
High Performance Python (from
Training at EuroPython 2011)

Release 0.2

Ian Ozsvald (@ianozsvald)

July 24, 2011



CONTENTS

1 Testimonials from EuroPython 2011 2

2 Motivation 4
2.1 Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Other talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The Mandelbrot problem 6

4 Goal 8
4.1 MacBook Core2Duo 2.0GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 2.9GHz i3 desktop with GTX 480 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Using this as a tutorial 13

6 Versions and dependencies 14

7 Pure Python (CPython) implementation 15

8 Profiling with cProfile and line_profiler 18

9 Bytecode analysis 21

10 A (slightly) faster CPython implementation 22

11 PyPy 24
11.1 numpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

12 Psyco 26

13 Cython 27
13.1 Compiler directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
13.2 prange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

14 Cython with numpy arrays 32

15 ShedSkin 33
15.1 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
15.2 Faster code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

16 numpy vectors 35

i



17 numpy vectors and cache considerations 37

18 NumExpr on numpy vectors 39

19 pyCUDA 41
19.1 numpy-like interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
19.2 ElementWise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
19.3 SourceModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

20 multiprocessing 46

21 ParallelPython 48

22 Other ways to make things run faster 50
22.1 Algorithmic choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
22.2 Keep local references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
22.3 Performance Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

23 Other examples? 51
23.1 Thanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ii



High Performance Python (from Training at EuroPython 2011), Release 0.2

Author:

• Ian Ozsvald (ian@ianozsvald.com)

Version:

• 0.2_improved_in_evenings_over_the_last_few_weeks_20110724

Websites:

• http://IanOzsvald.com (personal)

• http://twitter.com/ianozsvald

• http://MorConsulting.com (my Artificial Intelligence and High Performance Computing consultancy)

Source:

• http://tinyurl.com/europyhpc # zip file of build-as-you-go training src (but may get out of date)

• https://github.com/ianozsvald/EuroPython2011_HighPerformanceComputing # full src for all examples (up to
date)

• Use “git clone git@github.com:ianozsvald/EuroPython2011_HighPerformanceComputing.git” to get the source
or download a zipped snapshot from the page above

• http://ep2011.europython.eu/conference/talks/experiences-making-cpu-bound-tasks-run-much-faster # slides

• http://www.slideshare.net/IanOzsvald/euro-python2011-high-performance-python # same slides in SlideShare

Questions?

• If you have Python questions then the Python Tutor list is an excellent resource

• If you have questions about a specific library (e.g. pyCUDA) then go to the right user group for the best help

• You can contact me if you have improvements or if you’ve spotted errors (but I can’t help you learn Python,
sorry!)

License:

• Creative Commons By Attribution (and if you meet me and like this report, I’d happily accept a beer)

• Link to: http://ianozsvald.com/2011/07/24/high-performance-python-tutorial-v0-2-from-europython-2011

CONTENTS 1

mailto:ian@ianozsvald.com
http://IanOzsvald.com
http://twitter.com/ianozsvald
http://MorConsulting.com
http://tinyurl.com/europyhpc
https://github.com/ianozsvald/EuroPython2011_HighPerformanceComputing
mailto:git@github.com
http://ep2011.europython.eu/conference/talks/experiences-making-cpu-bound-tasks-run-much-faster
http://www.slideshare.net/IanOzsvald/euro-python2011-high-performance-python
http://ianozsvald.com/2011/07/24/high-performance-python-tutorial-v0-2-from-europython-2011


CHAPTER

ONE

TESTIMONIALS FROM EUROPYTHON
2011

• @ianozsvald does an excellent workshop on what one needs to know about performance and python #europy-
thon @LBdN

• Ozsvald’s training about speeding up tasks yesterday was awesome! #europython @Mirko_Rossini

• PDF from @ianozsvald’s High Performance Python workshop http://t.co/TS94l3V It allowed us to make parts
of @setjam code 2x faster. Read it! @mstepniowski

• Yup. I call it “Advanced Toilet Literature” http://lockerz.com/s/115235120 @emilbronikowski

• #EuroPython high performance #Python workshop by @ianozsvald is most excellent! Learned about Run-
SnakeRun, line profiler, dis module, Cython @mstepniowski

• @mstepniowski @ianozsvald line profiler is amazing, and such a hidden gem @zeeg

• Inspired to try out pp after @ianozsvald #EuroPython training @ajw007

• @ianozsvald’s talk on speeding up #python code is high speed itself! #europython @snakecharmerb

• Don’t miss this, Ian’s training was terrific! RT @ianozsvald: 43 pages of High Performance Python tutorial
PDF written up #europython @europython

• “@ianozsvald The #Europython2011 HighPerf #python material is absolutely amazing o/ Thanks for that !”
@BaltoRouberol

• @ianozsvald looks great and possibly more content than in the talk! [...] @ajw007

• First half of the optimization training with @ianozsvald (http://t.co/zU16MXQ) has been fun and really inter-
esting #europython @pagles
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Figure 1.1: My happy class at EuroPython 2011
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CHAPTER

TWO

MOTIVATION

I ran a 4 hour tutorial on High Performance Python at EuroPython 2011. I’d like to see the training go to more people
so I’ve written this guide. This is based on the official tutorial with some additions, I’m happy to accept updates.

The slides for tutorial are linked on the front page of this document.

If you’d like some background on programming for parallelised CPUs then the Economist has a nice overview article
entitled “Parallel Bars” (June 2nd 2011): http://www.economist.com/node/18750706. It doesn’t mention CUDA and
OpenCL but the comment thread has some useful discussion. GvR gets a name-check in the article.

I’ll also give myself a quick plug - I run an Artificial Intelligence consultancy (http://MorConsulting.com) and rather
enjoy training with Python.

I’d like to note that this report is a summary of work over many weeks preparing for EuroPython. I didn’t perform
statistically valid tests, I did however run the timings many times and can vouch for their stability. The goal isn’t to
suggest that there is “one best way” to do things - I’m showing you several journeys that takes different routes to faster
execution times for this problem.

If you’re curious to see how the stock CPython interpreter compares to other languages like C and JavaScript then see
this benchmark: http://shootout.alioth.debian.org/u32/which-programming-languages-are-fastest.php - you’ll note that
it does rather poorly (up to 100* slower than C!). It also compares poorly against JavaScript V8 which is dynamically
typed and interpreted - much like CPython. Playing with comparisons against the JavaScript V8 examples got me
started on this tutorial.

To see how CPython, PyPy, ShedSkin, IronPython and Jython compare to other languages (including C and V8) see
this benchmark: http://attractivechaos.github.com/plb/ - as shown we can make Python run to 2-6* slower than C with
little effort, and the gap with C is shrinking all the time. The flipside of course is that developing with Python is far
faster than developing with C!

2.1 Changelog

• v0.2 July 2011 with longer write-ups, some code improvements

• v0.1 earliest release (rather draft-y) end of June 2011 straight after EuroPython 2011

2.2 Credits

• Thanks to my class of 40 at EuroPython for making the event so much fun :-)

• The EuroPython team for letting me teach, the conference was a lot of fun

• Mark Dufour and ShedSkin forum members
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• Cython team and forum members

• Andreas Klöckner for pyCUDA

• Everyone else who made the libraries that make my day job easier

2.3 Other talks

The following talks were all given at EuroPython, many have links to slides and videos:

• “Debugging and profiling techniques” by Giovanni Bajo: http://ep2011.europython.eu/conference/talks/debugging-
and-profiling-techniques

• “Python for High Performance and Scientific Computing” by Andreas Schreiber:
http://ep2011.europython.eu/conference/talks/python-for-high-performance-and-scientific-computing

• “PyPy hands-on” by Antonio Cuni - Armin Rigo: http://ep2011.europython.eu/conference/talks/pypy-hands-on

• “Derivatives Analytics with Python & Numpy” by Yves Hilpisch:
http://ep2011.europython.eu/conference/talks/derivatives-analytics-with-python-numpy

• “Exploit your GPU power with PyCUDA (and friends)” by Stefano Brilli:
http://ep2011.europython.eu/conference/talks/exploit-your-gpu-power-with-cuda-and-friends

• “High-performance computing on gamer PCs” by Yann Le Du: http://ep2011.europython.eu/conference/talks/high-
performance-computing-gamer-pcs

• “Python MapReduce Programming with Pydoop” by Simone Leo: http://ep2011.europython.eu/conference/talks/python-
mapreduce-programming-with-pydoop

• “Making CPython Fast Using Trace-based Optimisations” by Mark Shannon:
http://ep2011.europython.eu/conference/talks/making-cpython-fast-using-trace-based-optimisations

2.3. Other talks 5
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CHAPTER

THREE

THE MANDELBROT PROBLEM

In this tutorial we’ll be generating a Mandelbrot plot, we’re coding mostly in pure Python. If you want a background
on the Mandelbrot set then take a look at WikiPedia.

We’re using the Mandelbrot problem as we can vary the complexity of the task by drawing more (or less) pixels and
we can calculate more (or less) iterations per pixel. We’ll look at improvements in Python to make the code run a bit
faster and then we’ll look at fast C libraries and ways to convert the code directly to C for the best speed-ups.

This task is embarrassingly parallel which means that we can easily parallelise each operation. This allows us to exper-
iment with multi-CPU and multi-machine approaches along with trying NVIDIA’s CUDA on a Graphics Processing
Unit.

This is the output we’re after:
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Figure 3.1: A 500 by 500 pixel Mandelbrot with maximum 1000 iterations
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CHAPTER

FOUR

GOAL

In this tutorial we’re looking at a number of techniques to make CPU-bound tasks in Python run much faster. Speed-
ups of 10-500* are to be expected if you have a problem that fits into these solutions.

In the results further below I show that the Mandelbrot problem can be made to run 75* faster with relatively little
work on the CPU and up to 500* faster using a GPU (admittedly with some C integration!).

Techniques covered:

• Python profiling (cProfile, RunSnake, line_profiler) - find bottlenecks

• PyPy - Python’s new Just In Time compiler

• Cython - annotate your code and compile to C

• numpy integration with Cython - fast numerical Python library wrapped by Cython

• ShedSkin - automatic code annotation and conversion to C

• numpy vectors - fast vector operations using numpy arrays

• NumExpr on numpy vectors - automatic numpy compilation to multiple CPUs and vector units

• multiprocessing - built-in module to use multiple CPUs

• ParallelPython - run tasks on multiple computers

• pyCUDA - run tasks on your Graphics Processing Unit

4.1 MacBook Core2Duo 2.0GHz

Below I show the speed-ups obtained on my older laptop and later a comparitive study using a newer desktop with a
faster GPU.

These timings are taken from my 2008 MacBook 2.0GHz with 4GB RAM. The GPU is a 9400M (very underpowered
for this kind of work!).

We start with the original pure_python.py code which has too many dereference operations. Running it with
PyPy and no modifications results in an easily won speed-up.

Tool Source Time
Python 2.7 pure_python.py 49s
PyPy 1.5 pure_python.py 8.9s

Next we modify the code to make pure_python_2.py with less dereferences, it runs faster for both CPython and
PyPy. Compiling with Cython doesn’t give us much compared to using PyPy but once we’ve added static types and
expanded the complex arithmetic we’re down to 0.6s.

8
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Cython with numpy vectors in place of list containers runs even faster (I’ve not drilled into this code to confirm if
code differences can be attributed to this speed-up - perhaps this is an exercise for the reader?). Using ShedSkin with
no code modificatoins we drop to 12s, after expanding the complex arithmetic it drops to 0.4s beating all the other
variants.

Be aware that on my MacBook Cython uses gcc 4.0 and ShedSkin uses gcc 4.2 - it is possible that the minor
speed variations can be attributed to the differences in compiler versions. I’d welcome someone with more time per-
forming a strict comparison between the two versions (the 0.6s, 0.49s and 0.4s results) to see if Cython and ShedSkin
are producing equivalently fast code.

Do remember that more manual work goes into creating the Cython version than the ShedSkin version.

Tool Source Time Notes
Python 2.7 pure_python_2.py 30s
PyPy 1.5 pure_python_2.py 5.7s
Cython calculate_z.pyx 20s no static types
Cython calculate_z.pyx 9.8s static types
Cython calculate_z.pyx 0.6s +expanded math
Cython+numpy calculate_z.pyx 0.49s uses numpy in place of lists
ShedSkin shedskin1.py 12s as pure_python_2.py
ShedSkin shedskin2.py 0.4s expanded math

Compare CPython with PyPy and the improvements using Cython and ShedSkin here:

Figure 4.1: Run times on laptop for Python/C implementations

Next we switch to vector techniques for solving this problem. This is a less efficient way of tackling the problem as we
can’t exit the inner-most loops early, so we do lots of extra work. For this reason it isn’t fair to compare this approach
to the previous table. Results within the table however can be compared.

numpy_vector.py uses a straight-forward vector implementation. numpy_vector_2.py uses smaller vectors
that fit into the MacBook’s cache, so less memory thrashing occurs. The numexpr version auto-tunes and auto-
vectorises the numpy_vector.py code to beat my hand-tuned version.

4.1. MacBook Core2Duo 2.0GHz 9
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The pyCUDA variants show a numpy-like syntax and then switch to a lower level C implementation. Note that the
9400M is restricted to single precision (float32) floating point operations (it can’t do float64 arithmetic like the
rest of the examples), see the GTX 480 result further below for a float64 true comparison.

Even with a slow GPU you can achieve a nice speed improvement using pyCUDA with numpy-like syntax compared
to executing on the CPU (admittedly you’re restricted to float32 math on older GPUs). If you’re prepared to recode
the core bottleneck with some C then the improvements are even greater.

Tool Source Time Notes
numpy numpy_vector.py 54s uses vectors rather than lists
numpy numpy_vector_2.py 42s tuned vector operations
numpy numpy_vector_numexpr.py 19.1s ‘compiled’ with numexpr
pyCUDA pycuda_asnumpy_float32.py 10s using old/slow 9400M GPU
pyCUDA pycuda_elementwise_float32.py 1.4s as above but core routine in C

The reduction in run time as we move from CPU to GPU is rather obvious:

Figure 4.2: Run times on laptop using the vector approach

Finally we look at using multi-CPU and multi-computer scaling approaches. The goal here is to look at easy ways of
parallelising to all the resources available around one desk (we’re avoiding large clusters and cloud solutions in this
report).

The first result is the pure_python_2.py result from the second table (shown only for reference). multi.py uses
the multiprocessing module to parallelise across two cores in my MacBook. The first ParallelPython example
works exaclty the same as multi.py but has lower overhead (I believe it does less serialising of the environment).
The second version is parallelised across three machines and their CPUs.

The final result uses the 0.6s Cython version (running on one core) and shows the overheads of splitting work and
serialising it to new environments (though on a larger problem the overheads would shrink in comparison to the
savings made).

4.1. MacBook Core2Duo 2.0GHz 10
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Tool Source Time Notes
Python 2.7 pure_python_2.py 30s original serial code
multiprocessing multi.py 19s same routine on two cores
ParallelPython parallelpython_pure_python.py 18s same routine on two cores
ParallelPython parallelpython_pure_python.py 6s same routine on three machines
ParallelPython parallelpython_cython_pure_python.py 1.4s 0.6s cython version on two cores

The approximate halving in run-time is more visible in the figure below, in particular compare the last column with
Cython 3 to the results two figures back.

Figure 4.3: Run times on laptop using multi-core approaches

4.2 2.9GHz i3 desktop with GTX 480 GPU

Here I’ve run the same examples on a desktop with a GTX 480 GPU which is far more powerful than my laptop’s
9400M, it can also support double-precision arithmetic. The GTX 480 was the fastest consumer-grade NVIDIA
GPU during 2010, double precision arithmetic is slower than single precision arithmetic (the double-precision in the
scientific C series was even faster, with a big price hike).

The take-home message for the table below is that re-coding a vector operation to run on a fast GPU may bring you
a 10* speed-up with very little work, it may bring you a 500* speed-up if you’re prepared to recode the heart of the
routine in C.

Tool Source Time Notes
Python 2.7 pure_python_2.py 35s (slower than laptop - odd!)
pyCUDA pycuda_asnumpy_float64.py 3.5s GTX480 with float64 precision
pyCUDA pycuda_elementwise_float64.py 0.07s as above but core routine in C

The 500* speed-up is somewhat more visible here:

4.2. 2.9GHz i3 desktop with GTX 480 GPU 11
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Figure 4.4: Run times on i3 desktop with GTX 480 GPU
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CHAPTER

FIVE

USING THIS AS A TUTORIAL

If you grab the source from https://github.com/ianozsvald/EuroPython2011_HighPerformanceComputing (or Google
for “ianozsvald github”) you can follow along. The github repository has the full source for all these examples (and a
few others), you can start with the pure_python.py example and make code changes yourself.

You probably want to use numpy_loop.py and numpy_vector.py for the basis of some of the numpy transfor-
mations.
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CHAPTER

SIX

VERSIONS AND DEPENDENCIES

The tools depend on a few other libraries, you’ll want to install them first:

• CPython 2.7.2

• line_profiler 1.0b2

• RunSnake 2.0.1 (and it depends on wxPython)

• PIL (for drawing the plot)

• PyPy pypy-c-jit-45137-65b1ed60d7da-osx64 (from the nightly builds around July 2011)

• Cython 0.14.1

• Numpy 1.5.1

• ShedSkin 0.8 (and this depends on a few C libraries)

• NumExpr 1.4.2

• pyCUDA 0.94 (HEAD as of June 2011 and it depends on the CUDA development libraries, I’m using CUDA
4.0)
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