operating system 

driver communicate with each other. The PCI specification describes all possible channels of 

communication with a device, while the device PCI header indicates the resources necessary 

for communication and the operating system or BIOS allocates or initializes these specified 

resources. In this book, we discuss only two types of communication resources: 

 

1. I/O address space 
2. Interrupts 

 

We’ll take a brief look at these resources, discussing work with them only at the level on which 

they’ll be used to implement communication functionality. 

 

I/O address space 

 

I/O address space is a region of addresses in a device (not necessarily on the physical memory 

of the device, but simply a region of the address space). When the operating system accesses 

these addresses, it generates a data access request (to read or write data) and sends it to the 

device. The device processes the request and sends its response. Access to the I/O address 



 
 
Table of Contents 

7 

space in the Windows operating system is performed through the WRITE_REGISTER_ * and 

READ_REGISTER_ * function families, provided that the data size is 1, 2, 4, or 8 bytes. There 

are also functions that read an array of elements, where the size of one element is 1, 2, 4, or 

8 bytes, and allow you to read or write buffers of any data size in one call. 

  

The operating system and BIOS is responsible for allocating and assigning address regions to 

a device in the I/O address space. The system allocates these addresses from a special physical 

address space depending on the address dimension requirements. This additional level of 

abstraction of the device resource initialization eliminates device resource conflicts and 

relocates the device I/O address space in runtime. Here's an illustration of the physical 

address space for a hypothetical system: 

 

 
Physical address space: 0x00000000 – 0x23FFFFFFF 
I/O address space: 0xС0000000 – 0xFFFFFFFF 

  

The operating system reserves a special I/O memory region of various size in the physical 

address space. This region is usually located within a 4GB address space and ends with 

0xFFFFFFFF. This region doesn’t belong to RAM memory, but is responsible for accessing the 

device address space. 
 



 
 
Table of Contents 

8 

 
  

Device 1 uses two I/O regions; device 2 uses one I/O region. 

  

A kernel mode driver in Windows OS cannot directly access physical memory addresses. To 

access the I/O region, a driver needs to map this region to the kernel virtual address space 

with the special functions MmMapIoSpace and MmMapIoSpaceEx. These operating system 

functions return a virtual system address, which is consequently used in the functions of the 

WRITE_REGISTER_ * and READ_REGISTER_ * families. Schematically, access to the I/O address 

space looks like this: 

 

 



 
 
Table of Contents 

9 

RAM isn’t used for handling the requests on accessing the virtual I/O address in device 

memory. 

  

Now let’s look at how to use this mechanism for communication with the device. 

  

A driver developer considers the memory of a virtual QEMU device the device memory. The 

driver can read this memory to obtain information from the device or write to this memory 

to configure the device and send commands to it. 
There’s some magic in working with this type of memory, as the device immediately detects 

changes to it and responds by executing the required operations. For example, to make the 

device execute any command, it’s sufficient to write it to the I/O memory at a certain offset. 

After this, the device will immediately detect changes in its memory and begin executing the 

command. 

  

However, this type of memory isn’t suitable for transferring large volumes of data due to the 

following limitations: 

 

 The size of the I/O space is limited. 

 Accessing this type of memory is usually slower than accessing RAM. 

 The device must contain a comparable amount of internal memory. 

 While accessing the I/O space, the CPU performs all required operations, slowing 

down the performance of the entire system when large volumes of memory are 

processed. 

              

But such memory can be used to obtain statuses, configure device modes, and do anything 

else that doesn’t require large amounts of memory. 
This’s a one-way communication mechanism: the driver can access the device memory at any 

time and the request will be delivered immediately, but the device can’t deliver a message to 

the driver asynchronously by using the I/O memory without constantly polling the device 

memory from the driver’s side. 

 

Interrupts 

 

Interrupts are a special hardware mechanism with which a PCI device sends messages to the 

operating system when it requires the driver’s attention or wants to report an event. 
A device’s ability to work with interrupts is indicated in the PCI configuration space. 
There are three types of interrupts: 

 

 



 
 
Table of Contents 

10 

1. Line-based 

2. Message-signaled 

3. MSI-X 

  

In this book, we discuss the first two, as we use them for establishing communication between 

a device and its driver. All these types of interrupts are also well described in other books and 

articles. 
  

Line-based interrupts 

  

Line-based interrupts (or INTx) are the first type of interrupt that’s supported by all versions 

of Windows. These interrupts can be shared by several devices, meaning that one interrupt 

line can serve multiple PCI devices simultaneously. When any of these devices use a dedicated 

pin to trigger an interrupt, the operating system delivers that interrupt to each device driver 

in succession until one of them handles it. 

 
The driver, in turn, requires a mechanism that can determine whether this interrupt was 

actually raised by its device or came from another device that uses the same INTx line. The 

device’s I/O memory space may contain an interrupt flag, which if set indicates that the 

interrupt has been raised by this particular device. 

  



 
 
Table of Contents 

11 

Physically, a line-based interrupt is a special contact to which the device sends a signal until 

the interrupt is processed by the driver. Thus, the driver must not only check the interrupt 

flag in the I/O memory but also reset it as soon as possible in order to let the device stop 

sending a signal to the interrupt contact. 

  

Verifying and clearing the interrupt flag is necessary because several devices can 

simultaneously raise an interrupt using the same INTx. This approach allows processing 

interrupts from all devices. 

  

The whole process of handling line-based interrupts looks as follows: 

  

 
  

Line-based interrupts are full of flaws and limitations and require unnecessary references to 

the I/O memory. Fortunately, all these problems are solved with the following interrupt 

technique. 
  



 
 
Table of Contents 

12 

Message-signaled interrupts 

  

Message-signaled interrupts, or MSIs, are based on messages recorded by the device at a 

specific address. In other words, instead of maintaining the voltage on the interrupt line, the 

interrupt is sent simply by writing a few bytes to special memory. MSIs have many advantages 

compared to line-based interrupts. Improved performance is the major one, as this type of 

interrupt is much easier and cheaper to handle. MSIs also can be assigned to a specific core 

number. 

  

The major difference between handling MSIs and line-based interrupts in the driver is that 

MSIs aren’t shared. For instance, if the operating system allocates an MSI interrupt for a 

device, then this interrupt is guaranteed to be used only by this device provided that all 

devices in the system work correctly. Because of this, the driver no longer needs to check the 

interrupt flag in the device I/O space, and the device doesn’t need to wait for the driver to 

process the interrupt. 

  

The operating system can allocate only one line-based interrupt but multiple MSIs for a single 

device function (see the PCI function number). A driver can request the operating system to 

allocate 1, 2, 4, 8, 16, or 32 MSIs. In this case, the device can send different types of messages 

to the driver, which allows developers to optimize driver code and interrupt handling. 

  

Each MSI contains information about the message number (the interrupt vector, or the logical 

type of event on the device’s side). All MSI message numbers start with 0 in WDF. After the 

operating system allocates MSIs for a device, it records the number of interrupts allocated 

and all the information necessary for sending them to the PCI configuration space. The device 

uses this information to send different types of MSI messages. If the device is expecting 8 

MSIs but the operating system allocates only one message, then the device should send only 

MSI number 0. At the physical level, the operating system tries to allocate the number of 

sequential interrupt vectors that were requested by the driver (1, 2, 4, 8, 16, 32) and sets the 

first interrupt vector number in the PCI configuration space. The device uses this vector as the 

base for sending different MSI messages. 

  

When a request is sent by a device to allocate the necessary number of interrupts, the 

operating system will allocate the requested number only if there are free resources. If the 

operating system is unable to process this request, then it will allocate only one MSI message, 

which will be number 0. The device and device driver must be ready for this event. 

Schematically, MSI interrupt processing looks like this: 

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-message-signaled-interrupts


 
 
Table of Contents 

13 

 
  

MSIs are available beginning with Windows Vista, and the maximum number of MSIs 

supported by Vista is 16. In earlier Windows versions, it was necessary to use line-based 

interrupts, and because of these drivers must support three modes of interrupt handling: 

 

1. Line-based interrupt (if the system doesn’t support MSIs) 
2. One MSI interrupt (if the system can’t allocate more than one MSI) 
3. Multiple MSIs (if the system can allocate all requested MSIs and more than one is 

requested) 

  

Interrupts are also a one-way communication instrument. They’re used by a device to send 

notifications to the driver. At the same time, interrupts received from devices have the 

highest priority for the operating system. When an interrupt is received, the system interrupts 

the execution of one of the processor threads and calls the driver interrupt handler, or 

interrupt service routine (ISR), callback. 

 

Working with DMA memory 

Some PCI devices need to exchange large volumes of data with the driver (for example, audio, 

video, network, and disk devices). It’s not the best option to use I/O memory for these 

purposes because the processor will be directly involved in copying data, which slows down 

the entire system. 

The direct memory access (DMA) mechanism is used to avoid utilizing the processor when 

transferring data between a driver and a device. DMA has several operating modes and 



 
 
Table of Contents 

14 

selects among them depending on which a device supports. Let’s take a look at only one of 

them: bus mastering. 

 

Bus mastering 

 

Devices with bus mastering support writing to physical memory (RAM) without using a 

processor. In this case, the device itself locks the address bus, sets the desired memory 

address, and writes or reads data. Using this mode, it’s sufficient for the driver to transfer the 

DMA memory buffer address to the device (for example, using I/O memory) and wait for it to 

complete the operation (wait for the interrupt). 

 

 
  

The actual device address should be transferred to the device instead of the virtual address 

that’s typically used by programs and drivers. There’s plenty of information about virtual, 

physical, and device addresses and how the operating system works with them on the 

internet. To work with DMA, it’s enough to know the following: 

 

1. The virtual address buffer can usually be described by two values: address and size. 

2. The operating system and processor handle the memory pages rather than individual 

bytes, and the size of one memory page is 4KB. This has to be taken into account when 

working with physical pages. 



 
 
Table of Contents 

15 

3. Physical memory (RAM) can be paged or non-paged. Paged memory can be paged out 

to the pagefile (swap file), while non-paged memory is always located in RAM and its 

physical address doesn’t change. 

4. The physical pages of RAM for some virtual memory buffers (if the buffer wasn’t 

allocated in a special way) aren’t usually arranged one after another, meaning they 

aren’t located in the continuous physical address space. 

5. The physical RAM address and device address aren’t always the same. The actual 

device address, which is the address accessible by the device, must be transferred to 

the device (we’ll use the term device address to refer to both the device and physical 

address unless otherwise specified). To obtain the device address, the operating 

system provides a special API, while Windows Driver Frameworks uses its own API. 

 

 

https://msdn.microsoft.com/library/windows/hardware/ff549220
https://docs.microsoft.com/en-us/windows-hardware/drivers/wdf/framework-dma-objects


 
 
Table of Contents 

16 

  

Considering how physical and device memory works, the driver needs to perform some 

additional actions to transfer DMA memory to the device. Let’s take a look at how it’s possible 

to transfer a user mode memory buffer to the device for DMA operations. 

 

1. The memory utilized in user mode usually contains paged physical pages; therefore, 

such memory should be fixed in RAM (to make it non-paged). This will ensure that 

physical pages aren’t unloaded into the pagefile while the device is working with them. 

2. Physical pages may be located outside the contiguous physical memory range, making 

it necessary to obtain a device address for each of the pages or every continuous 

region with region size. 

3. After that, all acquired device memory addresses should be transferred to the device. 

In order to maintain the same address format for the memory page, we’ll use a 64-bit 

address for both the x86 and x64 versions of Windows. 

  

Note that the physical address for 32-bit Windows doesn’t equal 32 bits because 

there’s a Physical Address Extension (PAE), and Windows 64-bit uses only 44 bits 

for the physical address, which allows addressing 244 = 16TB of physical memory. 

At the same time, the first 12 bits describe the offset in the current memory 

page (the address of one page of physical memory in Windows can be set by 

using only 44 - 12 = 32 bits). 

  

To simplify our implementation, we won’t wrap the addresses. Each memory page will be 

described by an address of 64 bits, both for x86 and x64 versions of the driver. 

 

There are two ways to transfer addresses of all pages or regions to the device: 

 

a. Using the I/O memory. In this case, the device must contain enough memory to store 

the entire array of addresses. The size of the I/O memory is usually fixed, adding some 

restrictions on the maximum size of the DMA buffer. 

b. Using a common buffer as an additional memory buffer that contains page addresses. 

If the physical memory of this additional buffer is located in continuous physical or 

device memory, it will be enough to transfer just the address of the beginning of the 

buffer and its size to the device. The device can work with this memory as with a 

regular data array. 

 

Both approaches are used, and each has its pros and cons. Let’s consider approach b. 

Windows has a family of special functions used to allocate contiguous device memory (or a 

common buffer). Schematically, the user mode buffer transferred to the device for DMA 

operation looks like this: 



 
 
Table of Contents 

17 

 

 

Windows Driver Frameworks offers a family of functions for working with DMA memory, and 

only these particular functions should be used. This set of functions takes into account device 

capabilities, performs the necessary work to provide access to memory from the driver and 

device side, configures the mapped register, and so on. 

 

The same memory can have three different types of addresses: 

 

1. A virtual address for accessing the memory from the driver or a user mode process. 

2. A physical address in RAM. 

3. A device address (local bus address, DMA address) to access the memory from the 

device. 

  

These mechanisms for communicating with the device will be enough to implement a test 

driver in Windows. All these mechanisms are reviewed here briefly and are described only to 

simplify the understanding of the device specifications listed below. 

 

Test device specifications 

  

Before starting to implement a QEMU virtual device or a Windows device driver, it’s necessary 

to determine device functionality and the communication protocol between the device and 

its driver. 

  

http://online.osr.com/article.cfm?article=539


Thank You for previewing this eBook 

You can read the full version of this eBook in different formats: 

 HTML (Free /Available to everyone) 

 

 PDF / TXT (Available to V.I.P. members. Free Standard members can 

access up to 5 PDF/TXT eBooks per month each month) 

 

 Epub & Mobipocket (Exclusive to V.I.P. members) 

To download this full book, simply select the format you desire below 

 

 

 

http://www.free-ebooks.net/

