
 

 

 

 

 

 

 

 

 

 

 

 

 

BASICS WITH WINDOWS POWERSHELL V2 

By Prometheus MMS 

Copyright © 2018 by Prometheus MMS 

All rights reserved. No part of the book may be reproduced in any form 

by any electronic or mechanical means, including information storage 

and retrieval systems, without permission in writing from the author 

or publisher, except by a reviewer who may quote brief passages in a 

review.        

For more contact: mmsprometheus@gmail.com 

     Twitter: https://twitter.com/prometheus_mms 

 



2           

  



 

 

 

INTRODUCTION 

 

Microsoft's new command shell/scripting language. This series 

provides a task-based introduction to Windows PowerShell cmdlets: 

rather than focusing on the individual cmdlets themselves, the emphasis 

is on the tasks you can carry out using those cmdlets. These tasks 

include everything from reading and writing text files to managing 

event logs to sorting and filtering data.    

    

   

     

Applies To: Windows PowerShell 2.0, Windows PowerShell 3.0, 

Windows PowerShell 4.0   

 

Graphical user interfaces use some basic concepts that are well known 

to most computer users. Users rely on the familiarity of those interfaces 

to accomplish tasks. Operating systems present users with a graphical 

representation of items that can be browsed, usually with drop-down 

menus for accessing specific functionality and context menus for 

accessing context-specific functionality.   



4           

A command-line interface (CLI), such as Windows PowerShell, must 

use a different approach to expose information, because it does not have 

menus or graphical systems to help the user. You need to know 

command names before you can use them. Although you can type 

complex commands that are equivalent to the features in a GUI 

environment, you must become familiar with commonly-used 

commands and command parameters.   

Most CLIs do not have patterns that can help the user to learn the 

interface. Because CLIs were the first operating system shells, many 

command names and parameter names were selected arbitrarily. Terse 

command names were generally chosen over clear ones. Although help 

systems and command design standards are integrated into most CLIs, 

they have been generally designed for compatibility with the earliest 

commands, so the command set is still shaped by decisions made 

decades ago.   

Windows PowerShell was designed to take advantage of a user's 

historic knowledge of CLIs. In this chapter, we will talk about some 

basic tools and concepts that you can use to learn Windows PowerShell 

quickly. They include:   

• Using Get-Command   

• Using Cmd.exe and UNIX commands   

• Using External Commands   

• Using Tab-Completion   

• Using Get-Help   

   

   

for example, they mention that using double quotes you can evaluate 

variables inside the strings:   

   

   

$x = "hello" 



 

   

   

"$x world" 

   

   

results in "hello world"   

   

but   

   

$y = "hello","goodbye" 

   

"$y[0] world"   

   

does not. So, trial and error commence and we try:   

   

"${y[0]} world" which also fail.   

   

It would be a lot better if they bothered to explain exactly how the 

various basic tokens are built up, for example what goes into a script 

block? will for example:   

   

$x="hello" 

 

   

0..4 | foreach-object -process { "$x world $_" }   

   

Give the expected result? Yes, it does!   

   

   



6           

But for some reason using $args inside foreach does not - because 

presumably foreach-process has it's own arguments which replaces the 

$args variable, probably best then to store the $args into another 

variable and then use it? Yes, that works.   

   

   

Things would be a lot easier if they bothered to have a few chapters to 

explain these basic stuff rather than having each of us finding out by 

experimentation.   

   

   

Seems they skip immediately to the fun part and drop the tedious basic 

building blocks of the scripting language.   

   

   

   

   

Also, if they could allow a character to escape the meaning of $ inside 

double quoted strings so you could write stuff like: 

 

"\$x = '$x'" 

   

   

To get the output    

   

   

$x = 'Hello' 

   

   



 

but that is not just documentation, that is change of the language. Yes, 

I know you can get the same  

string by doing:   

   

   

("$"+"x = '$x'") 

   

   

but it is easier to write "\$x = '$x'" to achieve the same thing.   

   

About Windows PowerShell   

   

Discoverability   

Windows PowerShell makes it easy to discover its features. For 

example, to find a list of cmdlets that view and change Windows 

services, type:   

get-command *-service   

After discovering which cmdlet accomplishes a task, you can learn 

more about the cmdlet by using the Get-Help cmdlet. For example, to 

display help about the Get-Service cmdlet, type:   

get-help get-service   

To fully understand the output of that cmdlet, pipe its output to the Get-

Member cmdlet. For example, the following command displays 

information about the members of the object output by the Get-Service 

cmdlet.   

get-service | get-member   

   

Consistency   

Managing systems can be a complex endeavor and tools that have a 

consistent interface help to control the inherent complexity. 



8           

Unfortunately, neither command-line tools nor scriptable COM objects 

have been known for their consistency.   

The consistency of Windows PowerShell is one of its primary assets. 

For example, if you learn how to use the Sort-Object cmdlet, you can 

use that knowledge to sort the output of any cmdlet. You do not have to 

learn the different sorting routines of each cmdlet.   

In addition, cmdlet developers do not have to design sorting features for 

their cmdlets. Windows PowerShell gives them a framework that 

provides the basic features and forces them to be consistent about many 

aspects of the interface. The framework eliminates some of the choices 

that are typically left to the developer, but, in return, it makes the 

development of robust and easy-to-use cmdlets much simpler.   

Interactive and Scripting Environments   

Windows PowerShell is a combined interactive and scripting 

environment that gives you access to command-line tools and COM 

objects, and also enables you to use the power of the .NET Framework 

Class Library (FCL).   

This environment improves upon the Windows Command Prompt, 

which provides an interactive environment with multiple command-line 

tools. It also improves upon Windows Script Host (WSH) scripts, which 

let you use multiple command-line tools and COM automation objects, 

but do not provide an interactive environment.   

By combining access to all of these features, Windows PowerShell 

extends the ability of the interactive user and the script writer, and 

makes system administration more manageable.   

   

Object Orientation   

Although you interact with Windows PowerShell by typing commands 

in text, Windows PowerShell is based on objects, not text. The output 

of a command is an object. You can send the output object to another 

command as its input. As a result, Windows PowerShell provides a 

familiar interface to people experienced with other shells, while 



 

introducing a new and powerful command-line paradigm. It extends the 

concept of sending data between commands by enabling you to send 

objects, rather than text.   

   

   

Understanding Important Windows PowerShell Concepts   

   

Commands Are Not Text-Based   

Unlike traditional command-line interface commands, Windows 

PowerShell cmdlets are designed to deal with objects - structured 

information that is more than just a string of characters appearing on the 

screen. Command output always carries along extra information that 

you can use if you need it. We will discuss this topic in depth in this 

document.   

If you have used text-processing tools to process command-line data in 

the past, you will find that they behave differently if you try to use them 

in Windows PowerShell. In most cases, you do not need text-processing 

tools to extract specific information. You can access portions of the data 

directly by using standard Windows PowerShell object manipulation 

commands.   

   

   

The Command Family Is Extensible   

Interfaces such as Cmd.exe do not provide a way for you to directly 

extend the built-in command set. You can create external command-line 

tools that run in Cmd.exe, but these external tools do not have services, 

such as Help integration, and Cmd.exe does not automatically know that 

they are valid commands.   

The native binary commands in Windows PowerShell, known as 

cmdlets (pronounced command-lets), can be augmented by cmdlets that 

you create and that you add to Windows PowerShell by using snap-ins. 



10           

Windows PowerShell snap-ins are compiled, just like binary tools in 

any other interface. You can use them to add Windows PowerShell 

providers to the shell, as well as new cmdlets.   

Because of the special nature of the Windows PowerShell internal 

commands, we will refer to them as cmdlets.   

Note:   

Windows PowerShell can run commands other than cmdlets. We will 

not be discussing them in detail in the Windows PowerShell User's 

Guide, but they are useful to know about as categories of command 

types. Windows PowerShell supports scripts that are analogous to 

UNIX shell scripts and Cmd.exe batch files, but have a .ps1 file name 

extension. Windows PowerShell also allows you to create internal 

functions that can be used directly in the interface or in scripts.   

   

   

Windows PowerShell Handles Console Input and Display   

When you type a command, Windows PowerShell always processes the 

command-line input directly. Windows PowerShell also formats the 

output that you see on the screen. This is significant because it reduces 

the work required of each cmdlet and ensures that you can always do 

things the same way regardless of which cmdlet you are using. One 

example of how this simplifies life for both tool developers and users is 

command-line Help.   

Traditional command-line tools have their own schemes for requesting 

and displaying Help. Some command-line tools use /? to trigger the 

Help display; others use -?, /H, or even //. Some will display Help in a 

GUI window, rather than in the console display. Some complex tools, 

such as application updaters, unpack internal files before displaying 

their Help. If you use the wrong parameter, the tool might ignore what 

you typed and begin performing a task automatically. When you enter 

a command in Windows PowerShell, everything you enter is 

automatically parsed and pre-processed by Windows PowerShell. If you 



 

use the -? parameter with a Windows PowerShell cmdlet, it always 

means "show me Help for this command". Cmdlet developers do not 

have to parse the command; they only need to provide the Help text.   

It is important to understand that the Help features of Windows 

PowerShell are available even when you run traditional command-line 

tools in Windows PowerShell. Windows PowerShell processes the 

parameters and passes the results to the external tools.   

Note:   

If you run angraphic application in Windows PowerShell, the window 

for the application opens. Windows PowerShell intervenes only when 

processing the command-line input you supply or the application output 

returned to the console window; it does not affect how the application 

works internally.   

Windows PowerShell Uses Some C# Syntax   

Windows PowerShell has syntax features and keywords that are very 

similar to those used in the C# programming language, because 

Windows PowerShell is based on the .NET Framework. Learning 

Windows PowerShell will make it much easier to learn C#, if you are 

interested in the language.   

If you are not a C# programmer, this similarity is not important. 

However, if you are already familiar with C#, the similarities can make 

learning Windows PowerShell much easier.   

   

   

Easy Transition to Scripting   

Windows PowerShell makes it easy to transition from typing commands 

interactively to creating and running scripts. You can type commands 

at the Windows PowerShell command prompt to discover the 

commands that perform a task. Then, you can save those commands in 

a transcript or a history before copying them to a file for use as a script.   

   



12           

 Understanding Important Windows PowerShell Concepts   

   

Commands Are Not Text-Based   

Unlike traditional command-line interface commands, Windows 

PowerShell cmdlets are designed to deal with objects - structured 

information that is more than just a string of characters appearing on the 

screen. Command output always carries along extra information that 

you can use if you need it. We will discuss this topic in depth in this 

document.   

If you have used text-processing tools to process command-line data in 

the past, you will find that they behave differently if you try to use them 

in Windows PowerShell. In most cases, you do not need text-processing 

tools to extract specific information. You can access portions of the data 

directly by using standard Windows PowerShell object manipulation 

commands.   

   

   

The Command Family Is Extensible   

Interfaces such as Cmd.exe do not provide a way for you to directly 

extend the built-in command set. You can create external command-line 

tools that run in Cmd.exe, but these external tools do not have services, 

such as Help integration, and Cmd.exe does not automatically know that 

they are valid commands.   

The native binary commands in Windows PowerShell, known as 

cmdlets (pronounced command-lets), can be augmented by cmdlets that 

you create and that you add to Windows PowerShell by using snap-ins. 

Windows PowerShell snap-ins are compiled, just like binary tools in 

any other interface. You can use them to add Windows PowerShell 

providers to the shell, as well as new cmdlets.   

Because of the special nature of the Windows PowerShell internal 

commands, we will refer to them as cmdlets.   

Note:   



 

Windows PowerShell can run commands other than cmdlets. We will 

not be discussing them in detail in the Windows PowerShell User's 

Guide, but they are useful to know about as categories of command 

types. Windows PowerShell supports scripts that are analogous to 

UNIX shell scripts and Cmd.exe batch files, but have a .ps1 file name 

extension. Windows PowerShell also allows you to create internal 

functions that can be used directly in the interface or in scripts.   

   

   

Windows PowerShell Handles Console Input and Display   

When you type a command, Windows PowerShell always processes the 

command-line input directly. Windows PowerShell also formats the 

output that you see on the screen. This is significant because it reduces 

the work required of each cmdlet and ensures that you can always do 

things the same way regardless of which cmdlet you are using. One 

example of how this simplifies life for both tool developers and users is 

command-line Help.   

Traditional command-line tools have their own schemes for requesting 

and displaying Help. Some command-line tools use /? to trigger the 

Help display; others use -?, /H, or even //. Some will display Help in a 

GUI window, rather than in the console display. Some complex tools, 

such as application updaters, unpack internal files before displaying 

their Help. If you use the wrong parameter, the tool might ignore what 

you typed and begin performing a task automatically. When you enter 

a command in Windows PowerShell, everything you enter is 

automatically parsed and pre-processed by Windows PowerShell. If you 

use the -? parameter with a Windows PowerShell cmdlet, it always 

means "show me Help for this command". Cmdlet developers do not 

have to parse the command; they only need to provide the Help text.   

It is important to understand that the Help features of Windows 

PowerShell are available even when you run traditional command-line 



14           

tools in Windows PowerShell. Windows PowerShell processes the 

parameters and passes the results to the external tools.   

Note:   

If you run an graphic application in Windows PowerShell, the window 

for the application opens.   

Windows PowerShell intervenes only when processing the command-

line input you supply or the application output returned to the console 

window; it does not affect how the application works internally.   

Windows PowerShell Uses Some C# Syntax   

Windows PowerShell has syntax features and keywords that are very 

similar to those used in the C# programming language, because 

Windows PowerShell is based on the .NET Framework. Learning 

Windows PowerShell will make it much easier to learn C#, if you are 

interested in the language.   

If you are not a C# programmer, this similarity is not important. 

However, if you are already familiar with C#, the similarities can make 

learning Windows PowerShell much easier.   

   

Learning Windows PowerShell Names   

   

Learning names of commands and command parameters is a significant 

time investment with most command-line interfaces. The issue is that 

there are very few patterns, so the only way to learn is by memorizing 

each command and each parameter that you need to use on a regular 

basis.   

When you work with a new command or parameter, you cannot 

generally use what you already know; you have to find and learn a new 

name. If you look at how interfaces grow from a small set of tools with 

incremental additions to functionality, it is easy to see why the structure 

is nonstandard. With command names in particular, this may sound 

logical since each command is a separate tool, but there is a better way 

to handle command names.   



 

Most commands are built to manage elements of the operating system 

or applications, such as services or processes. The commands have a 

variety of names that may or may not fit into a family. For example, on 

Windows systems, you can use the net start and net stop commands to 

start and stop a service. There is another more generalized service 

control tool for Windows that has a completely different name, sc, that 

does not fit into the naming pattern for the net service commands. For 

process management, Windows has the tasklist command to list 

processes and the taskkill command to kill processes.   

Commands that take parameters have irregular parameter 

specifications. You cannot use the net start command to start a service 

on a remote computer. The sc command will start a service on a remote 

computer, but to specify the remote computer, you must prefix its name 

with a double backslash. For example, to start the spooler service on a 

remote computer named DC01, you would type sc \\DC01 start spooler. 

To list tasks running on DC01, you need to use the /S (for "system") 

parameter and supply the name DC01 without backslashes, like this: 

tasklist /S DC01.   

Although there are important technical distinctions between a service 

and a process, they are both examples of manageable elements on a 

computer that have a well-defined life cycle. You may want to start or 

stop a service or process, or get a list of all currently running services 

or processes. In other words, although a service and a process are 

different things, the actions we perform on a service or a process are 

often conceptually the same. Furthermore, choices we may make to 

customize an action by specifying parameters may be conceptually 

similar as well. Windows PowerShell exploits these similarities to 

reduce the number of distinct names you need to know to understand 

and use cmdlets.   

Cmdlets Use Verb-Noun Names to Reduce Command Memorization   

Windows PowerShell uses a "verb-noun" naming system, where each 

cmdlet name consists of a standard verb hyphenated with a specific 



16           

noun. Windows PowerShell verbs are not always English verbs, but 

they express specific actions in Windows PowerShell. Nouns are very 

much like nouns in any language, they describe specific types of objects 

that are important in system administration. It is easy to demonstrate 

how these two-part names reduce learning effort by looking at a few 

examples of verbs and nouns.   

Nouns are less restricted, but they should always describe what a 

command acts upon. Windows PowerShell has commands such as Get-

Process, Stop-Process, Get-Service, and StopService.   

In the case of two nouns and two verbs, consistency does not simplify 

learning that much. However, if you look at a standard set of 10 verbs 

and 10 nouns, you then have only 20 words to understand, but those 

words can be used to form 100 distinct command names. Frequently, 

you can recognize what a command does by reading its name, and it is 

usually apparent what name should be used for a new command. For 

example, a computer shutdown command might be Stop-Computer. A 

command that lists all computers on a network might be Get-Computer. 

The command that gets the system date is Get-Date.   

You can list all commands that include a particular verb with the -Verb 

parameter for  

GetCommand (We will discuss Get-Command in detail in the next 

section). For example, to see all cmdlets that use the verb Get, type:   

PS> Get-Command -Verb Get   

CommandType     Name                            Definition   

-----------     ----                            ----------   

Cmdlet          Get-Acl                         Get-Acl [[-Path] <String[]>]...   

Cmdlet          Get-Alias                       Get-Alias [[-Name] <String[]...   

Cmdlet          Get-AuthenticodeSignature       Get-AuthenticodeSignature 

[-... Cmdlet          Get-ChildItem                   Get-ChildItem [[-Path] 

<Stri...   

...   



 

The -Noun parameter is even more useful because it allows you to see 

a family of commands that affect the same type of object. For example, 

if you want to see which commands are available for managing services, 

type following command:   

PS> Get-Command -Noun Service   

CommandType     Name                            Definition   

-----------     ----                            ----------   

Cmdlet          Get-Service                     Get-Service [[-Name] <String...   

Cmdlet          New-Service                     New-Service [-Name] <String>...   

Cmdlet          Restart-Service                 Restart-Service [-Name] <Str...   

Cmdlet          Resume-Service                  Resume-Service [-Name] 

<Stri...   

Cmdlet          Set-Service                     Set-Service [-Name] <String>...   

Cmdlet          Start-Service                   Start-Service [-Name] <Strin...   

Cmdlet          Stop-Service                    Stop-Service [-Name] <String...   

Cmdlet          Suspend-Service                 Suspend-Service [-Name] 

<Str...    

...   

A command is not necessarily a cmdlet, just because it has a verb-noun 

naming scheme. One example of a native Windows PowerShell 

command that is not a cmdlet but has a verb-noun name, is the command 

for clearing a console window, Clear-Host. The Clear-Host command 

is actually an internal function, as you can see if you run Get-Command 

against it:   

   

   

   

PS> Get-Command -Name Clear-Host   

   

CommandType     Name                            Definition   

-----------     ----                            ----------   



Thank You for previewing this eBook 

You can read the full version of this eBook in different formats: 

 HTML (Free /Available to everyone) 

 

 PDF / TXT (Available to V.I.P. members. Free Standard members can 

access up to 5 PDF/TXT eBooks per month each month) 

 

 Epub & Mobipocket (Exclusive to V.I.P. members) 

To download this full book, simply select the format you desire below 

 

 

 

http://www.free-ebooks.net/

