

Beginner’s Guide to C

Beginners’ Guide to C

P a g e 2 | 65

FIRST EDITION December 2014

Copyright Information

©2014 All rights reserved.

Author Soni

Dedicated to my Parents, my Family, my Lecturers and Teachers

About the Author

Soni a former teacher and is now a technical writer. She holds a degree in commerce

and a post graduate degree in computer application. She has hands on experience in

programming language and worked as a programmer too. She also has written books

on Java that are used by school teachers. She has designed curriculum for online

computer courses on programming languages such as Java, C, and C++.

Foreword

This book contains information which will help you to start working with C. Structures,

Union and Pointers that are part of C programming language will be covered in the next

edition of the book.

You can mail your feedback to gayathrimanoharlal@yahoo.co.in; soni0618@gmail.com

mailto:gayathrimanoharlal@yahoo.co.in
mailto:soni0618@gmail.com

Preface

This book provides information on Programming with C. It has all the information

from the basics that will help a beginner to start working with C programming

language. As you all are aware that C is the basic programming language that will

enhance and build your capability before learning and working with other

programming languages. In addition the book gives you simple examples that will

help you to work with the programming language.

Contents

Introduction to Programming Languages ... 8

Introduction to C Language .. 10

Software programs required for a C program .. 10

Structure of a C program.. 12

Compile & Execute C Program ... 14

Data types.. 15

The void Type ... 15

Variables .. 16

Variable Initialization.. 17

Keywords.. 18

Constants ... 18

Character constants .. 19

String Constants ... 19

Defining Constants ... 19

The const Keyword ... 20

Escape Sequence .. 22

Operators... 24

Arithmetic Operators .. 26

Relational Operators .. 28

Logical Operators ... 30

The Conditional operator .. 32

Loops and Conditions... 36

Conditional constructs ... 36

The if construct ... 37

The if..else construct ... 38

Switch construct ... 39

Beginners’ Guide to C

P a g e 7 | 65

Loop Constructs ... 43

The while loop .. 43

The do…while loop.. 46

The for loop .. 48

Arrays .. 52

Character Arrays... 54

Library Functions ... 57

Mathematical Functions ... 57

String Function ... 60

The gets and puts Function ... 60

Beginners’ Guide to C

P a g e 8 | 65

Introduction to Programming Languages

A computer requires instructions to perform a task. Such instructions are included

in a programming language. Collection of such program is software. The procedure

of developing software is programming. There are different programming

languages. A Computer can be given instructions in any programming language. All

computer languages follow a set of rules called syntax. Each programming language

uses its own set of syntax.

The 3 main categories in programming languages are, machine language, assembly

language and high level language.

Machine Language

Sequence of instructions written in binary form is a Machine Language. Machine

languages use 0 and 1 to write instructions. The program written in a machine

language execute faster than program written in any other language.

Assembly Language

It is an easy language, as special symbols like special characters, letters, or digits are

used to write the program. Computers do not understand the Assembly Language

hence the code written in Assembly Language has to be translated to a Machine

Language. The Assembler performs the task of translation. After translation of a

Assembly Language to a Machine Language the resultant output is an object code in

the form of 0 and 1.

High Level Language

High level languages are easier to understand as English language is used to specify

commands. Examples of High Level Language are: C, C++, Java, COBOL, and PASCAL.

The High Level Language has to be translated to a machine readable language. A

compiler translates the High Level Language. The resultant output is an object code.

Beginners’ Guide to C

P a g e 9 | 65

The Hierarchy of programming language is:

A programming Language conversion to machine understandable language happens

the way it is illustrated below:

Output

Output

High Level Language

Assembly Language

Machine Language

Binary Code

understandable by

Machine

Output of Program

are easily

understandable

Assembler translates

Compiler translates
High Level Language

Program

Assembly Language

Machine Language

Beginners’ Guide to C

P a g e 10 | 65

Introduction to C Language

C is a general purpose, high level programming language and is a widely used

language. This language has facilities for structured programming and allows to

efficiently provide machine instructions. Hence, the language is used for coding

assembly language too. The system software like Unix operating system has been

coded using C. C is a procedural language. It was designed to be compiled using a

relatively straightforward compiler, to provide low-level access to memory, to

provide language constructs that map efficiently to machine instructions, and to

have a have need of minimal run-time support. C is useful for many applications

that had formerly been coded in assembly language, such as in system

programming.

Software programs required for a C program

As no computer can understand C, you need several programs that help the
computer understand the instructions. The programs are:

 Editor

 Compiler

 Linker

 Loader

Here Turbo C editor is used for C programming.

The table below explains the purpose of the various programs.

Beginners’ Guide to C

P a g e 11 | 65

Program Purpose

Editor Used to write and alter the content of the program (source

code).

Compiler Used to convert the program to machine language.

Linker Used to link the header file with the main program before

execution.

Loader Used to load the program to the computer memory for

execution.

The basics of a C programming language needs an understanding of the basic

building blocks of the programming language, the bare minimum C program

contains the following parts:

 Preprocessor Commands

 Functions

 Variables

 Statements & Expressions

 Comments

Every C program consists of one or more functions, one of which must be main().

Let us look at a simple code that would print the words "My First Program in C"

followed by an explanation of the various parts of the C program:

 Note

Compiler is used to check for errors in the program. The
complier stores the translated machine language code with
.obj extension and is called as object code.

Beginners’ Guide to C

P a g e 12 | 65

#include<stdio.h>

void main()

{

/* My first program in C */

printf("My Frist Program in C \n");

}

Structure of a C program

The various parts of the program given above are explained below:

Preprocessor Commands

1. #include<stdio.h>

Start writing a C program with a preprocessor command #include<stdio.h>.

This informs a C compiler to include a header file stdio.h before compiling the
program.

 # is a preprocessor command.

 Include instructs the C compiler to include the header file library
function. The header file contains the instruction for standard input and
output.

 <stdio.h> - All the header file library functions are written within open
and close angular brackets, <>.

 The expansion of stdio.h is “standard input and output header file.

 .h is the extension of the library function file identified by the compiler
with .h extension.

 All the library functions included in a C program are written as
#include<header file name.h>

Refer Library Functions to know about the list of other library functions that can be
included in a C program.

2. main() function

The next line int main() is the main function where program execution begins.

Beginners’ Guide to C

P a g e 13 | 65

All programs in C should have a main() function. There are two variations of main().

They are void main() and int main(). void main() denotes a function does not return

a value, int main() denotes a function that is of a numeric return type.

3. Starting Brace

All C program start with a left brace {.and the program code always ends with a

closing brace - }.

4. Statements

Comment Statement

The next line /*...*/ will be ignored by the compiler and it has been put to add

additional comments in the program. So such lines are called comments in the

program. You can give a brief description about the program within the /*…..*/

comment line statements.

Input and Output statements

Output statement

printf(...)

The next line printf(...) is another function available in C which causes the message

"My First Program in C” to be displayed on the screen. All the statements that you

want to display on the screen should start with the printf() function.

Input Statement

scanf(“%d”, &a);

The data type of the input is specified within double quotes, if it is of integer type

then it is % d and &a represents a variable data item.

scanf(…..) function can be used to enter any combination of numerical values, single

characters and strings.

 Note

In C, semicolon (;) indicates the end of statement.
#include statement does not end with a semicolon.

Beginners’ Guide to C

P a g e 14 | 65

Compile & Execute C Program

Let’s look at how to save the source code in a file, and how to compile and run it.
Following are the simple steps:

1. Open a text editor and add the above-mentioned code.

2. Save the file as First.c in the TC\Bin directory. The directory where you have
the C compiler.

3. Open a command prompt and go to the directory where you saved the file.

4. Type TC First.c and press enter.

5. This opens up the First.c program in the Turbo C window.

6. To compile your code press Alt + F9 key simultaneously.

7. If there are no errors there will be no error message.

8. You have to execute the file to view the output. To execute the file press
Ctrl + F9 keys simultaneously.

9. You will be able to see "My First Program in C" printed on the screen.

Output screen of First.c

C uses structured programming with variables and recursive statements. In C, all
executable code is contained within "functions" All C program use the semicolon as
a statement terminator and curly braces({ }) for grouping blocks of statements.

The following are the key points of C language:

 Uses preset keywords

 Includes flow of control structures for, if/else, while, switch, and do/while.

 A large number of arithmetical and logical operators are used.

 Statements are used to specify actions. Common statements are input,
output and an expression statement. The expression statement consists of
an expression to be evaluated, followed by a semicolon;.

http://en.wikipedia.org/wiki/Flow_of_control
http://en.wikipedia.org/wiki/For_loop
http://en.wikipedia.org/wiki/Conditional_(programming)
http://en.wikipedia.org/wiki/While_loop
http://en.wikipedia.org/wiki/Switch_statement
http://en.wikipedia.org/wiki/Do_while_loop

Beginners’ Guide to C

P a g e 15 | 65

 Functions and procedures may be called and

 Variables may be assigned new values.

The basic characters that are included in a program are:

 Lowercase and uppercase letters: a–z A–Z

 Decimal digits: 0–9

 Graphic characters: ! " # % & ' () * + , - . / : ; < = > ? [\] ^ _ { | } ~

 Newline indicates the end of a text line; it need not correspond to an actual
single character, although for convenience C treats it as one.

Data types

C supports different types of data, the basic C data types are as listed below:

S.No. Data
Type

Description Storage
Size

Value Range

1.
int The numeric

integer data
2 or 4
bytes

-32,768 to 32,767 or -
2,147,483,648 to
2,147,483,647

2. Char Single character 1 byte -128 to 127 or 0 to 255

3. Float
Floating point
number

4 byte
1.2E-38 to 3.4E+38
(Precision up to 6 decimal
places)

4. Double
Double-precision
floating point
number

8 byte
2.3E-308 to 1.7E+308 (
Precision up to 15 decimal
places)

The array types and structure types are referred to collectively as the aggregate

types. The type of a function specifies the type of the function's return value. We

will see basic types in the following section.

The void Type

The void type specifies that no value is available. It is used in the following kinds of
situations:

1. When a function does not return a value.

2. For empty set of values.

Beginners’ Guide to C

P a g e 16 | 65

Variables

Variables store values and they are used to perform calculations and evaluate
conditions. A variable refers to values that are not fixed, they keep changing. C
programming language also allows defining various other types of variables, other
than those defined in the following type:

Variable
Type

Description Example

Integer A variable, which can have only
integers, is called integer variable.
Integer variables are used to store
whole numbers. A fractional value
cannot be stored in an integer
variable.

int v=10;

int is the data type

v is the variable 10 is the
value

Character A variable, which can store only
characters, is called character
variable. Character constants
stored in these variables should be
enclosed within single quotes.

char str;;

char str= ‘A’;

where, char is the data type
str is the variable , ‘A’ is
value. The char data type
values should be provided
within single quotes.

Float Variables, which are used to store
decimal values, are called float
variables. They can store both
integer part (to the left of decimal
point) and fractional part (to the
right of decimal point).

float marks = 66.78;
where, float is the data type
marks is the variable 66.78 is
the value assigned to the
variable.

Beginners’ Guide to C

P a g e 17 | 65

Variable Definition in C

A variable definition means to tell the compiler where and how much to create the

storage for the variable. A variable definition specifies a data type and contains a list

of one or more variables of a specific data type.

Variable Initialization

Assigning value to the variable is called Variable Initialization. A variable can be
initialized at the place where the variable is declared.

Syntax

data_type variable_name = value;

int x = 15;

float p = 17.1;

char z= ’ p ’;

In the following example variables have been declared, but they have been defined
and initialized inside the main function:

Example

CODE

#include<stdio.h>

int main ()

{

/* variable definition: */

int a, b,c;

float f=3.2, g;

/* actual initialization */

 a =15;

 b =20;

 c = a + b;

 g= f * (b/a);

printf("Value of c : %d \n", c);

printf("Value of g:\ %f", g);

}

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can

access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

